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Abstract: Novel, functional materials based on chitin of marine origin and lignin  

were prepared. The synthesized materials were subjected to physicochemical,  

dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness 

of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of 

chitin modification by lignin is based on formation of hydrogen bonds between chitin and 

lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste 

water treatment. The synthetic method presented in this work shows an attractive and facile 

route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and 

cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method 

of synthesis of functional chitin/lignin materials will also have a significant impact on the 
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problematic issue of the utilization of chitinous waste from the seafood industry, as well as 

lignin by-products from the pulp and paper industry. 

Keywords: chitin/lignin biosorbents; chitin; kraft lignin; physicochemical properties; 

adsorption efficiency; hazardous metal removal 

 

1. Introduction 

Recently, the growing problem of water pollution, especially with hazardous metals, has drawn  

the attention of specialists, who are trying to develop novel and relatively inexpensive methods for 

utilization of waste water. The methods generally used for this purpose include precipitation processes, 

membrane techniques, extraction and adsorption [1]. The latter one is considered the most effective 

and economical method of removing hazardous ions from aqueous solutions. In the recent years, 

multiple researchers have been focusing on the preparation of highly selective adsorbents of natural 

origin. The use of selective adsorbents that are common in the natural environment avoid generating 

additional pollution. The most commonly used natural adsorbents for removal of hazardous metals 

include straw, lignin, shells of invertebrates, peat, zeolites, fern, compounds contained in the structure 

of minerals, and microorganisms (bacteria, fungi, yeasts)—see for details [2–5]. Since it is very 

important to use effective and selective adsorbents for metal ion removal, in this report a unique 

system of chitin/lignin type was used as an adsorbent of Ni(II) and Cd(II) ions. 

Lignin is one of the most widespread natural raw materials on earth. The structure of lignin is 

highly complex, and still has not been fully elucidated. In terms of chemistry, it is the most important 

to find a method of lignin acquisition that produces a compound without impurities. Methods of lignin 

separation from natural raw materials (mainly wood) involve its removal by dissolving, using 

appropriate chemical compositions based on inorganic materials or organic solvents in the presence of 

catalysts, and subsequent precipitation of the resulting lignin derivatives [6]. Such derivatives are 

called technical-grade lignin, regarded as waste. The complex chemical structure, valuable 

physicochemical properties and varied chemical composition of lignin have attracted the interest of 

scientists. It is biorenewable and inexpensive, which encourages research to use technical-grade lignin 

in the manufacture of materials with a significant added value. Formerly, more than 90% of the total 

production of technical-grade lignin was recycled for energy purposes in the production plants 

themselves, to recover any chemicals used for lignin digestion and improve the energy balance of the 

manufacturing process. There are a very limited number of reports stating that, when appropriately 

activated, lignin can be used in the manufacture of biomaterials [7], phenolic resins [8] biodegradable 

polymer compositions [9], active biosorbents [10–13], surfactants and dispersion agents [14] and in 

electrochemistry [15,16]. 

Of particular importance is the application of lignin as a potential adsorbent of hazardous metal 

ions. Excellent sorption properties of lignin were confirmed in the report by Guo et al. [11],  

among others. It was shown that lignin exhibits affinity to selected metal ions in the following order: 

Pb(II) > Cu(II) > Cd(II) > Zn(II) > Ni(II). Additionally, attention was paid to the two types of 

functional groups—carboxylic and phenolic—present on the surface of lignin. In another report, 
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lignin’s sorption abilities were also examined [12]. In this case, the following order of affinity was 

established: Cr(VI) > Cd(II) > Cu(II) > Zn(II). In a paper by Mohan et al. [13], the superior ability of 

lignin over other biosorbents toward adsorption of copper and cadmium ions was reported. Those 

authors proposed a mechanism of adsorption and types of interactions between the biopolymer and the 

ions of the analyzed hazardous metals. 

Chitin [poly(β-(1-4)-N-acetyl-D-glucosamine] is the second most abundant polysaccharide on Earth 

(see for review Ehrlich [17]), occurring in cell walls of fungi and diatoms [18], as well as in the 

exoskeletons of arthropods like crustaceans [19] and insects [20]. Recently, it was shown that it is also 

possible to isolate chitin from several marine [21–23] and freshwater [24,25] sponges. However, 

industrially chitin is obtained mainly from exoskeletons of shrimps and crabs, which are a seafood 

processing waste [26]. This waste is an emerging problem in countries like India, where the food 

industry is based mainly on seafood. Chitin represents an attractive alternative to other biomaterials 

because of its physicochemical characteristics, chemical stability, high reactivity, biodegradability, 

non-toxicity, and biocompatibility. All of these properties permit efficient chitinous waste management 

through the utilization of the biopolymer in various applications, including tissue engineering [27], 

drug delivery systems [28], catalysts [29] etc. Additionally, it was proven that chitin shows high 

intrinsic sorption affinity for dyes [30,31], and hazardous metal ions [32–35] which is an effect of  

the presence of one linear amino group per glucose ring, making electron pairs available for 

coordination [34,35]. The presence of functional (–OH, C=O and N–H) groups in the chitin molecule 

also enables efficient modification of chitin [31,36] to improve the separation performance of this  

low-cost and environmentally friendly adsorbent. Therefore, in this study it was decided to carry out  

a modification of chitin powder with kraft lignin to obtain functional low cost chitin/lignin sorbents 

with high efficiency of hazardous metal adsorption. A combination of these two polymers as metal ion 

adsorbents has not been previously studied, and in contrast to work formation of chitosan/lignin, our 

approach eliminates transformation of chitin to chitosan and therefore simplifies the synthesis 

procedure. It has been reported that chitin/lignin materials are effective in the sorption of hydrophobic 

organic contamination from water wastes [36]. 

