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Abstract: In recent years, the medicinal potential of marine organisms has attracted increasing
attention. This is due to their immense diversity and adaptation to unique ecological niches that has
led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers
are an abundant source of novel proteins and chemical entities that can be used for drug discovery.
Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical
applications such as the identification of growth inducing proteins that can be used for bone
regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the
functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers
themselves remain an untapped source of proteins for the development of innovative pharmaceuticals.
Following an overview of the current knowledge of skeletal organic matrix proteins from marine
calcifiers, this review will focus on various aspects of marine skeletal protein research including
sources, biosynthesis, structures, and possible strategies for chemical or physical modification.
Special attention will be given to potential medical applications and recent discoveries of skeletal
proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce
an effective protocol for sample preparation and protein purification that includes isolation technology
for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae
are a widespread but poorly studied group of shallow marine calcifiers that have great potential for
marine drug discovery.

Keywords: biomineralization; coralline algae; chitin; collagen; marine calcifiers; marine skeletal
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1. Introduction

Skeletal proteins and polysaccharides in marine organisms are present as complex mixtures
within organic matrices. The organic matrices of marine calcifiers, for example, are a potentially
untapped source of skeletal proteins [1–6]. Organic matrices have the advantage of being naturally
produced, retaining the native, functional conformation of the original proteins. Moreover, a significant
number of calcifying marine invertebrates produce polysaccharides within their extracellular
matrices and connective tissues [7,8] that have molecular structures and functions similar to human
versions [1,6]. Polysaccharides derived from marine invertebrate extracellular matrices encompass an
enormous variety of structures and should be considered as an extraordinary source of biochemical
diversity. However, they remain largely under-exploited with respect their potential in medical
applications [9,10]. Macromolecules derived from marine calcifiers that hold promise for biomedical
applications include a broad range of protein and sugar (carbohydrates and lectins) molecules that
participate in signaling, development, regeneration, and metabolism.
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It is has been hypothesized that marine skeletal proteins that function in biomineral growth,
maintenance, and repair could facilitate tissue engineering. For example, some of these proteins with
human physiological activity can help accelerate lab-based bone morphogenesis and increase bone
volumes with efficacies equivalent to currently used recombinant proteins [1]. Proteins with potential
for bone repair and drug discovery, extracted either from naturally occurring skeletal organic matrices
or derived from cultivated tissues, can be identified and isolated using chromatography, cell assays and
proteomic methods [1,9,11]. Proteomics is a high-throughput analytical method for rapidly identifying
known or unknown proteins in complex mixtures [5]. If purification methods can be established
for skeletal proteins derived from calcifying marine organisms, researchers in the emerging fields of
proteomics and medicinal chemistry could utilize these methods for subsequent drug discovery and,
as a more specific example, bone repair. Currently, primary sequences of different skeletal proteins
from marine organisms are available in public databases, and this information can be used to infer the
biological function and origin of individual proteins and provide clues related to the mechanisms of
formation of any skeleton.

Pharmaceutical industries now accept the world’s oceans as a major frontier for medical research.
The emergence of this relatively new area of scientific exploration has been of enormous interest to the
popular and scientific press, and several review publications have appeared on the topic [1,9,11]. In the
review presented here, we focus on recent progress in the discovery and production of new marine
skeletal proteins and polysaccharides of pharmaceutical interest. We also introduce a new technique for
purifying compounds derived from the skeletal organic matrices of coralline algae that will be useful
for proteomic analysis and purifying biopolymers such as chitin and collagen. Overall, this review
demonstrates the existence of unique biomineralization-related skeletal proteins in marine calcifiers
that hold promise for drug development, and moreover, provides the first description of proteinaceous
components in coralline red algae.

2. Applications and Modification Strategies of Marine Skeletal Proteins for Drug Discovery

Marine calcifiers (shallow, mid-shelf, and deep sea) are widespread in oceans globally. However,
due to the lack of effective extraction/analytical methods, the applications of these potential resources
for drugs are comparatively fewer than for other marine organisms. Recently, we perceived protein
induced crystallization [2,7,8,12,13], which showed potential crystal design and growth that could help
medicinal chemistry in drug design. Our primary chemical proteomic results from soft coral revealed
a number of molecules with high concentrations [5,14]. In addition, some proteins extracted from soft
corals are homologous with many human proteins, making them useful due to their similarity [15,16].
The information with respect to the close homology of soft coral and human proteins provides us
functional and evolutionary clues on the structure and functions of their sequences. These homologous
proteins could lead to possible drug discovery and form a potential resource for biotechnological
research. It is our hope that further sequence studies of these materials will contribute to a better
understanding of structural proteins in soft corals. Bioassay-directed fractionation of octocoral
Cespitularia hypotentaculata, which has a novel endoskeleton, yielded the diterpene cespitularin
A–D, the norditerpene cespitularin E and three other diterpenes, cespitularin F–H [17]. Two new
dolabellane-type diterpenoids and the known diterpene clavenone [18] were isolated from a octocoral
Clavularia species [19]. A saponin compound was isolated from the octocoral Lobophytum spp.,
which was collected from Hainan Island, China.

