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Abstract: Given the pivotal role of Platelet-Activating-Factor (PAF) in atherosclerosis and 

the cardio-protective role of PAF-inhibitors derived from olive pomace, the inclusion of 

olive pomace in fish feed has been studied for gilthead sea bream (Sparus aurata). The aim 

of the current research was to elucidate the anti-atherogenic properties of specific HPLC 

lipid fractions obtained from olive pomace, olive pomace enriched fish feed and fish fed 

with the olive pomace enriched fish feed, by evaluating their in vitro biological activity 

against washed rabbit platelets. This in vitro study underlines that olive pomace inclusion 

in fish feed improves the nutritional value of both fish feed and fish possibly by enriching 

the marine lipid profile of gilthead sea bream (Sparus aurata) with specific bioactive lipid 

compounds of plant origin. 
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1. Introduction 

Fish and fish oil (FO) can significantly reduce the risk of cardiovascular diseases (CVDs) [1–3] and 

there is evidence that FO has the ability to decelerate the formation of plaque in the arteries [4]. 

Therefore, fish consumption is on the rise, not only due to the increased demand from a growing global 

population, but also to the widening knowledge of the health benefits derived from its consumption. 

On the other hand, one of the biggest issues that aquaculture industry has to face, is the high 

dependence on FO used for aquaculture fish feed production, combined with the fact that FO and fish 

meals would reach their limit of sustainability in the next few years. This situation creates an emerging 

necessity for usage of alternative dietary lipid sources in formulated fish feed, such as  

plant-derived oils. Research on alternative dietary lipid sources of plant origin has grown considerably 

over the past few years [5]. Such a promising plant lipid source is olive pomace (OP), which is a  

by-product of olive oil industry with important cardioprotective properties [6]. 

Because of this potential use of OP in formulated aquaculture fish feeds, our group has studied the 

production of aquacultured gilthead sea bream (Sparus aurata) using OP diet [7,8]. According to these 

studies, OP inclusion in aquaculture fish feed did not moderate fish growth performance [7], the 

nutritional value of fish fillets was improved [7,8], and the sensory perception of the fish was 

satisfactory [8]. 

The purpose of the current research was to further elucidate the anti-atherogenic  

(i.e., cardioprotective) properties of specific HPLC polar lipid fractions of OP, both diets (FO and OP 

diet) and both fish fillets (fish fed with FO and OP diet) by evaluating their in vitro biological activity 

against washed rabbit platelets [9] and, therefore, to assess the nutritional value of OP diet and of fish 

fed with OP diet. 

2. Results 

2.1. Fish Diets’ Analysis 

The OP diet was analyzed for a number of nutritional parameters and results are given in Table 1. 

To enable easy comparison, the corresponding data of the FO diet (previously published by our  

team, [7]) are also given in Table 1. 
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Table 1. Chemical composition of olive pomace (OP) and fish oil (FO) diet (% wet weight). 

Ingredient OP diet FO diet * 

Crude protein 44.95 ± 1.3 46 ± 4.3 

Fat 19.4 ± 1.7 21 ± 2.1 

Moisture 8.6 ± 0.6 9.1 ± 1.3 

Dietary fiber 5.2 ± 0.3 † 1.8 ± 0.3 † 

Ash 6.0 ± 0.9 8.3 ± 1.4 

Energy (MJ/kg) 21.8 ± 2.1  23 ± 2.6  

Protein digestibility (%) 89 ± 4.4  90 ± 6.2 

Vitamin Α (IU/kg) 7000 ± 210 † 20,000 ± 410 † 

Vitamin D (IU/kg) 3150 ± 110 3000 ± 120 

Vitamin E (mg/kg) 180 ±17 † 258 ± 19 † 

Vitamin K3 (mg/kg) 10 ± 0.7 † 33 ± 7.3 † 

Vitamin C (mg/kg) 200 ± 20 168 ± 14 

Cu (mg/kg) 7.5 ± 1.1 7.0 ± 1.1 

Values are means of three individual measurements; results are expressed as mean ± SD (95% confidence 

limits); * Data of FO diet are from our previous work [7] and are given here to enable easy comparison;  
† Indicates statistical significance within OP and FO diet, according to Wilcoxon test. 

2.2. Total Lipid (TL), Total Neutral Lipid (TNL), and Total Polar Lipid (TPL) Content of Samples 

TL, TPL, and TNL content of OP, FO diet, OP diet, and gilthead sea bream fillets fed with FO and 

OP diet is shown in Table 2. 