2. Results and Discussion 

2.1. Physicochemical Evaluation 

2.1.1. Morphological and Microstructure Characteristics 

In Figure 1, microphotographs of pure α-chitin (Figure 1a) and lignin (Figure 1b) are shown. For a 

precise description of the morphological and microstructural character of the samples, pictures were 

taken at various magnifications. Chitin is characterized by a non-homogeneous structure, of which 

analysis indicates the presence of irregular particles with various shapes and sizes. In the structure of 

lignin, irregular shaped particles are also visible; however, its structure is more homogeneous and 

particles of smaller sizes can be observed (Figure 1b). 

Additionally, in Figure 1, SEM images are presented at two different magnifications, taken for  

the selected chitin/lignin products. The microphotographs show a difference in the structure of the 

synthesized final products, in which the content of lignin is decreasing. From a morphological point of 
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view, the photographs indicate that the ratio of the precursors used is crucial. In the prepared materials, 

chitin possesses fiber-like structures, different in shape and size, while lignin is characterized by 

individual and irregular particles of smaller size. 

Figure 1. SEM images of (a) chitin; (b) kraft lignin; chitin/lignin materials labeled as  

(c) ChL 1; (d) ChL 4; (e) ChL 7 at different magnifications. 

 

2.1.2. FT-IR Spectroscopy 

Figure 2 shows the FT-IR spectra of chitin and lignin precursors (Figure 2a), and chitin/lignin 

hybrid materials (Figure 2b). Major bands are summarized in Table 1. 

Figure 2. FT-IR analysis of precursors (a) and selected chitin/lignin materials (b). 
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Table 1. Vibrational frequencies wavenumber (cm
−1

) attributed to chitin, kraft lignin, and 

chitin/lignin materials. 

Chitin Kraft lignin Chitin/lignin material (ChL 1) Vibrational assignment 

3445 3387 3483 O–H stretching 

3285 - 3264 N–H stretching 

3107 - 3108 N–H stretching 

2963 - 2966 CHx stretching 

2932 2935 2935 CHx stretching 

2875 - 2877 CHx stretching 

1663 - 1659 C=O (amide I) stretching 

1630 1630 1624 C=O stretching 

- 1595 - C–C (aromatic skeleton) stretching 

1558 - 1558 C–N (amide II) bending 

- 1505 - C–C (aromatic skeleton) stretching 

- 1463 - C–H, CH3 + CH2 bending 

1430 - 1436 CH2 bending 

- 1421 1415 C–C (aromatic skeleton) stretching 

1378 - 1381 C–H bending 

- 1370 - O–H (phenolic OH) bending 

- 1326 1328 C–O (syringyl unit) streching 

1316 - - C–N (amide III) stretching 

- 1266 - C–O (guaiacyl unit) streching 

1261 - 1259 N–H (amide III) bending 

- 1216 - C–OH (phenolic OH) stretching 

1158 - 1156 C–O–C (ring), C–O stretching 

- 1136 - Aromatic C–H (guaiacyl unit), stretching 

1116 - 1116 C–O–C (ring), C–O stretching 

1073 - 1073 C–O–C (ring), C–O stretching 

- 1040 - C–OH + C–O–C (aliphatic OH + ether) stretching 

1028 - 1028 C–O–C (ring), C–O stretching 

951 - 951 CH3 bending 

896 - 896 β-1,4-glycosidic bond 

- 863 863 Aromatic C–H(guaiacyl unit), bending 

- 745 745 Aromatic C–H(guaiacyl unit), bending 

635 - 635 N–H bending 

In the analysis of the spectrum of lignin the following bands were detected: stretching vibration 

bands of O–H groups (phenolic O–H and aliphatic O–H) at 3600–3200 cm
−1

, and C–H stretching 

vibrations at 2960–2920 cm
−1

 (CH3 and CH2). The wider band at 1710–1550 cm
−1

 results from the 

presence of C=O bond stretching vibrations. In the FT-IR spectrum of lignin, there are also significant 

bands with absorption maxima at the wavenumbers 1326 cm
−1

, 1266 cm
−1

 and 1216 cm
−1

, associated 

with stretching vibrations of C–O, C–O(H), and C–O(Ar) bonds of phenolic groups, as well as  

etheric bonds, which are important factors in connection of elements in the analyzed biopolymer.  

The presence of C–O–C etheric bonds is additionally confirmed by the stretching vibration band at 

1040 cm
−1

. The last group of noteworthy characteristic bands of lignin consists of the in-plane 
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deformation bands δipAr C–H (1136 cm
−1

), and out-of-plane δopAr C–H (bands at wavenumbers lower 

than 1000 cm
−1

, including 863 cm
−1

, 745 cm
−1

). The present analysis of kraft lignin is in agreement 

with previously published data [37]. 

In turn, from the analysis of chitin spectrum, the following characteristic bands were found:  

a stretching vibration band of O–H groups at 3600–3400 cm
−1

, asymmetric stretching vibrations at 

3285 cm
−1

, and symmetric vibrations at 3107 cm
−1

, attributed to N–H groups. The stretching vibration 

band in the range 3000–2800 cm
−1

 is associated with the presence of (CH3 + CH2) groups. Strong 

absorption bands at wavenumber 1663 cm
−1

 and 1630 cm
−1

 are associated with the presence of  

the amide I band, and correspond to stretching vibrations of C=O bonds. This splitting of the amide  

I band is characteristic for α-chitin, and stems from the occurrence of stretching vibrations of the 

intermolecular C=O···H–N and the intramolecular hydrogen bond C=O···H–OCH2. The presence of 

the absorption band at 1558 cm
−1

 in the spectrum of the isolated sample is attributed to the bending 

vibrations of the amide II band (N–H). The aforementioned band is undoubtedly associated with 

stretching vibrations of C–N. The region at 1430–1375 cm
−1

 is ascribed to bending vibrations 

associated with –CH2 and C–CH3 groups. A weak absorption band of stretching and bending  

vibrations associated with C–N and N–H groups (the so-called III amide band) appears at 1316 cm
−1

 

and 1261 cm
−1

. A wide band at 1250–950 cm
−1

 is associated with asymmetric stretching vibrations of 

C–O–C groups and stretching vibrations of C–O groups. Of significance in the chitin spectrum is the 

presence of a characteristic band at 896 cm
−1

, which is attributed to the presence of β–1,4–glycosidic 

bonds in the biopolymer structure. The analysis carried out for chitin is in agreement with available 

literature data regarding α-chitin [21,38]. 

