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Abstract: Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors  

of voltage-gated fast Na
+
 channels in excitable tissues. Recently, however, TTX has been 

shown to block L-type Ca
2+

 current (ICa) in canine cardiac cells. In the present study, the 

TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of 

(1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing 

medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 

value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic 

(pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same 

concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing 

glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% 

blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the 

channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an 

IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the 
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predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac 

L-type Ca channels. 

Keywords: tetrodotoxin; calcium current; dog heart; pH dependence; redox potential 

 

1. Introduction 

It is generally believed that the marine guanidine toxin, tetrodotoxin (TTX), is a highly selective 

inhibitor of voltage-gated Na
+
 channels in various excitable tissues. This is really the case in skeletal 

muscle and neural tissues, where INa is blocked by TTX in the nanomolar range. In mammalian cardiac 

muscle, however, micromolar concentrations of TTX are required to suppress Na
+
 current effectively [1–3]; 

consequently, several tens of micromoles of TTX has to be applied in voltage clamp experiments when 

cardiac INa has to be eliminated. 

TTX-sensitive Ca
2+

 current components have been identified in cardiac tissues under pathological 

conditions, such as in hypertrophied guinea pig or infarcted rat hearts [4,5]. TTX was shown to block 

L-type Ca
2+

 current in ventricular cardiomyocytes isolated from healthy dogs [6], i.e., in a preparation 

having electrophysiological properties most similar to those of human ventricular myocardium regarding 

the distribution and kinetic properties of transmembrane ion currents [7,8]. 

In order to understand in detail how TTX blocks voltage gated Cav1.2 channels, structural 

information on their selectivity filter, derived from experimental atomic resolution 3D structures, is 

required. In absence of this information, a theoretical model to explain TTX binding to Cav1.2 channels 

was developed [6]. This model was based on the selectivity filter region of the Nav1.4 channel in 

complex with the TTX molecule and on the known homology between the Nav1.4, Nav1.5 and Cav1.2 

channels [9,10]. Recently, the crystal structures of wild-type and mutated NavAb channels, including 

their most critical selectivity filter regions, have been published [11,12]. In their paper based on 

sequence alignment, Tikhonov and Zhorov concluded that the resolved X-ray structure of the point 

mutated bacterial NavAb channel can be a promising basis for modeling calcium channels [13]. 

In the present study, the TTX-sensitivity of ICa was re-examined in isolated canine ventricular 

myocytes as a function of changes in the extracellular pH, redox potential and channel phosphorylation 

in order to test our model experimentally. The results are congruent with the predictions of the model, 

suggesting that TTX binds, in fact, to the selectivity filter of the Cav1.2 channel. 

2. Results and Discussion 

2.1. Effect of Channel Phosphorylation 

Since phosphorylation of the channel protein is one of the most effective ways to control ICa in  

many excitable and non-excitable tissues, the blocking effect of TTX was compared on native and 

PKA-phosphorylated Ca channels. Forskolin is known to induce a stable activation of adenylate cyclase, 

resulting in high cAMP levels and, consequently, in full activation of protein kinase A, an enzyme 

responsible for phosphorylation of the pore forming α1 and the auxiliary β subunit of the Ca channel. 

This phosphorylation—through allosteric interactions—effectively increase the open probability of  
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the pore-forming α1 channel subunit, while it has little effect on the selectivity filter [14]. As is 

demonstrated in Figure 1, 3 μM forskolin increased the peak amplitude of ICa (from 5.5 ± 0.4 pA/pF to 

16.3 ± 0.8 pA/pF, p < 0.05, n = 5). TTX caused a concentration-dependent and reversible suppressive 

effect on ICa in both native and forskolin-treated cardiomyocytes. Furthermore, fitting the data to the Hill 

equation yielded very similar IC50 values: 55 ± 2 μM in control vs. 50 ± 5 μM in forskolin (n = 4 and  

n = 5, respectively, N.S.). The Hill coefficients in both cases were close to unity (1.01 ± 0.04 vs.  

1.02 ± 0.09, N.S.). These results suggest that the phosphorylation-induced allosteric changes in the 

structure of the α1 subunit, although having serious consequences on channel gating, have little 

influence on TTX binding. The value of unity obtained for the Hill coefficients is congruent with the 

presence of one single TTX-binding site on each α1 subunit. 