Table 2. Total lipid (TL), total neutral lipid (TNL), and total polar lipid (TPL) content (%) 

of olive pomace (OP), fish oil (FO) diet, olive pomace (OP) diet, and fillets of aquacultured 

gilthead sea bream (Sparus aurata) fed with FO and OP diet. 

 TL (%) TNL (%) TPL (%) 

OP 2.4 ± 0.2 0.2 ± 0.02 2.2 ± 0.2 

FO diet 21 ± 2.1 11 ± 1.5 10 ± 0.9 

OP diet 19 ± 1.3 8.4 ± 1.1 11 ± 0.9 

Fish fed with FO diet 3.9 ± 0.3 † 3.7 ± 0.3 † 0.2 ± 0.03 † 

Fish fed with OP diet 5.4 ± 0.5 † 4.9 ± 0.4 † 0.5 ± 0.06 † 

Values are means of three individual measurements; results are expressed as mean ± SD (95% confidence 

limits); † Indicates statistical significance within fish fed with FO and OP diet, according to Wilcoxon test. 

According to Table 2, fish fed with OP diet exhibited significant elevated levels of TL in 

comparison to the ones of fish fed with FO diet. This upward trend is also reflected in TNL and TPL 

levels of fish fed with OP diet. 

2.3. HPLC TPL Purification—Biological Assay 

The TPL of each of the five samples were diluted in chloroform/methanol (1:1) and fractionated by 

normal-phase HPLC in three sequential separations of 100 μL. The fractions with the same retention 

times from each injection were unified and examined for their biological activity to modulate  
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PAF-induced washed rabbit platelet aggregation. The normal—phase HPLC chromatographs of polar 

lipid fractions of OP, FO diet, and OP diet are shown in Figure 1. 

Figure 1. Representative chromatographs by normal-phase HPLC separation of total polar 

lipids (TPL) obtained from A: Olive pomace (OP), B: Fish oil diet (FO diet), and C: Olive 

pomace diet (OP diet) on NH2 column with UV detection at 208 nm, a flow rate of  

3 mL min
−1

 and the elution solvent system 1 (see Experimental section). 

A 

 

B 
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Figure 1. Cont. 

C 

 

The aggregatory biological activities of the most potent polar lipid fractions of OP, FO diet, and OP 

diet were measured and expressed in peq PAF g
−1

 (Table 3). 

Table 3. Biological activity of the most potent polar lipid fractions on washed rabbit 

platelets after normal-phase HPLC separation of olive pomace (OP), fish oil diet (FO diet), 

and olive pomace diet (OP diet) expressed as peq PAF g
−1

. 

HPLC lipid fractions OP FO diet OP diet 

5 1.01 ± 0.05 0.04 ± 0.01 † 1.24 ± 0.07 † 

6 0.43 ± 0.02 n.a. 0.56 ± 0.02 

7 2.34 ± 0.12 n.a. n.a. 

Values are means of three individual measurements; results are expressed as mean ± SD (95% confidence 

limits); n.a.: No activity detected; †: Indicates statistical significance within OF and OP diet, according to 

Wilcoxon test. 

Concerning the polar lipid fractions obtained by normal-phase HPLC of aquacultured fish fed with 

FO diet, the most powerful activity was located in the fractions eluted from 120 to 140 min. Based on 

these data, these fractions were pooled together, evaporated under a nitrogen flow, diluted in 

chloroform/methanol (1:1), and further fractionated by reverse-phase HPLC with the above-mentioned 

solvent elution system 2 (see Experimental section). The individual fractions were tested for their 

PAF-like biological activity to induce platelet aggregation. The same process was followed for the 

polar lipid fractions of the aquacultured fish fed with OP diet, which also eluted from 120 to 140 min 

in the normal-phase HPLC separation. The reverse-phase HPLC chromatographs of polar lipid 

fractions of OP, aquacultured fish fed with FO and OP diets are shown in Figure 2. 
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Figure 2. Representative chromatographs by reverse-phase HPLC separation of total polar 

lipids (TPL) obtained from A: Olive pomace (OP), B: fillets of aquacultured gilthead sea 

bream (Sparus aurata) fed with fish oil diet (FO diet), and C: fillets of aquacultured 

gilthead sea bream (Sparus aurata) fed with olive pomace diet (OP diet) on Nucleosil-300 

C-18 column with UV detection at 208 nm, a flow rate of 1 mL min
−1

 and elution solvent 

system 2 (see Experimental section). Τhe last part of Α, Β, and C chromatograms has  

been expanded. 

A 

 
 

 
B 
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Figure 2. Cont. 