FT-IR spectra for selected chitin/lignin hybrid materials are presented in Figure 2b. Analysis of the 

spectra indicates that process of synthesis of chitin/lignin products was fully controlled, and completed 

with satisfactory results. Individual bands characteristic for the discussed precursors overlap with the 

bands obtained for the final products. Additionally, modification of the mass fraction of any precursor 

produces a change in the intensity of peaks. For instance, when the mass fraction of lignin in the 

products (from 1 to 7) decreases, the intensity of bands in the spectrum decreases as well. Also, the 

obtained spectra reveal shifts and deformations of the O–H stretching bands and I and II amide bands, 

which probably results from hydrogen bond formation between chitin and lignin. 

2.1.3. XPS Analysis 

The surface composition of samples of α-chitin, lignin and chitin/lignin biosorbent (ChL 1) was 

examined by means of X-ray photoelectron spectroscopy. The elemental compositions calculated from 

survey spectra in the binding energy range 0–1000 eV are given in Table 2. 

Table 2. Elemental composition of the surface of examined samples as calculated by  

XPS analysis. 

Sample 
C O N Na S Ca Cl 

at. % 

ChL 1 64.8 29.5 4.8 - - 0.9 - 

chitin 60.0 32.9 5.9 0.3 - 0.6 0.3 

kraft lignin 68.0 25.0 - 5.0 2.0 - - 
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The lignin sample is contaminated with sodium and sulfur, presumably resulting from its preparation 

in the kraft process, as observed previously elsewhere [39]. On the surface of chitin and ChL 1 samples, 

some traces of calcium and chlorine were detected, presumably due to environmental contamination. 

Carbon, nitrogen and oxygen atoms are the main components of both chitin and ChL 1 samples, 

while lignin does not contain nitrogen. The ratio of oxygen to carbon for chitin is almost 0.5, as 

reported before [40]. The O/C ratio calculated for lignin is 0.36, relatively close to the theoretical value 

for lignin given by Johansson et al. [41] as 0.34. The ratio of oxygen to carbon for the ChL 1 sample 

lies between the values for chitin and lignin, at 0.45. 

The XPS C 1s peak was examined in detail for all analyzed samples. The acquired spectra have a 

relatively complex profile (see Figure 3a). 

Figure 3. (a) XPS C 1s spectra for chitin, kraft lignin and ChL 1 samples. The assignment 

of components C1–C4 is described in the text; (b) XPS N 1s spectra for chitin and ChL 1. 

 

Deconvolution of the experimental data was performed using a model consisting of four basic 

components of C 1s transition: C1–C4. Component C1, having a binding energy of 284.5 ± 0.1 eV, 

corresponds essentially to non-functionalized carbon atoms located in aromatic rings expected in  

the lignin structure. Component C2, having a binding energy of 284.8 eV, is attributed to all other  

non-functionalized sp
2
 and sp

3
 carbon atoms, bonded either with a second carbon or with hydrogen 
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atoms. Component C3, shifted 1.4 ± 0.2 eV from component C2 in the direction of increasing binding 

energies, is ascribed to a group of differently bonded carbon atoms linked to one atom of oxygen or 

nitrogen. The group comprises the following functional groups presumably present in the studied 

materials: C–O–C, C–OH, C–N–C and C–NH2. The carbon denoted by the asterisk in the *C–O–C=O 

group can also contribute to the signal of component C3. Component C4, shifted 2.9 ± 0.2 eV from 

component C2 in the direction of increasing binding energies, also corresponds to a set of functional 

groups: C=O, O–C–O, N–C–O and N–C=O. The binding energy assignments described above are 

based on the energy shifts given in Appendix E of the reference paper [42]. The relative surface 

functional group compositions obtained from the decomposition of the C 1s signal are given in  

Table 3. The total C 1s intensity is taken as 100. 

Table 3. Distribution of functional groups calculated on the basis of the deconvolution 

model of XPS C 1s peak. 

Sample C1 C2 C3 C4 

ChL1 21 19 49 11 

chitin - 37 39 24 

kraft lignin 43 22 32 3 

An expected component ratio for pure chitin is C2:C3:C4 = 25:50:25 [43]. In the present study, there 

is a substantial excess of non-functionalized carbon atoms (component C2) and the profile of the  

XPS C 1s peak rather resembles a modified chitin structure [40,44]. The reason for the increased 

concentration of carbon atoms linked only with other carbon atoms or hydrogen is either decomposition 

of oxygen-bearing functional groups, or surface contamination by adventitious carbon. 

The shape of the XPS C 1s peak for lignin is relatively close to the theoretical one [45]. The ratio of 

(C1 + C2):C3:C4 = 65:32:3 calculated for the present data is in good agreement with that observed 

elsewhere [46] where the corresponding ratio is given as (C1 + C2):C3:C4 = 65:29:3. 

The XPS spectrum of the ChL 1 sample, which is a product originating from chitin and lignin 

samples, has a complex structure. Assuming that this material contains functional groups coming from 

both substrates, all four carbon components C1–C4 were used during the curve-fitting procedure.  

The peak fitting indicates that the ChL 1 sample contains approximately equal numbers of aromatic  

and aliphatic non-functionalized carbon atoms (components C1 and C2, respectively). Component C3 

represents about one half of all carbon atoms present in the material, demonstrating the abundance of 

C–OH and C–O–C groups, likely with a contribution from C–N bonds. 