Figure 1. Effect of channel phosphorylation on the TTX-induced blockade. (a,c) Superimposed 

representative ICa records obtained in the presence of cumulatively increasing concentrations 

of TTX. Finally, TTX was washed out to demonstrate reversibility. Experiments were 

performed either in Tyrode solution (a) or in the presence of 3 μM forskolin (c).  

(b,d) Average results obtained with TTX in four untreated and five forskolin-treated 

myocytes (panels b and d, respectively). In both cases, peak ICa was normalized to the value 

measured prior to the first application of TTX. Columns and bars are the means ± SEM 

values; asterisks denote significant changes from the pre-TTX controls (Tyrode or forskolin, 

respectively). (e) Cumulative dose-response curves demonstrating the inhibitory effects of 

TTX in Tyrode solution (open symbols, dashed line) and in the presence of forskolin  

(filled symbols, solid line). IC50 values and Hill coefficients were determined by fitting data 

to the Hill equation. 
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The 55 μM value of IC50 obtained with TTX for ICa is relatively high, even if considering that the 

cardiac Na channel isoform (Nav1.5) shows much lower affinity to TTX than the neural (Nav1.1–1.3) or 
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skeletal (Nav1.4) ones [15–17]. The aromatic side chain of the residue following the DEKA ring builder 

Asp residue was proposed to play a critical role in the specific TTX-ion channel interaction, and its 

replacement (e.g., to Cys residue in Nav1.5) may be the main reason for the reduced affinity [15,16]. In 

the sequence alignment proposed by Tikhonov and Zhorov [13], which was used when building the 

model in the present study, a Gly residue can be found at this key position. This fact can plausibly explain 

why Cav1.2 channels bind TTX with considerably lower affinity than neural or skeletal Na
+
 channels. 

2.2. Effects of Extracellular pH 

Our model, constructed to explain the TTX-sensitivity of ICa, predicts that TTX binds to the 

selectivity filter of the channel [6]. More specifically, this connection is based on the negatively charged 

(at pH values close to the physiological range) selectivity filter region of the channel and the positively 

charged guanidine group of the toxin. Consequently, changing the strengths of this electrostatic 

interaction by increasing or decreasing the protonation of either the selectivity filter region of the 

channel or of the TTX molecule itself is expected to modulate the magnitude of the TTX-induced 

blockade. As demonstrated in Figure 2, alkalization significantly decreased (to 26% ± 2% at pH = 8.4,  

n = 6), while acidification increased (to 60% ± 2% at pH = 6.4, n = 6) the inhibition of ICa caused by 

55 μM TTX (which was estimated to be exactly 50% at the physiological pH value of 7.4). 

Figure 2. Effect of extracellular alkalosis (a–c) and acidosis (d–f) on the TTX-induced ICa 

blockade. Superimposed representative ICa records (a,d), time-dependent changes in peak ICa 

(b,e) and average values of peak ICa (c,f). Data were first obtained in Tyrode solution  

at pH = 7.4; then, the pH was shifted to either the alkaline or acidic direction (pH = 8.4 and  

pH = 6.4, respectively), and the cell was exposed to 55 μM TTX. Finally, TTX was removed, 

and in the next step, pH was turned back to its control value of 7.4. Columns and bars 

represent the means ± SEM; asterisks indicate significant changes from the pre-TTX 

controls (alkalosis or acidosis, respectively). 
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It is also worthy of noting that the effect of TTX could not be reverted at acidic pH, suggesting  

that the toxin was bound strongly under these conditions. Indeed, TTX could be removed from the  

channel, resulting in a full reversion of blockade, when pH was finally restored to 7.4 in TTX-free 

Tyrode solution (see Figure 2e,f). 

Regarding the effect of pH on the amplitude of ICa, a very simplified interpretation can be given. 