C 

 
 

 

The biological activities of the most active HPLC polar lipid fractions of fillets obtained from 

aquacultured gilthead sea bream fed with FO and OP diet (expressed as peq PAF g
−1

) are summarized 

in Table 4. 

Table 4. Biological activity of polar lipid fractions on washed rabbit platelets after  

reverse-phase HPLC separation of fillets of aquacultured gilthead sea bream (Sparus 

aurata) fed with fish oil diet (FO diet) and olive pomace diet (OP diet) expressed as  

peq PAF g
−1

. 

HPLC lipid fractions Aquacultured fish fed with FO diet Aquacultured fish fed with OP diet 

1 0.13 ± 0.01 † 0.30 ± 0.01 † 

2 n.a. n.a. 

3 0.04 ± 0.01 n.a. 

4 0.11 ± 0.01 † 0.25 ± 0.01 † 

5 0.11 ± 0.01 † 0.24 ± 0.01 † 

6 n.a. 0.23 ± 0.01 

7 0.11 ± 0.01 † 0.26 ± 0.01 † 

8 0.16 ± 0.01 † 0.28 ± 0.02 † 

Values are means of three individual measurements; results are expressed as mean ± SD (95% confidence limits);  

n.a.: No activity detected; †: Indicates statistical significance within aquacultured fish fed with FO diet and aquacultured 

fish fed with OP diet, according to Wilcoxon test. 
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The data of Table 4, suggest a statistically significant increase of the biological activity of the polar 

lipid fractions present in aquacultured fish fed with OP diet when compared to the corresponding 

fractions of aquacultured fish fed with FO diet. 

3. Discussion 

There are plenty of studies demonstrating the effects of partial replacing of FO with vegetable  

oils [10,11], giving emphasis to the improvement of the altered fatty acid composition of fish muscle 

caused by vegetable oil in the diet, as well as the influence of the experimental fish diet on the quality 

and nutritional properties of the derived fish. According to recently published data [7,8], it is feasible 

to improve nutritional value and cardioprotective properties of gilthead sea bream by partially 

substituting FO in formulated fish feed with OP that has an increased phenolic content [12]; these 

phenols inhibit PAF-induced aggregation. Not only did the inclusion of OP in fish feed not decrease 

fish growth [7] it also improved fish lipid cardioprotective properties partly by increasing the activity 

of the PAF specific catabolism enzyme: PAF-specific acetylhydrolase (PAF-AH) [13]. 

According to Table 3 of our current study, polar lipid fractions 5 and 6 of OP diet had significantly 

increased biological activity against PAF-induced platelet aggregation when compared to the 

respective polar lipid fractions of FO diet with the same elution times. This result indicates that 

components of OP with in vivo antiatherogenic and cardioprotective qualities [14] maintained their 

strong cardioprotective activity while enriching the OP diet. 

Moreover, it is worth mentioning that the HPLC polar lipid fraction 6 of aquacultured fish fed with 

OP diet (Table 4, Figure 2C)—which elutes in the area of phospholipids and glycolipids—caused a 

noticeable platelet aggregation. This result is in good agreement with some recent work of our group, 

where specific HPLC polar lipid fractions of sea bass (Dicentrarchus labrax) fed with OP diet—in 

which several phosphatidylcholine (PC) species have been structurally identified, that shows biological 

activity of fish lipids as agonists and/or antagonists of PAF-induced platelet activation [15]. Similarly 

other studies showed that polar lipid classes isolated from fish Scomber scombrus [16] and OP [14,17] 

have been found to exhibit analogous biological activities as agonists and/or antagonists of  

PAF-induced platelet activation. On the other hand, in the present work, the respective HPLC lipid 

fraction of aquacultured fish fed with FO diet with the same elution time (HPLC lipid fraction 6) did 

not display any biological activity (Table 4, Figure 2B). 

Therefore, it could be suggested that the improved biological activity of the aforementioned HPLC 

polar lipid classes of aquacultured fish fed with OP diet could be attributed to the biologically active 

compounds present in OP enriched fish-feed and therefore in OP, that have elution times between  

60–100 min (Figure 2A–C). 

At this point, it should also be mentioned that these biological activities refer either to PAF-agonists 

or PAF-inhibitors which enhance and/or inhibit platelet aggregation caused by PAF. Natural PAF 

agonists are considered to be the best PAF inhibitors. These molecules act through PAF receptors, 

inhibiting PAF biological actions at low concentrations whilst inducing platelet aggregation at 

significantly higher concentrations (up to four orders of magnitude). However, these PAF-agonists are 

almost five orders of magnitude less potent than PAF in inducing PAF-like aggregation. These 
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findings suggest that these compounds would minimize atherogenesis caused by PAF, by acting as 

PAF-inhibitors at the PAF receptors level in several cells and/or tissues [9,18]. 

