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Abstract: The key objective in the hemodynamic treatment of septic shock is the optimization of
tissue perfusion and oxygenation. This is usually achieved by the utilization of fluids, vasopressors,
and inotropes. Dobutamine is the inotrope most commonly recommended and used for this purpose.
Despite the fact that dobutamine was introduced almost half a century ago in the treatment of
septic shock, and there is widespread use of the drug, several aspects of its pharmacodynamics
remain poorly understood. In normal subjects, dobutamine increases contractility and lacks a direct
effect on vascular tone. This results in augmented cardiac output and blood pressure, with reflex
reduction in systemic vascular resistance. In septic shock, some experimental and clinical research
suggest beneficial effects on systemic and regional perfusion. Nevertheless, other studies found
heterogeneous and unpredictable effects with frequent side effects. In this narrative review, we discuss
the pharmacodynamic characteristics of dobutamine and its physiologic actions in different settings,
with special reference to septic shock. We discuss studies showing that dobutamine frequently
induces tachycardia and vasodilation, without positive actions on contractility. Since untoward
effects are often found and therapeutic benefits are occasional, its profile of efficacy and safety seems
low. Therefore, we recommend that the use of dobutamine in septic shock should be cautious. Before
a final decision about its prescription, efficacy, and tolerance should be evaluated throughout a short
period with narrow monitoring of its wanted and side effects.

Keywords: dobutamine; sepsis; shock; cardiac output; blood pressure; microcirculation

1. Introduction

The key objective in the hemodynamic treatment of septic shock is the optimization of
tissue perfusion and oxygenation. This is achieved by the utilization of fluids, vasopressors,
and inotropes. Dobutamine is the inotrope most commonly used for this purpose. A survey
among 839 physicians from 82 countries has recently evaluated the current practice of
inotropic treatment in shock states [1]. Dobutamine was chosen as the first-line inotrope in
84% of questionnaire respondents. Most of them (65%) identified persistent hypoperfusion
(e.g., alterations in skin perfusion and oliguria) or persistent hyperlactatemia despite appro-
priate fluid and vasopressor administration as the trigger for inotrope use. A simultaneous
international panel of experts also recommended inotropes for the treatment of septic
and cardiogenic shock and considered dobutamine as the first-line agent [1]. Inadequate
cardiac output and signs of tissue hypoperfusion were pointed out as indications and
goals for the inotropic treatment. With a good degree of consensus, experts launched a
strong recommendation for the use of inotropes in septic shock. Furthermore, the Surviv-
ing Sepsis Campaign suggested adding dobutamine to norepinephrine or administering
epinephrine alone for adults with septic shock and myocardial dysfunction with persistent
hypoperfusion, despite the correction of hypovolemia and arterial hypotension (weak
recommendation and low quality of evidence) [2].
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Despite these recommendations, with the exception of a network meta-analysis that
found a reduced risk of 28-day mortality with a norepinephrine and dobutamine combina-
tion [3], there is limited scientific evidence that supports the beneficial effect of dobutamine
on the outcome of patients with shock. On the contrary, some studies suggest that the drug
exhibits a low profile of efficacy and safety in both cardiogenic and septic shock. In patients
with severe heart failure and cardiogenic shock, its use has been associated with increased
mortality [4,5]. In patients with septic shock, the administration of dobutamine was an
independent predictor of 90-day mortality, even after adjustment with a propensity score
for inotropic treatment [6]. Another retrospective study showed a similar detrimental effect
along with a higher occurrence of atrial fibrillation [7]. A propensity-score-matched analy-
sis also showed that hospital mortality was consistently higher in septic patients treated
with dobutamine (60.2% vs. 49.4%) [8]. On top of this, some observational studies showed
that dobutamine produces unpredictable cardiovascular actions and common untoward
effects, such as tachycardia and arterial hypotension [9–11]. Overall, the results about
the effects of dobutamine on the outcome of septic shock are inconclusive. The ongoing
adjunctive dobutamine in septic cardiomyopathy with tissue hypoperfusion (ADAPT) trial
will probably shed some light on this issue. The study is recruiting septic shock patients
with a left ventricular ejection fraction ≤ 40% and a left ventricular outflow tract velocity
time integral < 14 cm who are randomized to placebo or dobutamine [12]. The study is
expected to be completed on 20 December 2024.