The XPS N 1s peak was additionally examined in detail to confirm the chemical state of nitrogen 

atoms present in the chitin and ChL 1 samples (see Figure 3b). The observed profiles of N 1s transition 

are virtually identical for both materials. They are both symmetrical with mixed Gaussian-Lorentzian 

profile shape, and with a maximum at a binding energy of 399.8 eV. It is assumed that they represent 

one chemical state of the nitrogen atoms. There is a disagreement concerning the attribution of 

chemical bonds of nitrogen to the experimentally observed XPS N 1s peaks of chitin. Oh et al. [44] 

attributed a component at binding energy 401.4 eV observed in the spectrum of regenerated chitin to 

the nitrogen of acetyl amide group, while a component at 399.6 eV was ascribed to the amine group. 

However, the nitrogen chemical environment representative of the acetyl amide group is usually 
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matched with the N 1s component around 400.0 eV [47]. Therefore, the N 1s peak observed here is 

attributed to the acetyl amide groups which are a part of the chitin structure. 

2.1.4. 
13

C CP MAS NMR Spectroscopy 

Figure 4 shows the 
13

C CP MAS NMR spectra of the pure precursors’ chitin and kraft lignin, and of 

the hybrid material obtained by the reaction of chitin and lignin in mass ratio of 1:1. 

Figure 4. 
13

C CP MAS NMR spectra of chitin, lignin, and ChL 1 material. 

 

Detailed analysis of the signals, assigned to specific, carbon-containing functional groups, is 

presented in Table 4. 

The 
13

C CP MAS NMR spectrum of the chitin before modification exhibits characteristic narrow 

and intense signals for α-chitin [38,48], while for lignin broad lower intensity signals are present [49]. 

Modification of chitin with lignin obviously results in characteristic changes in the spectrum. 

Particularly important is the fact that in the case of the analyzed hybrid material ChL 1, there was 

recorded an increase in the characteristic chemical shifts in comparison to chitin prior to modification. 

Especially the C6 (59.94 ppm) and C3 (73.08 ppm) signals are stronger in the hybrid material. Also 

observable are slight chemical shifts which confirm the hypothesis that chitin and lignin are connected 

via hydrogen bonds. The formation of hydrogen bonds is possible due to the significant amount of 

various functional groups present in the compounds, especially in kraft lignin. Analysis of the 
13

C CP 

MAS NMR spectra fully confirmed the effectiveness of formation of the chitin/lignin material. 
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Table 4. The chemical shift value (δ, ppm) of 
13

C CP MAS NMR spectrum of chitin, kraft 

lignin, and ChL 1 sample. 

Chitin Lignin ChL 1 Assignment 

- 13.6 - γ-CH3 in n-propyl side chain 

22.1 - 21.9 CH3 in acetamide group 

- 24.3 - CH3 or CH2 group in saturated side chains 

- 36.1 - CH3 groups, ketones (conj.) or in aliphatic 

- 52-54 54.2 C-β in β-5 and β-β units 

54.4 - 54.2 C2 in hexose ring 

- 55.6 - C in Ar–OCH3 

59.6 - 59.9 C6 in hexose ring 

73.1 - 72.6 C3 in hexose ring 

74.7 - 74.7 C5 in hexose ring 

- 74-1 72.6 
C-α in guaiacyl type β-0-4 units (threo and erythro)  

C-γ in β-β, C-γ, β-aryl ether 

82.2 - 82.4 C4 in hexose ring 

- 85-83 - C-β in guaiacyl type β-0-4 units (threo and erythro) 

103.3 - 103.1 C1 in hexose ring 

- 112-110 - C-2 in guaiacyl units 

- 117-113 - C-5 in guaiacyl units 

- 118-119 - C-6 in guaiacyl units 

- 121.4 - C1 and C6 in Ar–C(=O)C–C 

- 128.2 - C-α and C-β in Ar–CH=CH–CH2OH 

- 129.3 - C-α and C-β in Ar–CH=CH–CHO 

- 143.3 - C-4 in ring B of β-5 units, C-4/C-4′ of non–etherified 5-5 units 

- 145.8 145.5 C-4 in non-etherified G units 

- 146.2 - C-3 in non-etherified G units (β-0-4 type) 

- 146.8 - C-4 in etherified G units 

- 169-172 - 
C=O in φ–COOH, Ester C=O in φ–C(=O)OR and  

R–C(=O)OCH3 

173.4 - 172.7 C=O in acetamide group 

- 192-202 - 
C=O in φ–CH=CH–CHO, C=O in φ–C(=O)CH(–O φ)–C– and  

other carbonyl groups 

2.1.5. Elemental Analysis 

Table 5 contains results from elemental analysis describing the content of nitrogen, carbon, 

hydrogen and sulfur in the prepared chitin/lignin materials as well as in the pure precursors. 

In the case of pure chitin, the carbon content is 40.54%, while the hydrogen content is 7.36%. 

Nitrogen is also present in the structure of chitin, accounting for about 6.21% of the sample by mass; 

this is associated with N-acetylglucosamine units (to be precise, 2-(acetylamino)-2-deoxy-D-glucose). 

Kraft lignin also has carbon and hydrogen in its structure (42.21% and 5.02%, respectively), but 

additionally sulfur is found (3.14%). The presence of sulfur can be explained by the process of 

separation of cellulose from lignin via sulfuric wood digestion, the so-called kraft process. 
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Analysis of the results for the chitin/lignin materials proves the diversity of elemental composition 

of the products, and intermediately confirms the effectiveness of the preparation method used. The 

percentage content of nitrogen in the respective samples (ChL 1 to ChL 7) is similar, which reflects the 

constant quantity of chitin used for preparation of the products. The content of remaining elements in 

the final products depends strictly on the type of sample, and thus on the quantities of the precursors 

used. With decreasing content of lignin in the final products, the percentage content of carbon, 

hydrogen and sulfur also decreases. As far as sulfur is concerned, its decreasing content serves as 

evidence for the presence of the element in the structure of lignin and lignocellulose materials. 