Considering the approximately 6.5 pKa value of histidine [18], its imidazole side chain can be 

protonated, even in a mild acidic milieu. It should be noted, however, that the actual pKa depends 

strongly on the chemical environment. Accordingly, the histidine residues located in the conduction 

pathway of the channel (including the selectivity filter, as well) are at least partially protonated at the 

acidic pH of 6.4, which resulted in a less favorable environment for a positively charged ion. In addition, 

one (or even more than one) of the glutamate side chains at the highly negatively charged EEEE ring of 

the channel can be protonated, too, which can further reduce cationic current. Indeed, similarly to our 

results, ICa and INa have been reported to decrease in acidic milieu [15,16,19,20]. On the other hand, TTX 

exists almost exclusively in its positively charged form at pH 6.4, since the pKa value of the most acidic 

C10 hydroxyl group is close to 8.7 [21]. Therefore, the positively charged TTX molecule is expected to 

increase TTX binding (compared to the neutral zwitterionic form, which is dominant at the higher, 

alkaline pH range, but also existing partially at pH = 8.4 and in a small fraction even at pH = 7.4) to the 

negatively charged selectivity filter region resulting in a stronger inhibition of ICa. Furthermore, due to 

the reduced strength of electrostatic interactions (which is valid for both the double charged Ca
2+

 

and—although to a lesser extent—for the protonated TTX molecule, because of its single positive 

charge), the relative contribution of the non-ionic hydrophilic and hydrophobic terms in the interaction 

between TTX and the selectivity filter of the channel is likely to increase. All these effects resulted in a 

reduction of ICa in acidic environment, which is still strongly inhibited by TTX. In contrast, at the 

alkaline pH of 8.4, most of the histidine side chains are neutral, and largely half of the free cysteine SH 

groups can be deprotonated, since the corresponding pKa is 8.5 [18]. This is certainly a more favorable 

environment (even compared to the neutral situation, i.e., to the case of pH = 7.4) for attracting and 

binding of the positively charged Ca
2+

 ions to the channel; consequently, the ion flux through the 

channel may increase. TTX may exist partially in its neutral form at mild alkaline pH values, due to 

deprotonation of the C-10 hydroxyl group, allowing for development of a weaker electrostatic attraction 

between TTX and the selectivity filter. The stronger Ca
2+

 channel interaction combined with a weaker 

interaction between TTX and the channel protein necessarily yields a smaller inhibition of ICa by TTX 

under alkaline conditions. 

The increased amplitude of ICa and the decreased TTX blockade, observed at alkaline milieu, can 

easily be interpreted based on the simplified electrostatic model and the protonation equilibrium of the 

zwitterionic TTX outlined above in good agreement with the pH dependence of the TTX blockade 

observed on Na channels [22,23]. The increased inhibitory effect of TTX at acidic pH seems to 

contradict earlier results, suggesting a reduced TTX block at low pH values [22]. The reason for this 

discrepancy is not fully understood; however, one should consider that the structure of Ca and Na 

channels differs due to the limited sequence identity, and even in the case of Na channels, the 

corresponding effect is not especially large at a neutral or slightly acidic pH range. It is possible that at 

pH = 6.4, the conformation of the selectivity filter region of the Ca channel may change in a way, 

becoming more suitable for TTX-binding. Moreover, the 3%–5% non-effective (zwitterionic) fraction 
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of TTX, estimated at pH = 7.4, is converted into cationic form at pH = 6.4, which may also contribute to 

the increase of the TTX-induced block.  

2.3. Effects of Redox Potential Changes 

As demonstrated in Figure 3, the effects of redox potential changes were very similar to those 

initiated by changes in pH. Accordingly, in a strongly oxidant milieu, induced by application of  

100 μM H2O2, 55 μM TTX suppressed only 31% ± 3% of ICa (Figure 3a–c, n = 5), in contrast to the  

62% ± 6% ICa blockade observed in a reductant environment (Figure 3d–f, n = 8, 1 mM reduced 

glutathione + 1 mM ascorbic acid + 1 mM dithiothreitol). The role of the redox potential in modulating 

ICa and its suppressibility by TTX needs some more effort to be interpreted. In line with our observations, 

hydrogen peroxide has been shown to increase the amplitude of ICa in various mammalian cardiac  

tissues [24–26], while the current was decreased by a reductant environment [27]. Since H2O2 is a light 

oxidant, it oxidizes the free sulfhydryl groups to disulfide bonds. In contrast, a reducing environment 

may prevent the formation of disulfide bridges or break them once already performed. These disulfide 

bridges seem to stabilize a structure relatively resistant to TTX binding; thus, the inhibitory action of 

TTX on ICa increases in a reductant environment, while it decreases in the presence of H2O2. An 

additional explanation arises when considering that the density of ICa correlates well with 

oligomerization of the Cavβ subunits of Ca channels [28]. Assuming that H2O2 can stabilize these 

oligomeric states by the formation of disulfide bridges, both the higher ICa amplitudes, as well as the 

weaker inhibition by TTX can be explained. 