Despite the fact that dobutamine was introduced almost half a century ago for the
treatment of septic shock [13], and there is widespread use of the drug, several aspects
of its pharmacodynamics remain poorly understood. This narrative review is aimed at
performing a reappraisal of its clinical pharmacology, especially in septic shock. Our aim is
to show that the effects of dobutamine are commonly variable, heterogeneous, and highly
dependent on the underlying illness.

2. Pharmacodynamics and Pharmacokinetics of Dobutamine

Dobutamine is clinically used as a racemic mixture of two enantiomers [14–16]. The
pharmacodynamic activity of the racemate is the consequence of the interaction of the
individual characteristics of stereoisomers. (−)-dobutamine behaves as a powerful adren-
ergic α1 agonist and vasoconstrictor with weak β1 and β2 activity in both vascular and
cardiac receptors. (+)-dobutamine has a similar affinity for adrenergic α1 receptors but
lacks intrinsic activity. So, it is an α1 antagonist. It additionally displays some β2 ag-
onism in vascular receptors and is a powerful agonist of β1 and β2 adrenoreceptors in
cardiac muscle. As a cardiac β1 adrenergic agonist, its effect on cardiac contractility is
comparable to that of isoproterenol and norepinephrine. Thus, (+)-dobutamine mainly has
vasodilatory and inotropic effects. Taking into account that a substantial portion of the
effect on contractility depends on augmented cardiac α1 activity, dobutamine produces less
tachycardia than other adrenergic agents. Given that (−)-dobutamine is a vasoconstrictor
and (+)-dobutamine is a vasodilator, the opposite effects of each stereoisomer result in
the lack of direct effect of the racemate on vascular tone. Consequently, the reduction in
vascular tone and systemic peripheral resistance are reflex responses to the increase in
cardiac output. Figure 1 displays the key pharmacodynamic and cardiovascular effects
of dobutamine.



Medicina 2024, 60, 751 3 of 16Medicina 2024, 60, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Schematic view of the main pharmacodynamic and cardiovascular effects of dobutamine. 
Reproduced with permission from Dubin A, Lattanzio B, and Gatti L. The spectrum of cardiovascu-
lar effects of dobutamine from healthy subjects to septic shock patients. Rev Bras Ter Intensiva. 
2017;29(4):490–498 [17]. 
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of elimination, which follows a first-order kinetics [19,20]. The half-life does not depend 
on cardiac output. Since the distribution volume is related to the extent of edema, similar 
infusion rates can result in variable plasma concentrations of the drug [18]. In addition, 
continuous infusion is associated with significant hemodynamic tolerance. The cardiovas-
cular effects at 72 and 96 h were 66% and 57% of that at 2 h, respectively [21]. High varia-
bility in dobutamine clearance has also been reported [19]. This suggests that the dobuta-
mine infusion rate should not be titrated to obtain predetermined plasma levels but to 
physiologic end points [22]. 

A major metabolite of dobutamine is 3-O-methyldobutamine, which is formed enzy-
matically by catechol-O-methyltransferase [23]. This metabolite has a longer half life, and 
its (+)-enantiomer is an α1 antagonist that might induce vasodilation [24]. 
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increasing doses of dobutamine, the heart rate initially remains unchanged. Thereafter, 
higher doses induce tachycardia, which contributes to improved cardiac output. The in-
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Figure 1. Schematic view of the main pharmacodynamic and cardiovascular effects of dobutamine.
Reproduced with permission from Dubin A, Lattanzio B, and Gatti L. The spectrum of cardiovascular
effects of dobutamine from healthy subjects to septic shock patients. Rev. Bras. Ter. Intensiv. 2017,
29(4), 490–498 [17].

In severe heart failure, the half-life of dobutamine is about 2 min [18]. Thus, the steady
state is reached after a few minutes of infusion start. Stable plasma concentrations are
proportional to the infusion rate. This indicates the lack of saturation of the mechanism
of elimination, which follows a first-order kinetics [19,20]. The half-life does not depend
on cardiac output. Since the distribution volume is related to the extent of edema, similar
infusion rates can result in variable plasma concentrations of the drug [18]. In addition,
continuous infusion is associated with significant hemodynamic tolerance. The cardio-
vascular effects at 72 and 96 h were 66% and 57% of that at 2 h, respectively [21]. High
variability in dobutamine clearance has also been reported [19]. This suggests that the
dobutamine infusion rate should not be titrated to obtain predetermined plasma levels but
to physiologic end points [22].