Table 5. Content of the examined elements in the precursors and chitin/lignin materials. 

Sample name 
Elemental content (%) 

N C H S 

ChL 1 6.01 44.17 8.37 1.16 

ChL 2 6.03 44.04 8.31 0.96 

ChL 3 6.03 44.01 8.27 0.79 

ChL 4 6.03 43.93 8.24 0.63 

ChL 5 6.01 43.75 8.23 0.49 

ChL 6 6.03 43.72 8.20 0.27 

ChL 7 6.02 43.58 8.19 0.06 

chitin 6.21 40.54 7.36 - 

kraft lignin - 42.21 5.02 3.14 

2.1.6. Electrokinetic Characteristics 

A very important factor in the applicability of new materials is electrokinetic behavior. Therefore, 

in the next stage of the experiment, values of zeta potential at selected pH were measured, and the 

isoelectric point (pHIEP) was determined. The obtained results are presented in Table 6. Determination 

of the zeta potential of the discussed compounds enabled indirect confirmation of the effectiveness of 

the suggested synthesis method. 

Table 6. Summary of the zeta potential of chitin/lignin materials, and the pure precursors 

at the selected pH. 

Sample name 
Zeta potential (mV) vs. pH 

pHIEP 
2 4 6 8 10 12 

ChL 1 −1.3 −17.5 −26.5 −37.0 −43.2 −46.3 1.8 

ChL 2 1.7 −14.2 −24.2 −35.0 −41.0 −43.1 2.2 

ChL 3 2.1 −11.1 −22.0 −33.9 −39.0 −42.0 2.7 

ChL 4 3.9 −10.0 −20.9 −30.1 −37.9 −40.9 2.7 

ChL 5 5.2 −8.0 −19.5 −27.9 −36.5 −38.2 2.8 

ChL 6 7.1 −7.5 −17.3 −23.0 −34.2 −37.9 3.1 

ChL 7 9.3 −6.5 −15.1 −20.5 −31.9 −36.0 3.4 

chitin 19.9 −8.5 −23.6 −31.4 −37.2 −40.1 3.5 

kraft lignin −20.1 −35.2 −40.2 −43.8 −48.3 −51.2 - 
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In the first stage of the experiment, zeta potentials of chitin and kraft lignin were determined  

in order to measure the electrokinetic properties of the precursors. From the electrokinetic analysis of 

chitin, it is found that the biopolymer exhibits negative values of zeta potential over a wide pH range. 

Due to the fact that at very low and very high pH values the measuring error increases, the range of 

measurement was limited to pH values from 2 to 12. The measured values of zeta potential of the 

biopolymer strongly depend on the pH. Moreover, chitin is found to have a pHIEP of 3.5. This is caused 

by dissociation of –NH2 groups, which are always present in the structure of chitin. These groups play 

a very important role in changes of surface properties. Large quantities of H
+
 ions induce ionization  

of –NH3
+
 groups, and as a result a positive charge is formed on the surface of chitin. This is called  

a protonation effect. With an increase in the quantity of H
+
 ions, the dissociation process is limited  

and zeta potential decreases [50]. Chitin is most electrokinetically stable in aqueous solutions at  

pH 8–12. Kraft lignin exhibits negative values of zeta potential over the whole analyzed pH range, and 

does not reach the pHIEP value. The biopolymer is characterized by excellent electrokinetic stability 

regardless of the pH value. Detailed information regarding the electrokinetic properties of kraft lignin 

can be found in a previous publication [37]. 

In the next stage of the experiment, electrokinetic properties of the chitin/lignin materials were 

determined. From the measured values of zeta potential it can be concluded that the mass contribution 

of the biopolymers in the composite influences its electrokinetic properties. In the case of a composite 

with equal amounts of both biopolymers, dominant electrostatic interactions originating from lignin 

can be observed, which results from the presence of functional groups on its surface. However, the 

obtained values of electrokinetic potential are lower than in the case of pure lignin. This phenomenon 

is caused by interactions of amine groups originating from chitin. Analysis of the systems shows that 

as the mass contribution of lignin decreases, the observed protonation effect becomes increasingly 

visible. This is also reflected by the values found for the isoelectric point. 

The results confirm the effectiveness of the proposed method of synthesis of the discussed 

composites. What is more, the satisfactory results support the belief that the examined systems will 

find wide application in advanced industrial methods where the electrokinetic stability of aqueous 

dispersions plays an important role. 

2.1.7. Thermal Stability 

The thermal behavior of chitin, kraft lignin (Figure 5a) and chitin/lignin hybrid materials  

(Figure 5b) were determined using TG and DTA. 

The results of TG/DTA analysis obtained for chitin indicate two degradation steps. The first one 

occurs below 200 °C and is associated with endothermic desorption of physically bound water. The 

second begins at 280 °C, and is attributed to the endothermic thermal degradation of α-chitin, which is 

primarily a result of the single-step reaction of depolymerization of the chitin molecular structure, 

including dehydration of polysaccharide rings and formation of low volatile products and char [51]. 

The TG curve of lignin indicates that there exist two distinct weight loss stages during the pyrolysis of 

this biopolymer. The first step is mainly caused by the release of water. According to the results 

reported by Liu et al. [52], with the use of a TG-FTIR combined technique it is possible to make a 

detailed interpretation of each stage of lignin pyrolysis. Above a temperature of 100 °C, a process of 
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cracking of aliphatic hydroxyl groups in the lateral chains also occurs, which generates water and  

CO2 due to breakage of lateral C–C bonds. The main exothermic degradation step occurs in the range 

250–570 °C. According to the literature [52,53], this step is divided into three stages associated with 

the release of various volatile compounds. Phenolic compounds containing aromatic ring, hydroxyl 

and alkyl groups are released at ~270 °C. Release of methanol due to the reaction of hydrogenation of 

the methoxy groups (–OCH3) in the aromatic ring starts at about 380 °C. Finally, at 530 °C, formation 

of secondary methane begins, probably generated from secondary cracking of the primary  

compounds [54]. 