The antiatherogenic properties of these agonists/inhibitors of either olive oil polar lipids or OP polar 

lipids were studied in cholesterol-fed rabbits where it was found that they not only significantly 

inhibited the development of atherosclerotic lesions, but also caused regression of the existing plaques, 

thus suggesting they are able to cure the existing atheromatosis [13,14,19]. 

4. Experimental Section 

4.1. Reagents 

All chemicals and reagents were of analytical grade purchased from Merck (Darmstadt, Germany) 

while bovine serum albumin (BSA) and PAF were obtained from Sigma (St Louis, MO, USA). 

4.2. Samples 

Five samples used for analysis: (a) OP—the solid by-product of the traditional olive oil extraction 

system, (b) FO diet containing FO as the predominant source of lipids, (c) OP diet where 8% of FO has 

been replaced by OP, and (d) aquacultured fish species Sparus aurata fed with the FO and OP diet. 

Both fish samples (fish fed with the FO and OP diet) obtained after the dietary experiment trial on 

gilthead sea bream conducted by Nasopoulou et al. [7]. 

The FO diet used was the same to the one used at the dietary experiment trial on gilthead sea bream 

conducted by Nasopoulou et al. [7], where the chemical composition of this diet was published. 

OP originated from a local oil producer and the OP diet was formulated at the facilities of the 

marine farm where the dietary experiment took place. OP was added as dry material prior the 

extrusion. The pellets were dried, sealed and kept in air-tight bags until use. 

4.3. Fish Diets’ Analysis 

The reference diet (FO diet) contained 100% FO (cod liver oil) [7] while the experimental diet (OP 

diet) was formulated—following the principles of fish nutrition [20]—by substituting 8% of FO by 

OP. The chemical determinations of the OP diet were conducted according to EC 152/2009  

Regulation [21], protein digestibility determination took place according to van Leeuwen et al. [22] 

and energy determination took place according to the following equation [20]: Energy (MJ/kg) = 

{(CPg × 23.6 kJ) + (CFg × 39.5 kJ) + ([CFig + NFEg] × 17.4 kJ)}/1000; where CP: Crude protein; CF: 

Crude fat; CFi: Crude fiber; NFE = 1000 − (CP + CF + Ash + Moist). 

4.4. Instrumentation 

HPLC separation was conducted on Total Polar Lipids (TPL) obtained from the samples, at room 

temperature, on an HP HPLC Series 1100 liquid chromatographer (Hewlett-Packard, Waidronnn, 

Germany) equipped with a 100 μL Loop Rheodyne (7725 i) loop valve injector, a degasser G1322A, a 

gradient pump G1311A, a HP UV spectrophotometer G1322A, as a detection system and a normal 

phase column YMC-Pack Amino, 250 × 20 mm, S-5 μm, 12 nm (internal diameter). For the 
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purification of the most biologically active fractions obtained by normal-phase HPLC, a reverse-phase 

column Nucleosil-300 C-18 (250 × 4 mm, 7 μm) was used. The analysis of the chromatograph was 

performed via the Agilent Chemstation software. PAF-induced aggregation was measured in a  

Chrono-Log (Havertown, PA, USA) aggregometer coupled to a Chrono-Log recorder (Havertown,  

PA, USA). 

4.5. Isolation of Lipids Extracts 

Total lipids (TL) of OP, FO, and OP diet and fish fillets of aquacultured gilthead sea bream fed with 

FO and OP diet, were extracted by Bligh and Dyer method [23]. Their separation to Total Neutral Lipids 

(TNL) and TPL was achieved with the counter current distribution (CCD) extraction procedure [24]. 

The upper phase of petroleum ether contained the total neutral lipids while the lower phase of ethanol 

with total polar lipids were selected in a glass-stoppered flask, evaporated at 30 °C on the rotary 

evaporator, weighted, dissolved in chloroform/methanol (1:1), and stored at −20 °C until further analysis. 