A major metabolite of dobutamine is 3-O-methyldobutamine, which is formed enzy-
matically by catechol-O-methyltransferase [23]. This metabolite has a longer half life, and
its (+)-enantiomer is an α1 antagonist that might induce vasodilation [24].

3. Effects of Dobutamine in Normal Subjects
3.1. Cardiovascular Effects

Dobutamine is frequently characterized as an inodilator, a drug with inotropic and va-
sodilatory properties. In normal animals, however, it primarily behaves as a pure inotropic
drug. This action results in increases in stroke volume and cardiac output. With increasing
doses of dobutamine, the heart rate initially remains unchanged. Thereafter, higher doses
induce tachycardia, which contributes to improved cardiac output. The increase in cardiac out-
put produces elevations in blood pressure and a baroreceptor-mediated reduction in systemic
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vascular resistance [16,25]. In addition, dobutamine improves ventriculoarterial coupling
(effective arterial elastance–end-systolic elastance ratio) by increasing contractility [26].

In healthy volunteers, an observational study assessed the effect of dobutamine in-
fusion rates of 2.5, 5, and 10 µg/kg/min on the drug plasma concentration and hemody-
namics [27]. Fifteen minutes after the start of each dose, rising steady-state concentrations
were reached. As evidence of the short elimination half-life, the dobutamine plasma con-
centration was undetectable after 10 min of cessation of the infusion. Rising doses of
dobutamine produced elevations in cardiac output, which were correlated to drug plasma
levels. On the contrary, heart rate and stroke volume showed more complex relationships
to dobutamine plasma levels. Heart rate remained unchanged with the lowest infusion rate,
but thereafter, it sharply increased. Stroke volume increased significantly at dobutamine
plasma concentrations produced by the lowest infusion rate but subsequently remained
constant or even was reduced. Therefore, cardiac output and blood pressure were linearly
related to the escalating doses of dobutamine. With an infusion rate of 2.5 µg/kg/min,
the increase in both variables resulted from the improvement in stroke volume. Further
increases with higher doses only depended on tachycardia. A similar biphasic response in
stroke volume was found in patients without left ventricular wall motion abnormalities
who underwent dobutamine stress echocardiography [28]. In this study, however, the
inflection point appeared at an infusion rate of 10 µg/kg/min.

3.2. Metabolic Effects

Catecholamines have prominent metabolic actions that include a thermogenic effect.
Incremental infusions of epinephrine produce stepwise increases in metabolic heat produc-
tion [29]. Increases in metabolic rate and oxygen consumption (VO2) are associated with
initial increases in the respiratory quotient, which has been interpreted as the consequence
of reduced lipid oxidation and elevated carbohydrate oxidation [30]. Subsequently, the
respiratory quotient normalizes and finally falls as a probable expression of increased
lipolysis. In healthy volunteers, increasing doses of dobutamine also produce a marked
calorigenic action, which might be attributed to complex α and β adrenergic metabolic
effects [31,32]. An infusion of 10 µg/kg/min produces an increase in energy expenditure
of 33% and a reduction in the respiratory quotient, from 0.85 to 0.80, along with increased
plasmatic levels of glycerol and free fatty acids [31]. In contrast, another study found that
the calorigenic effect was not associated with changes in the respiratory quotient [33].

4. Effects of Dobutamine in Cardiac Failure

In experimental models of cardiogenic shock, the effects of dobutamine mainly re-
semble those found in normal subjects. In dogs with myocardial infarction induced by
ligating the left anterior descending coronary artery, dobutamine-induced dose-related
increases in cardiac output and contractility restored arterial blood pressure and reduced
total peripheral resistance [34]. In other experimental models of acute congestive heart
failure, dobutamine also increased cardiac output and blood pressure [35–39].