Figure 5. TG/DTA analysis of chitin and kraft lignin (a) and three selected chitin/lignin 

materials (b). 

 

In the case of the chitin/lignin hybrid materials we observed two degradation steps. The first one, 

below 200 °C, is associated with endothermic desorption of water. The second degradation step begins 

at 270 °C and is attributed to endothermic thermal degradation of chitin. However, the observed 

endothermic effect is lower than in the case of pure chitin, and decreases with an increase of lignin 

content in the chitin/lignin materials. This phenomenon can be explained by the exothermic degradation 

of lignin: part of the energy emitted from the degradation of lignin is consumed in the degradation of 

the biopolymer; hence, the observed endothermic effect is lower for the composites. Additionally, it is 
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important to note that the thermal degradation of chitin results in a higher amount of residue than the 

same process for pure lignin. 

2.1.8. Porous Structure Properties 

For determination of the sorption properties of the materials, it is extremely important to analyze 

their porous structure. For this purpose, adsorption/desorption isotherms were determined, and BET 

surface area, total pore volume and size of pores were calculated. The results are shown in Figure 6. 

Figure 6. Nitrogen adsorption/desorption isotherms and porous structure parameters for 

chitin (a); kraft lignin (b); and the chitin/lignin material labeled as ChL 1 (c). 

 

The biopolymers used in the experiment are characterized by a low value of BET surface area. For 

chitin ABET = 2.7 m
2
/g, and for lignin the value is even lower: ABET = 0.1 m

2
/g. Values of total volume 

of pores and size of pores are higher for chitin, at Vp = 0.018 cm
3
/g and Sp = 25.9 nm. By comparison, 

lignin has lower values: Vp = 0.001 cm
3
/g and Sp = 12.1 nm. Despite the low value of BET surface 

area, the materials can still be treated as effective and selective sorbents of hazardous metal ions and 

harmful organic compounds. In the case of this group of materials, an important role in the process of 

hazardous metal ion adsorption is played by acidic functional groups (particularly hydroxyl groups 
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originating from phenol and carboxylic groups). The presence of these functional groups is confirmed 

by the FT-IR spectra presented earlier. Similarly, electrokinetic analysis suggests that the analyzed 

samples possess negative surface charge originating from organic compounds. The negative value of 

the surface charge results from dissociation of H
+
 ions coming from acidic functional groups. These 

properties have a great impact on the adsorption of positively charged metal ions, as has been 

confirmed in other studies [54]. 

In order to carry out further analysis concerning the adsorption of nickel(II) and cadmium(II) ions 

on the surface of chitin/lignin materials, the sample labeled as ChL 1 was used. This material has 

optimal physicochemical and electrokinetic properties which might influence the effectiveness of the 

process of removal of nickel(II) and cadmium(II) ions from model aqueous solutions. This material 

contains the largest quantity of functional groups, which might be important in the process of heavy 

metal ion adsorption. The tested sample was prepared with the ratio of precursors at 1:1. For material 

ChL 1 the surface area is 3.0 m
2
/g, the total pore volume is Vp = 0.014 cm

3
/g, and the pore size is  

Sp = 18.8 nm. 

2.2. Batch Adsorption Study 

2.2.1. Effect of Contact Time on Sorption Efficiency 

The prepared chitin/lignin biosorbent has unique physicochemical and electrokinetic properties 

which enables it to be used as an effective sorbent of hazardous metal ions. In this work, preliminary 

tests of nickel(II) and cadmium(II) ion removal from aqueous solution were performed, using the 

chitin/lignin sorbent as well as pure chitin and lignin. The influence of time (15–120 min) on the 

effectiveness of nickel(II) and cadmium(II) ion adsorption (30 mg/dm
3
) was examined. Example data 

from the experiment are given in Figure 7a,b. From the results, it can be concluded that the adsorption 

equilibrium, for the chitin/lignin biosorbent as well as pure biopolymers, is reached after 60 min, 

which can be considered the most efficient adsorption time. 

It is noteworthy that in the removal of nickel(II) and cadmium(II) ions, significantly higher values 

for the adsorption process were achieved for the chitin/lignin sorbent than in the case of the pure 

precursors. This indicates the higher affinity of the surface of chitin/lignin sorbent to cadmium(II) ions 

in comparison with the sole precursors. From analysis of the results, it is noted that the adsorption 

efficiency on the surface of chitin/lignin sorbent was significantly higher in the case of cadmium(II) 

adsorption (83.9%–98.4%) than in the case of nickel(II) (72.1%–88.0%). This observation indicates 

the greater affinity of the sorbent for adsorption of cadmium(II) ions than nickel(II). 

Analyzing the results it can be stated that the highest amount of adsorbed nickel(II) and 

cadmium(II) ions (at equilibrium) was noted in the case of chitin/lignin biosorbents (5.28 mg(Ni
2+

)/g 

and 5.90 mg(Cd
2+

)/g). The observation points to better sorption abilities of metal ions using this novel, 

functional material than in the case of pure lignin and chitin precursors (see Table 7). Noteworthy is 

also the fact that the surface of the biosorbent shows higher affinity to cadmium(II) ions. 
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2.2.2. Effect of Quantity of Chitin/Lignin Biosorbents on Sorption Efficiency 

The quantity of used sorbent also influences the effectiveness of nickel(II) and cadmium(II) ion 

adsorption. This is shown by the analysis presented in Figure 7c. 

Figure 7. Effect of contact time on (a) nickel(II); (b) cadmium(II) removal by chitin, kraft 

lignin and chitin/lignin biosorbent; (c) influence of quantity of chitin/lignin material on 

nickel(II) and cadmium(II) removal efficiency (pH = 7 and temperature 25 °C). 