Figure 3. Effect of oxidant (a–c) and reductant (d–f) external milieu on the TTX-induced ICa 

blockade. Superimposed representative ICa records (a,d), time-dependent changes in peak ICa 

(b,e) and average values of peak ICa (c,f). Data were first obtained in Tyrode solution; then, 

the superfusate was made either oxidant (by 100 μM H2O2) or reductant (by application of 

glutathione + ascorbic acid + dithiothreitol, 1 mM each). The cells were exposed to 55 μM 

TTX in these solutions, followed by washout of TTX. Columns and bars represent the  

means ± SEM; asterisks indicate significant changes from the pre-TTX controls (H2O2 or 

reductant milieu, respectively). 
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Finally, it must be noted that the effects of a reductant milieu, both on the amplitude of ICa and  

on its suppressibility by TTX, were very similar to those of acidification. This strongly suggests that 

application of a reducing milieu may facilitate the protonation of some sensitive groups—in spite of the 

large buffering capacity of the system. This might explain the good coincidence observed in the 

TTX-induced inhibition of ICa, comparing it in an acidic vs. alkaline and in a reductant vs. oxidant milieu. 

2.4. Use-Dependent Block 

In the experiments above, ICa was activated by 400 ms-long depolarizations delivered at a frequency 

of 0.2 Hz. In other words, the repetition time of stimulation was 5 s. This was long enough to maintain a 

reasonably normal availability of ICa; therefore, the effect of TTX observed under these conditions was 

considered as the magnitude of tonic block. Indeed, as demonstrated in Figure 4a, this slow rate resulted 

in only a small reduction in ICa amplitude during the first 25 pulses applied following a 1 min period of 

rest both in the absence and presence of TTX (2.0 ± 1.0 and 2.8% ± 1.1% reduction, respectively, N.S.,  

n = 6). However, a significant rate-dependent component of block was built up during the initial  

25 pulses in the presence of 10 μM TTX, when the cycle length of stimulation was increased to 1 s. The 

magnitude of this rate-dependent block was 12.7% ± 1.0% vs. the 4.3% ± 1.1% decrease of ICa observed 

without TTX (Figure 4b,c, p < 0.05, n = 6). The 200 ms duration of these pulses did not allow the 

studying of the effect of TTX at higher frequencies; therefore, short depolarizations, having durations of 

only 10 ms, were applied in control and in the presence of TTX. Surprisingly, these short pulses caused 

a rate-dependent enhancement of ICa in the presence of 10 μM TTX, but not in control (Figure 4d–g). 

Increases in ICa amplitudes were larger at higher stimulation rates: increases of 2.1% ± 1.1%, 3.9% ± 1.2% 

and 6.3% ± 1.2% were obtained at cycle lengths of 5 s, 1 s and 0.3 s, respectively. These results indicate 

that in addition to the tonic block, an additional rate-dependent block is also evoked by TTX, however, 

the magnitude of this block was relatively moderate compared to the tonic component. More 

importantly, the TTX-induced inhibition of ICa seems to be restricted to resting and inactivated channel 

states, since frequent opening of the channel (by using short depolarizations at high frequencies)  

results in a relief from the block, suggesting that the affinity of TTX to the open channel state is 

markedly reduced. 
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Figure 4. Rate-dependent effects of TTX on ICa. Stimulating voltage pulses were applied at 

various cycle lengths, as indicated in each panel, following a 1 min period of rest 

(stimulation-free period). Peak values of ICa, obtained during the initial 25 pulses were 

plotted in the absence (open squares) and presence (filled circles) of 10 μM TTX.  