The effects of dobutamine in patients with cardiac failure are somewhat different.
Even though cardiac output is increased, blood pressure remains unchanged [40–42]. Since
the elevation in cardiac output should increase blood pressure, these results suggest a
direct vasodilatory effect, which is not found in normal individuals or in experimental
cardiogenic shock.

5. Effects of Dobutamine in Septic Shock
5.1. Diagnostic Use for Assessing the Metabolic Response

In septic shock, the use of dobutamine is aimed at improving cardiac output and
tissue oxygenation [1,2]. This hypothetical usefulness has been applied to diagnostic and
therapeutic purposes. In many studies, dobutamine was utilized for the so-called oxygen
flux test. This consists of an evaluation of VO2 behavior in response to increased oxygen
delivery (DO2). The presence of the dependence of VO2 on DO2 has been attributed to the
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presence of masked oxygen debt and inadequate tissue oxygenation and was associated
with higher mortality [43]. Nevertheless, this issue is complicated by the calorigenic effect
of the drug, which can primarily increase VO2. Some studies found that escalating doses of
dobutamine induces stepwise increases in VO2 and DO2, without changes in respiratory
quotient [44–46]. In other observational studies, the lack of changes in VO2 in response
to dobutamine-induced increases in DO2 was associated with worse outcomes compared
to responders. Given the potential calorigenic effect of dobutamine, the explanation
for these findings might be the cell’s inability to increase oxidative metabolism during
sepsis, as an expression of a more severe underlying disease [47,48]. In other studies,
however, dobutamine failure to increase VO2 was not related to either lactate levels or
outcome [49,50]. Therefore, understanding of the effects on VO2 is unclear, and the test
lacks usefulness.

5.2. Effects on Systemic Hemodynamics and Tissue Perfusion

Beyond the effects on the outcome, the hemodynamic actions of dobutamine in septic
shock are also controversial. Experimental and clinical studies showed beneficial effects,
such as increases in cardiac output and systemic DO2 [51–53]. Furthermore, improvements
in splanchnic perfusion and tissue oxygenation have also been found in experimental and
clinical settings [54–57]. In patients with septic shock, dobutamine increased DO2, along
with an improvement in intramucosal acidosis and a reduction in lactate levels [56]. Other
studies also showed beneficial effects of dobutamine on gastric mucosal perfusion in septic
patients [55–60]. Thus, dobutamine might be useful for the recruitment of microcirculation.
It avoids arteriolar constriction and preserves villus blood flow in endotoxemic rats [61]
and improves jejunal mucosal microcirculation in swine with fecal peritonitis [62]. In
experimental models, beneficial effects were also found in hepatic microcirculation [63,64].
In patients with septic shock, the administration of 5 µg/kg/min for 2 h improved sub-
lingual microcirculation [65]. Remarkably, the microvascular effects were not related to
modifications in systemic hemodynamics.

Although the aforementioned results suggest that dobutamine has an attractive physi-
ological profile in septic shock, other data show that it induces unpredictable and hetero-
geneous effects. In some experimental and clinical studies, the effects on contractility are
blunted in sepsis. The inotropic effect and the ability to increase blood pressure, but not the
increase in heart rate, were diminished in those who were endotoxemic compared to control
cats (Figure 2) [66]. In rats with cecal ligation and puncture-induced sepsis, dobutamine
neither improved myocardial function and hemodynamics nor attenuated myocardial
injury [67]. In a similar model, the impaired inotropic response was related to phosphodi-
esterase 4 upregulation, whereas myocardial surface expression of β1-adrenoceptors and
α-subunits of three main G protein families was unaltered [68].