 

Table 7. The amount of metal ions adsorbed at equilibrium (qe) for kraft lignin, chitin and 

chitin/lignin biosorbents. 

Kind of sorbents 
The amount of metal ions adsorbed at equilibrium (mg/g) 

Ni2+ Cd2+ 

lignin 4.27 4.28 

chitin 4.89 5.09 

chitin/lignin biosorbents 5.28 5.90 

The adsorption process was performed over 60 min from model solutions with a metal ion 

concentration of 30 mg/dm
3
, using varying amounts of the sorbent (2–6 g/dm

3
). The effectiveness of 

the removal of nickel(II) and cadmium(II) ions increases with increasing content of the sorbent, which 
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is a result of the larger surface area of the adsorbent. The highest removal efficiency of ions  

was achieved for 5 g/dm
3
 of the sorbent, similarly for model solutions of both hazardous metal ions.  

It should be noted that, analogously to the previous results, the chitin/lignin biosorbent exhibits a 

higher affinity for cadmium(II) ions (removal efficiency 90.0%–98.5%) than for nickel(II) (removal 

efficiency 76.1%–89.7%). 

The results obtained undoubtedly demonstrate the effectiveness of the process of nickel(II) and 

cadmium(II) ion adsorption from model aqueous solutions with the use of chitin/lignin biosorbents. 

Although these are only preliminary results, the sorption abilities of the chitin/lignin materials have 

already been shown to be worthy of attention. 

3. Experimental Section 

3.1. Materials 

α-Chitin powder from crab shells (technical grade, Sigma-Aldrich, Munich, Germany) was 

combined with kraft lignin (reagent grade, Sigma-Aldrich). In order to obtain final products in the 

form of chitin/lignin materials, various reagent fractions were used, which were additionally treated 

with 15% hydrogen peroxide (Chempur, Piekary Śląskie, Poland). The adsorption process was carried 

out with use of selected inorganic salts: nickel(II) nitrate hexahydrate and cadmium(II) nitrate 

tetrahydrate were used (Sigma-Aldrich). 

3.2. Preparation of Chitin/Lignin Materials 

Preparation of the chitin/lignin products began with soaking of the required quantity of lignin in  

100 cm
3
 of 15% hydrogen peroxide (lignin activation). 

The system was stirred for about 30 min using a high speed stirrer (EUROSTAR digital IKA Werke 

GmbH, Staufen, Germany) with a mixing rate of 1000 rpm. A suitable quantity of chitin was then 

added to the solution of activated lignin, and the mixture underwent vigorous mixing for about 2 h. 

The obtained chitin/lignin final material was filtered under reduced pressure and washed with distilled 

water. Next the product was dried in a convectional dryer (Memmert, Munich, Germany) at a 

temperature of 105 °C (for about 24 h). In this way, seven systems, differing in precursor content, were 

prepared. Details of the quantities of precursors used are given in Table 8. 

Table 8. List of chitin/lignin materials obtained, with specific amounts of precursors used. 

Sample name The weight ratio of precursors (chitin:lignin) Amount of H2O2 (cm
3
) 

ChL 1 1:1 

100 

ChL 2 1:0.75 

ChL 3 1:0.5 

ChL 4 1:0.3 

ChL 5 1:0.2 

ChL 6 1:0.1 

ChL 7 1:0.05 
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3.3. Physicochemical Evaluation 

The surface morphology and microstructure of the chitin/lignin products were examined on the 

basis of SEM images recorded from an EVO40 scanning electron microscope (Zeiss, Jena, Germany). 

Prior to the testing, the samples were coated with Au for a time of 5 s using a Balzers PV205P coater  

(Oerlikon Balzers Coating SA, Brügg, Switzerland). 

The presence of expected functional groups was confirmed by Fourier transform infrared (FT-IR) 

spectroscopy, recorded on an EQUINOX 55 spectrophotometer (Bruker, Karlsruhe, Germany). Here, 

the materials were analyzed in the form of tablets, made by pressing a mixture of anhydrous KBr  

(ca. 0.1 g) and 1 mg of the tested substance in a special steel ring under a pressure of approximately  

10 MPa. The investigation was performed at a resolution of 0.5 cm
−1

. 

X-ray photoelectron spectra (XPS) were obtained using Al Kα (hν = 1486.6 eV) radiation with  

a Prevac system equipped with a Scienta SES 2002 electron energy analyzer (VG Scienta,  

St. Leonards-on-Sea, UK) operating at constant transmission energy (Ep = 50 eV). The spectrometer 

was calibrated using the following photoemission lines (with reference to the Fermi level):  

EB Cu 2p3/2 = 932.8 eV, EB Ag 3d5/2 = 368.3 eV and EB Au 4f7/2 = 84.0 eV. The instrumental 

resolution, in terms of the full width at half maximum (FWHM) of the Ag 3d5/2 peak, was 1.0 eV. The 

samples were loosely placed into a grooved molybdenum sample holder. The analysis chamber was 

evacuated during the experiments to better than 1 × 10
−9

 mbar. 

Data processing involved background subtraction by means of ―S-type‖ integral profile and a  

curve-fitting procedure (a mixed Gaussian-Lorentzian function was employed) based on a  

least-squares method (CasaXPS software, SurfaceSpectra Ltd., Manchester, UK). Experimental errors 

were estimated to be ±0.2 eV for the photoelectron peaks of carbon and nitrogen. Charging effects 

were corrected using the C 1s component ascribed after deconvolution to the aliphatic carbon bindings 

(component C2) and taken to be 284.8 eV. The reproducibility of the peak position thus obtained was 

±0.2 eV. The surface composition of the samples was obtained on the basis of the peak area intensities 

of the C 1s, O 1s, N 1s, Na 1s, S 2p, Ca 2p and Cl 2p transitions using the sensitivity factor approach 

and assuming homogeneous distribution of elements in the surface layer. 
13

C CP MAS NMR measurement was carried out on a DSX spectrometer (Bruker). For the 

determination of NMR spectra, a sample of about 100 mg was placed in a ZrO2 rotator with diameter  

4 mm, which enabled spinning of the sample. Centrifugation at the magic angle was performed at  

a spinning frequency of 8 kHz. The 
13

C CP MAS NMR spectra were recorded at 100.63 MHz in  

a standard 4 mm MAS probe using a single pulse excitation with high power proton decoupling (pulse 

repetition 10 s, spinning speed 8 kHz). 