ICa was expressed as a percent of current amplitude observed during the first pulse. Pulse 

duration was set to either 200 ms (a–c) or 10 ms (d–g). Superimposed representative ICa 

recordings, obtained using 200 ms and 10 ms depolarizations at 1 Hz, are displayed in panels 

b and d, respectively. 

 

2.5. Simulations 

Since the pKa value (8.7) of the most acidic OH in the TTX molecule is relatively close to the pH 

range of 6.4–8.4 applied in our experiments, both the protonated form (i.e., positively charged due  

to the guanidinium group and the C10–OH) and the neutral form (the guanidinium group of TTX is still 

protonated, but the C10–OH is deprotonated to C10–O
−
) of TTX were considered in our calculations 

(Figure 5). 

Docking experiments revealed that TTX binds to the selectivity filter in both of its states; however, 

the binding is stronger (8.22 kcal/mol vs. 7.55 kcal/mol) when TTX is positively charged (i.e., when the 

proton is not dissociated from the C10–OH position). This can be the consequence of the dominantly 

negative formal charge of the selectivity filter. Molecular dynamics simulation started from the docked 

conformations supported the results obtained by docking, as the complexes remained stable during the  

65 ns period of simulation (see the movies in the Supplementary Material). 
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Figure 5. Representative structure snapshots from dynamic trajectories of the selectivity 

filter region of the L-type Ca
2+

 channel with TTX being in a positively charged form (a), 

with protonated guanidine and the non-dissociated C10-OH group, and in neutral form (b), 

with protonated guanidine and the proton dissociated from the C10–OH group resulting in 

C10–O
−
. The repeats are marked by Roman numerals. The EEEE ring of the selectivity filter  

and the TTX molecule are shown using “liquorice” and ball-and-stick representation, 

respectively. The position of the His and Cys residues marked by the van der Waals spheres 

of the atoms constitute these residues. The residue numbering is based on the human L-type 

Cav1.2 channel sequence obtained from the UNIPROT protein knowledgebase. 
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3. Experimental Section  

3.1. Isolation of Single Canine Ventricular Myocytes 

Adult beagle dogs of either sex were anaesthetized with intravenous injections of 10 mg/kg ketamine 

hydrochloride (Calypsol, Richter Gedeon, Budapest, Hungary) + 1 mg/kg xylazine hydrochloride 

(Sedaxylan, Eurovet Animal Health BV, Bladel, The Netherlands), according to a protocol approved by 

the local ethical committee and conforming to “principles of laboratory animal care” (NIH publication 

No. 85–23, revised 1985). The hearts were quickly removed and placed in Tyrode solution. Single 

myocytes were obtained by enzymatic dispersion using the segment perfusion technique [29,30]. 

Briefly, a wedge-shaped section of the ventricular wall supplied by the left anterior descending coronary 

artery was dissected, cannulated and perfused with oxygenized Tyrode solution containing (in mM): 

NaCl, 144; KCl, 5.6; CaCl2, 2.5; MgCl2, 1.2; HEPES, 5; dextrose, 11; at pH = 7.4. Perfusion was 

maintained until the removal of blood from the coronary system and, then, switched to a nominally 

Ca
2+

-free Joklik solution (Minimum Essential Medium Eagle, Joklik Modification, Sigma-Aldrich Co., 

St. Louis, MO, USA) for 5 min. This was followed by 30 min perfusion with Joklik solution 

supplemented with 1 mg/mL collagenase (Type II., Worthington Biochemical Co., Lakewood, NJ, 

USA) and 0.2% bovine serum albumin (Fraction V., Sigma-Aldrich Co., St. Louis, MO, USA) 
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containing 50 μM Ca
2+

. Portions of the left ventricular wall were cut into small pieces, and the cell 

suspension, obtained at the end of the procedure predominantly from the mid-myocardial region of the 

left ventricle, was washed with Joklik solution. Finally, the Ca
2+

 concentration was gradually restored to 

2.5 mM. The cells were stored in minimum essential medium until use. 

3.2. Electrophysiology 

All measurements were performed at 37 °C. The rod-shaped viable cells showing clear striation were 

sedimented in a Plexiglas chamber allowing continuous superfusion with oxygenized Tyrode solution. 