In sheep endotoxemia, it was shown that dobutamine increased cardiac output but
decreased the fraction of flow directed to the superior mesenteric artery [69]. Additionally,
the elevation in cardiac output fully resulted from increased heart rate, since the stroke
volume not only did not increase but had a trend to decrease. In addition, blood pressure and
systemic vascular resistance were reduced. Considering that cardiac output was preserved,
these findings mean that dobutamine mainly behaved as a vasodilator (Figure 3). In this
experimental model, dobutamine induced vasodilation and tachycardia without evidence
of an inotropic effect. Furthermore, gut mucosal minus arterial PCO2—a surrogate for
tissue perfusion—was not improved. In a partial superior mesenteric artery occlusion study,
dobutamine reduced the fraction of cardiac output directed to the gut and the intramucosal pH
and augmented the portal venous–arterial lactate gradient [70]. In another model of mesenteric
ischemia and reperfusion, dobutamine increased cardiac output, superior mesenteric artery
blood flow, and gastric and rectal microvascular blood flow. In spite of this, the microvascular
blood flow of the jejunal mucosa decreased, whereas the mucosal expression of endothelin-1
and leukocytic infiltration increased [71]. In pigs with fecal peritonitis, the elevation in cardiac
output did not result in improvements in superior mesenteric artery blood flow or gut mucosal
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perfusion [72]. Therefore, several preclinical studies failed to show beneficial effects on either
systemic cardiovascular variables or tissue perfusion.
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Figure 2. Changes in left ventricle dP/dtmax, arterial blood pressure, and heart rate in response
to intravenous administration of dobutamine in anesthetized cats before (•) and after (o) E. coli
endotoxin. ** p < 0.02; *** p < 0.01. The effects on inotropism and blood pressure, but not on
chronotropism, were diminished by endotoxin. Reproduced with permission from reference [66].
Meaning of symbols: ↑, increased.

In patients with septic shock, a large body of evidence shows that the use of dobu-
tamine is frequently associated with the occurrence of severe vasodilation. This side effect
was manifest in a randomized controlled trial, in which 5–200 µg/kg/min of dobutamine
were titrated to obtain supranormal values of DO2 and VO2. This treatment not only
was associated with higher mortality but also with larger requirements of norepinephrine
compared to the control group [73]. Consequently, the maximal doses of norepinephrine
were 1.20 vs. 0.23 µg/kg/min, respectively. In three large controlled randomized trials, in
which dobutamine was used as part of the early goal-directed therapy, untoward effects
related to dobutamine were not directly reported [74–76]. This treatment, however, was
associated with higher requirements of vasopressors. This finding might be explained by
the presence of dobutamine-induced vasodilation.

Some clinical studies evaluated individual responses to dobutamine with a special
focus on the side effects. They found heterogeneous cardiovascular responses and frequent
unwanted actions. In one of them, 19 trials of escalating doses of dobutamine were
performed in 12 patients [9]. In 12 cases, the infusion was stopped because hypotension
or tachycardia arose. Moreover, the stroke volume remained unchanged in most of the
patients. Another study also found heterogeneous hemodynamic cardiovascular effects [10].
Most of the patients developed high heart rate and arterial hypotension without evidence
of increased contractility. In addition, an observational study of 23 patients with septic
shock evaluated the effects of increasing doses of dobutamine up to 10 µg/kg/min [11].
The cardiovascular effects were dichotomized, taking into account changes > or <10%
from baseline to the maximal doses reached. Dobutamine could only be increased to
10 µg/kg/min in eight patients because of the development of untoward effects, mainly
arterial hypotension and tachycardia. Individual responses were quite variable. Cardiac
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output was increased in 70% of the patients. Mean arterial blood pressure was reduced
in 43% of the patients and augmented in 22% of them. Heart rate increased and systemic
vascular resistance decreased in most of the patients. Despite the fall in cardiac afterload,
stroke volume only improved in 52% of the patients. (Figure 4). Basal hemodynamics
were similar in stroke-volume responders and nonresponders. Nevertheless, patients with
increased stroke volume in response to dobutamine showed a lower left ventricle ejection
fraction and more frequently exhibited systolic dysfunction and severe systolic dysfunction
(left ventricle ejection fraction lower than 30%), compared to nonresponders. Consequently,
the changes in stroke volume induced by dobutamine were correlated with the basal
left ventricle ejection fraction. Stroke-volume responders had increases in cardiac index
and a trend to increase blood pressure. In contrast, nonresponders showed unchanged
cardiac and decreased blood pressure. Therefore, dobutamine behaved as an inotrope
in responders and as a vasodilator without inotropic effects in nonresponders (Figure 5).
Accordingly, a prospective multicenter study in patients with systolic dysfunction and
fluid unresponsiveness found that dobutamine significantly increased the biventricular
indices of contractility [46]. Nevertheless, these effects were linked to significant decreases
in arterial pressure. Moreover, dobutamine was discontinued because of poor tolerance
in 66% of the patients. Poor tolerance was more common in acidotic patients and was
linked to a higher need for vasopressors and mortality. In another study, dobutamine
failed to improve the end-systolic elastance during the active phase of the illness. In the
survivors, however, the ability to increase contractility was recovered by days 8–10 [77].
Table 1 summarizes the main cardiovascular effects of dobutamine in normal subjects and
the response frequently found in septic shock.
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Figure 3. Behavior of cardiovascular variables in control and dobutamine-treated endotoxemic sheep.
Panel (A), cardiac index. Panel (B), superior mesenteric artery blood flow. Panel (C), heart rate.
Panel (D), stroke volume. Panel (E), mean arterial pressure. Panel (F), systemic vascular resistance.
* p < 0.05 vs. basal; § p < 0.05 vs. control. The increase in cardiac output induced by dobutamine
was only related to tachycardia since stroke volume had a trend to be reduced. Mean arterial blood
pressure and systemic vascular resistance were reduced by dobutamine. Reproduced with permission
from reference [69].
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Figure 5. Cardiovascular behavior of stroke-volume responders and nonresponder patients with
septic shock at the maximal dosage of dobutamine. In responders, dobutamine behaved as an
inotrope, increasing blood pressure and cardiac index. In nonresponders, dobutamine mainly acted
as a vasodilator, since blood pressure decreased and cardiac index marginally increased. Panel (A),
change in mean arterial pressure. Panel (B), change in cardiac index. Built considering data from
reference [11].