The elemental contents of the products were established with the use of a Vario EL Cube 

instrument made by Elementar Analysensysteme GmbH, which is capable of registering the percentage 

content of carbon, hydrogen, nitrogen and sulfur within samples, after high-temperature combustion.  

A properly weighed sample was placed in an 80-position autosampler and subjected to combustion. 

The decomposed sample was transferred in a stream of helium gas into an adsorption column, where 

the percentage of each element was analyzed. The results are given to ±0.01%, and each is obtained by 

averaging three measurements. 
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Zeta potential was measured by the electrophoretic light scattering method using a Zetasizer Nano 

ZS instrument equipped with an autotitrator (Malvern Instruments Ltd., Worcestershire, UK). The zeta 

potential was determined over a pH range of 2–10, using 0.001 M NaCl solution. Before the 

measurement was performed, the analyzed dispersions were stabilized for 15 min in an ultrasonic bath. 

To avoid possible measurement errors, every sample was measured three times, and the mean value 

and standard deviation were calculated. The standard deviation of the zeta potential at a given pH was 

±1.5 mV or less, and the error in the pH was estimated to be 0.02 pH units or lower. 

Thermogravimetric (TG) and differential thermal analyses (DTA) of chitin/lignin products were 

carried out with a Jupiter STA 449F3 analyzer (Netzsch, Selb, Germany) with an Al2O3 crucible. The 

measurements were performed in a nitrogen atmosphere at a heating rate of 10 °C min
−1

. The samples 

were heated up to 1000 °C, starting from 25 °C. 

In order to characterize the properties of the porous structure, nitrogen adsorption/desorption 

isotherms, and parameters such as surface area (ABET), total volume of pores (Vp), and mean size of 

pores (Sp), were determined using an ASAP 2020 instrument (Micromeritics Instrument Co., Norcross, 

GA, USA). All samples were degassed at 80 °C for 4 h prior to measurement. The surface area was 

determined by the multipoint Brunauer-Emmett-Teller method using the adsorption data as a function 

of relative pressure (p/p0). The Barrett-Joyner-Halenda algorithm was also applied to determine the 

total volume of pores and mean pore size. 

3.4. Adsorption Experiments 

In order to determine the optimal time of metal ion removal from model aqueous solutions,  

the adsorption process was carried out over a range of time periods: 15, 30, 45, 60, 75, 90, 105 and  

120 min for a nickel(II) and cadmium(II) ion concentration of 30 mg/dm
3
 (pH = 7 and temperature  

25 °C). The adsorption time optimization was performed independently for three types of sorbents: 

pure lignin, pure chitin, and final chitin/lignin biosorbent with a component ratio of 1:1. 

The amount of metal ions adsorbed at equilibrium, qe (mg/g), was calculated by the  

following relationship (1):  

 0 e

e

c c V
q

m

 
  (1) 

where qe is the amount of metal ions adsorbed at equilibrium (mg/g), C0 is the initial concentration of 

metal ions (mg/L), Ce is the equilibrium metal ions concentration (mg/L), V is the volume of solution 

(L) and m is the mass of the biosorbents (g). The prepared solutions of nickel(II) and cadmium(II) ions 

were placed in conical flasks. To the solution, 5.0 g/dm
3
 of adsorbent was added. The system was 

stirred using a magnetic stirrer (IKA Werke GmbH) for a set time. At the appropriate time,  

the obtained mixture was filtered. Each filtrate was analyzed to measure the effectiveness of the  

adsorption process. 

An important element of the experiment was to determine the influence of the quantity of the 

sorbent on the effectiveness of removal of nickel(II) and cadmium(II) from aqueous solutions. For this 

purpose, the adsorption process of nickel and cadmium ions in solutions of concentration 30 mg/dm
3
 

was carried out using various amounts of chitin/lignin material (2–6 g/dm
3
) for 60 min. Optimization 

of the mass of the sorbents was performed solely for model solutions of nickel(II) and cadmium(II).  
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In order to determine the effectiveness of nickel(II) and cadmium(II) ion removal, AAS analysis was 

performed (Z-8200 spectrometer, Hitachi, Tokyo, Japan). The results obtained from the analysis were 

used to calculate the efficiency of the process. 

4. Conclusions 

In this report, a new method for the preparation of novel and functional chitin/lignin biosorbents  

has been presented, along with their detailed characteristics. The effectiveness of combining the two 

precursors was confirmed with FTIR, XPS, 
13

C cross polarization/mass angle spinning NMR, and 

results from elemental analysis. The analysis showed the good electrokinetic properties of the 

chitin/lignin materials, which will surely be of significant use in industrial applications in which the 

electrokinetic stability of aqueous dispersive systems plays a crucial role. Moreover, preliminary 

investigations of the adsorption efficiency of the chitin/lignin sorbents indicates that the materials  

are suitable for the removal of nickel(II) and cadmium(II) ions from model aqueous solutions. It is 

noteworthy that the measured values of cadmium(II) adsorption are higher than those for nickel(II), 

irrespective of the time of adsorption or quantity of sorbent used. The measurements will undoubtedly 

contribute to the development of research in this area, and will be extended by similar experiments for 

other metal ions, such as lead, mercury and uranium. In future reports, a significant step will be the 

determination of kinetic aspects of the removal of selected contaminations from aqueous solution, with 

consideration given to such parameters as process time, temperature, pH, quantity of biosorbent, and 

concentration of the model solution. 
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