Suction pipettes, fabricated from borosilicate glass, had a tip resistance of 2 MΩ after filling with pipette 

solution containing in (mM): KCl, 110; KOH, 40; HEPES, 10; EGTA, 10; TEACl, 20; K-ATP, 3 mM, at 

pH = 7.2. ICa was recorded in Tyrode solution supplemented with 3 mM 4-aminopyridine with Axopatch-2B 

amplifier (Axon Instruments Inc., Foster City, CA, USA) using the whole cell configuration of the patch 

clamp technique [31]. The current was activated at +5 mV using 400 ms-long depolarizations arising 

from the holding potential of −40 mV. After establishing a high (1–10 GΩ) resistance seal by gentle 

suction, the cell membrane beneath the tip of the electrode was disrupted by further suction or by 

applying 1.5 V electrical pulses for 1 ms. The series resistance was typically 4–8 MΩ before 

compensation (usually 50%–80%). Experiments were discarded when the series resistance was high or 

substantially increasing during the measurement. Outputs from the clamp amplifier were digitized  

at 100 kHz under software control (pClamp 6.0, Axon Instruments Inc., Foster City, CA, USA). Ion 

currents were normalized to cell capacitance, which was determined in each cell using short 

hyperpolarizing pulses from −10 mV to −20 mV. 

3.3. Simulation of TTX Binding to Cav1.2 Channels 

The selectivity filter region of the human Cav1.2 channel was built on the basis of the X-ray structure 

of the selectivity filter region of the bacterial NavAb channel [12] and the existence of homology 

between the NavAb and Cav1.2 channels. The alignment between NavAb and Cav1.2 has been 

previously published [13], which was used without modification. Proper position of the EEEE ring, i.e., 

E363, E706, E1135 and E1464 residues in the human L-type Cav1.2 channel, confirmed this alignment [10]. 

The residue mutations corresponding to NavAb to Cav1.2 transformations were then carried out by 

means of the MODELER software [32] using the Chimera package as the graphical front-end [33]. The 

TTX molecule was then docked to the model using the Autodock4 software with the help of the 

graphical front-end “MGL tools” software suite [34]. In docking calculations, the flexible ligand 

(rotatable OH groups) rigid receptor model with genetic algorithm was applied [35]. Both the positively 

charged and the neutral (with deprotonated oxygen) form of TTX were docked to the selectivity filter of 

the Cav1.2 model. In order to assess the stability of the complexes, molecular dynamics simulations 

were carried out starting from the geometry obtained by docking. In the simulations for the selectivity 

filter and TTX molecule, AMBER99SB and GAFF force fields were applied, respectively [36,37]. Since 

only the selectivity filter region of Cav1.2 was included in the calculations, position restraints for the  

N- and C-terminal residues of each repeat-fragment and for the backbone atoms of the helical structures 

constituting the outer part of the filter region (N-terminal part of corresponding repeat-fragment) with no 

direct interaction with the TTX molecule were applied. All other atoms and residues were allowed to 
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move freely during the simulation. The short constant particle number, constant pressure and constant 

temperature molecular dynamics (NPT) equilibration period was followed by the constant volume 

(NVT) simulation. In the calculations, explicit TIP3P water molecules and periodic boundary conditions 

were applied [38]. The long range electrostatic interactions were calculated using the particle mesh 

Ewald method [39]. Applying 2 fs time-steps, the total length of NPT and NVT simulations were 2 ns 

and 65 ns, respectively. The ionic strength was set to 150 mM by adding Na
+
 and Cl

−
 ions to the 

simulation box. The simulations were carried out using the Amber 12 software package [40], while for 

visualization and movie generation, the visual molecular dynamics (VMD) package was used [41]. 

3.4. Statistics 

Results are expressed as the mean ± SEM values. Statistical significance of differences was evaluated 

using the Student’s t-test for paired or unpaired data, as pertinent. Differences were considered significant 

when p was less than 0.05. Drugs were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). 

4. Conclusions 

By applying acidic, alkaline, reductant and oxidant environments combined with in silico simulations, 

we have demonstrated in the present study that the guanidine-toxin TTX inhibits L-type Ca channels in 

the heart by binding to its selectivity filter—in a way similar to its action on fast Na channels [15,42]. 
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