Table 1. Summary of the cardiovascular effects of dobutamine.

Normal Subjects and Desired
Response in Septic Shock

Response Frequently Found
in Septic Shock

Stroke volume ↑↑↑ ↓↔
Heart rate ↑ ↑↑↑
Cardiac output ↑↑↑ ↑
Blood pressure ↑↑ ↓
Systemic vascular resistance ↓ ↓↓↓

Meaning of symbols: ↑, increased; ↓, decreased; ↔, unchanged.

Concerning the effects on sublingual microcirculation, some studies failed to find the
beneficial effects that were previously reported [65]. In a series of patients with septic
shock, there were no significant changes in the whole cohort, yet the individual responses
were quite variable [11]. The changes in perfused capillary density were not dependent
on changes in systemic cardiovascular variables but on the basal state of the microcircu-
lation. Thus, a favorable response to dobutamine was found in patients with an altered
microcirculation at baseline. In a controlled crossover trial, dobutamine showed deleterious
effects on muscle and hepatic perfusion, lack of improvement of peripheral perfusion, and
a nonsignificant trend to increase the sublingual microcirculation [78].

The explanation for the diverse effects of dobutamine in septic shock is uncertain. An
explanation may be the complex hemodynamic profile of septic shock. The cardiovascular
patterns result from interactions among variable components of hypovolemia, abnormali-
ties in vascular tone, and myocardial dysfunction. Following fluid administration, most
of the patients show hypotension, tachycardia, and normal or high cardiac output. Even
though an adequate systemic DO2 is reached in most of the cases, multiple organ failure or
cardiovascular collapse are common causes of death. Most nonsurvivors exhibit a persistent
hyperdynamic state with progressive and refractory vasodilation [79]. Death is typically
related to the inability to regulate peripheral circulation, not to low cardiac output. In this
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setting, alterations in cardiac function may contribute to hemodynamic instability but only
occasionally are the main physiologic disorder or the leading cause of death.

At first glance, the usefulness of dobutamine should be limited to systolic myocardial
dysfunction. The spectrum of myocardial disorders in sepsis, however, is heterogeneous.
Systolic dysfunction is not so frequent (30%), and its presence has no relationship to in-
creased mortality [80]. On the contrary, diastolic dysfunction is more common (48%) and
is associated with outcome. Dobutamine, as with any inotrope, could worsen diastolic
dysfunction. Dynamic left intraventricular obstruction, which is present in 22% of patients
with septic shock and is related to higher mortality [81], could also be impaired by the use
of dobutamine [82]. Acute stress cardiomyopathy is another condition that could be aggra-
vated or triggered by inotropic drugs [83,84]. Thus, the wide range of cardiac alterations of
septic shock might constitute a reason for the unpredictable effects of dobutamine.