4.6. HPLC Separation of TPL 

The separation of TPL from the samples was performed on a normal phase absorption NH2 column 

with a gradient elution system. Solvents and elution profile were the following (elution solvent  

system 1): Solvent A: Methanol (100%), solvent B: Acetonitrile (100%), and solvent C: Water 

(100%); elution profile: 0–55 min, 40:60 (A:B) (isocratic elution), followed by a linear gradient to 

100% A from 55 to 60 min and maintained from 60 to 70 min, then a linear gradient to 100% C from 

70 to 75 min and held from 75 to 105 min, followed by a linear gradient to 100% A from 105 to  

110 min, then a linear gradient back to 40:60 (A:B) from 110 to 115 min and maintained at this ratio 

from 115 to 140 min. Injections of 50–100 μL of TPL of the samples were applied each time. The flow 

rate was 3 mL min
−1

 and the eluted substances were detected spectrophotometrically by UV detection 

at 208 nm at room temperature. In regards to the polar lipid fractions of OP, fish fed with FO diet and 

fish fed with OP diet, the strongest aggregatory activity was found at fractions with elution time from 

120 to 140 min, which were pooled together and further separated on reverse-phase HPLC with 

Nucleosil-300 C-18 column to obtain potentially more highly purified polar lipid fractions. The 

separation was achieved on a stepped gradient elution system. Solvents and elution profile that were 

used are (elution solvent system 2): Solvent A: Methanol: acetic acid (90:1, v/v), solvent B: 

Acetonitrile (100%) and solvent C: Water: acetic acid (100:1, v/v); elution profile: 0–30 min, from 

9:1:90 (A:B:C) to 27:3:70 (A:B:C) (gradient linear) and held from 30 to 35 min, followed by a linear 

gradient to 36:4:60 (A:B:C) over 35–45 min, then a linear gradient to 45:5:50 (A:B:C) from 45 to  

60 min, followed by a linear gradient to 90:10 (A:B) from 60 to 70 min and held at this ratio from 70 

to 80 min and then a linear gradient back down to 9:1:90 (A:B:C) from 80 to 90 min and maintained 

from 90 to 95 min [17]. Injections of 100 μL of polar lipid samples were applied each time. The flow 

rate was 1 mL min
−1

 and the eluted substances were detected spectrophotometrically by UV detection 

at 208 nm at room temperature. 
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4.7. Biological Assay 

The purified polar lipid fractions of OP, FO, and OP diet and fish fillets of aquacultured fish fed 

with FO and OP diet obtained by the above HPLC separations, were tested for their biological activity 

according to the washed platelet aggregation assay [25]. PAF as well as the examined samples were 

dissolved in 2.5 mg of bovine serum albumin (BSA) mL
−1

 of saline. The biological activity of each 

lipid fraction to induce platelet aggregation was expressed in peq PAF g
−1 

in reference to an eight 

points’ regression curve of standard PAF [25]. 

4.8. Statistical Analysis 

Chemical analyses were carried out in triplicates and all results were expressed as mean value ± SD. 

The Wilcoxon sign test was used to determine significant differences in the same group. Differences 

were considered significant for p < 0.05. The data were analyzed using a statistical software package 

(IBM SPSS Statistics 19.0, SPSS Inc., Chicago, IL, USA). 

5. Conclusions 

The data of the current study provide further biochemical evidence indicating that biologically 

active lipids of OP have effectively enriched both fish feed and aquacultured fish (i.e., fish that has 

been fed with the aforementioned OP enriched fish feed). It could, thus, be suggested that OP inclusion 

in fish feed and the usage of this feed to produce aquacultured gilthead sea bream, has a dual beneficial 

impact: Firstly, OP enriches both fish feed and fish in polar lipids with cardioprotective properties and 

secondly, OP is valorized as a potential partial replacement of FO in the quest for sustainable 

production of fish feeds and increasing aquatic food security [6]. 

Conclusively, the present study shows that the use of OP for the partial replacement of FO as an 

alternative dietary lipid source in aquaculture fish feeds could increase the nutritional and subsequently 

the commercial value of fish feed and consequently those of aquacultured fish. Linking the data 

presented here to those on the cardioprotective properties of gilthead sea bream fed with OP diet [7,8], 

it could be suggested that the exploitation of OP in aquatic technology and the production of 

sustainable fish feeds is rather promising: while fish farming helps to meet growing demand for fish 

products worldwide, the use of OP in fish feeds has a positive environmental impact since a sustainable 

by-product of olive industry is valorised. Currently, we are focusing towards the structural elucidation 

of the cardioprotective fatty acids of marine origin and other lipid derivatives and the evaluation of the 

enriched fish feed and aquacultured fish in in vivo nutritional studies in animals and humans. 

This work could also be useful in addressing satisfactorily the issue of aquatic food security, i.e., 

providing sustainable and nutritious solutions for the aquaculture fish-feed sector with promising 

applications in both neutraceutical and pharmaceutical industries. Our current work is towards the 

creation of health claims—for these feeds and fish—against cardiovascular diseases following the 

corresponding guidelines of EFSA. 
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