Many other mechanisms might also play a role in explaining the variability of the
cardiovascular responses to dobutamine. Sepsis is characterized by a wide hyporespon-
siveness to endogenous mediators and exogenous drugs. This disorder depends on some
factors, such as membrane hyperpolarization, decreased sensitivity to calcium, and al-
terations in receptors [85]. Adrenergic receptors are altered at different levels: changes
in affinity, decreased number by internalization and down-regulation, and uncoupling
of G-proteins. These abnormalities could modify not only the vasopressor but also the
inotropic response to catecholamines [86–89].

Pharmacogenetics might be another factor involved in the interindividual variability of
dobutamine pharmacodynamics. Genetic differences in the human cardiac β-adrenoceptor
pathway could produce different responses to the treatment. Single-nucleotide polymor-
phisms in receptor-encoding genes could alter function, substrate binding affinity, expres-
sion, and both the up- and downregulation of receptors [90]. Cardiac β-adrenoceptor and
Gs protein α-subunit have some genetic variation that might result in dissimilar responses
to inotropes [91]. The β1-adrenoreceptor gene has two commonly variable sites, at amino
acid positions 49 and 389. Arg389Gly human β1-adrenoreceptor gene polymorphism is the
most studied. It is associated with increases in the activity of adenylate cyclase/protein
kinase A and a higher effect on contractility compared with Gly389 carriers [92]. Euro-
pean people are more commonly Arg389 carriers. Subjects homozygous for the Arg389
β1-adrenoreceptor had a higher inotropic response to dobutamine than subjects carrying
one or two copies of the Gly389 allele [93]. In homozygous Arg389, dobutamine increased
plasma-renin activity, heart rate and contractility, and decreased diastolic blood pressure
more potently than in homozygous Gly389 [94,95]. On the other hand, critically ill Arg389
homozygous neonates have lower heart rates in response to dobutamine than Gly389
homozygotes, without action on cardiac output [96]. Also, polymorphism in the human
gene encoding the α-subunit of Gs protein could explain different effects on cardiac output,
but the data are controversial [96,97]. One, a large clinical study showed that polymor-
phisms do not alter the effect of dobutamine on heart rate and blood pressure during stress
echocardiography [98].

Although the chronotropic response to dobutamine is preserved or even increased
during the aging process, the effect on contractility may be dampened [99–102]. The fail-
ure to increase myocardial glucose utilization could explain the reduction in inotropic
response in older subjects [101]. Cardiac magnetic resonance imaging showed that dobu-
tamine markedly decreased the left atrial passive emptying function and correspondingly
increased the active emptying function in the elderly [103,104]. This could contribute to
the lower effect on cardiac output. A recent study assessed young (26 ± 4 year) and older
(68 ± 5 year) participants who received dobutamine in normothermia and hyperthermia
(increase in core temperature of 1.2 ◦C) [105]. Interestingly, the inotropic response was
impaired in hyperthermic but not in normothermic older subjects.

In terms of sex differences, experimental data showed that female mice have a lower
increase in stroke volume but a higher chronotropic response than males [106]. Clini-
cal studies also showed increased chronotropic response in women [94,107]. Neverthe-
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less, during a stress echocardiography study, there were no gender differences in the
chronotropic response to dobutamine, but women displayed higher increases in blood
pressure than men [108]. A systematic review of the literature showed that dobutamine-
induced takotsubo cardiomyopathy has a strong female predominance (86%), especially in
the postmenopausal period [109]. According to experimental data, delayed recovery of left
ventricular diastolic function after prolonged stress secondary to dobutamine administra-
tion may be a contributing factor [110].

6. Conclusions

Patients with septic shock commonly have variable and unpredictable responses to
dobutamine. In many patients, arterial hypotension and tachycardia are the most noticeable
effects, along with an absence of inotropic actions. The current body of evidence suggests
a low efficacy and safety profile. In addition, there are contradictory reports about its
effects on tissue perfusion. The diagnosis of myocardial systolic dysfunction might help to
select patients, in whom dobutamine can produce beneficial effects. Since untoward effects
are very common and therapeutic benefits are occasional, before a definitive therapeutic
decision, efficacy and tolerance should be assessed during a short period, with narrow
monitoring of its wanted and side effects (Figure 6).
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