Among the marine calcifiers, very few scleractinian corals were investigated. In a recent review,
the authors discussed the potential of scleractinian coral, which has therapeutic characteristics,
including anti-inflammatory properties, anticancer properties, bone repair, and neurological benefits [6].
Research on the scleractinian coral Montipora spp. from the republic of Korea (South Korea)
found three diacetylenes (1, 4, 6). One of these was a potent cytotoxin with respect to a range
of tumor cell lines [20]. The authors tested the extracted compounds against a panel of human
cancer cell lines and the structures have been interpreted on the basis of spectroscopic evidence.
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These three compounds showed a structural activity profile to similar to those previously reported [21].
The results showed that the compound 6 with b-hydroxy ketone functionality has strong cytotoxic
properties and Methyl montiporate C (1) was active only against a skin cancer cell line, while
compound 4 was moderately active. Extracts from the calcifying octocorals Pseudopterogorgia elizabethae
(which contains pseudopterosins) and Eunicea fusca (which contains fucoside-A) can be used in
the cosmetic industry [22]. Similarly, coral (endoskeletons and exoskeletons) and coralline algal
skeletons could be used for cosmetics as both contain a high concentration of organic matrix
components [7,13,23].

In recent years, numerous applications have been proposed for chitosan-based delivery
devices [24–26], however, most of these were unrelated to marine calcifiers. Chitosan is a copolymer of
β-(1-4)-linked 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose, obtained by
deacethylation of the naturally occurring chitin. Chitin was firstly extracted from the exoskeleton of
marine organisms, mainly crabs and shrimps, as described by Burrows [27]. This polymer has also
recently been extracted from coralline algae [7], which opened the doors for possible applications
of these biomaterials using a group of marine calcifers which are found in shallow water and are
easy-to-collect, abundant and widespread. The major applications of chitosan are for biomaterials,
pharmaceuticals, foodstuff treatment (e.g., flocculation, clarification, etc., due to its efficient interaction
with other polyelectrolytes), cosmetics, metal ion sequestration, and agriculture [28–31]. Development of
chitosan chemistry has relevant biomedical applications, particularly in the field of drug delivery [32].
While chitin is insoluble in most common solvents, chitosan can be readily turned into fibers as
well as films, or triggered in a variety of micromorphologies from its acidic aqueous solutions.
Protein-polysaccharides play an important role in biomedical and pharmaceutical applications.
However, at times the properties of such biomaterials do not meet the needs for exact applications.
As a result, approaches that chemically or physically modify their structure and, thus, physical-chemical
properties are increasingly gaining interest [33,34]. With respect to the polysaccharides’ chitin and
chitosan, it is possible to target the reaction using sulfur trioxide-pyridine at two sites or at only
one specific site, following different pathways of synthesis [35]. Great efforts have thus focused
on the progress of efficient modification reactions in well-controlled conditions under tolerable
temperatures [35]. For example, modification reactions of water-soluble chitin can be conducted
in aqueous solutions or in organic solvents in an engorged state under mild conditions, and selective
N-acetylation [35]. Some significant chemical reactions of acylation, alkylation, Schiff base formation
and reductive N-alkylation, carboxyalkylation, N-phthaloylation are well described [35].

3. A Promising Future for Marine Calcifiers in Drug Discovery

Marine resources such as coral, mollusk and coralline algae could be a major source of medicines
over the next decades. It is estimated that marine ecosystems, such as those found in coral reefs or at
a deep sea level have greater biological diversity than those of tropical rain forests. However, as with
tropical rain forests, coral reefs represent considerable untouched potential in the science of medicine.

At present, marine calcifier collection and drug appraisal occurs successfully. However, there is
no question that these resources are inadequate and it is possible that collectable marine organisms will
be almost completely explored within the next 20 years. There is still a doubt as to where scientists will
turn in order to ensure a continuing flow of new medicines. The solution is difficult, however drugs
can now be developed using many methods such as computer-aided design, combinatorial synthesis
and proteomics. The chemical multiplicity of marine ecosystems, from simple to complex peptide
and protein extraction, draws us in the direction of the discovery of new marine natural products in
various therapeutic areas such as cancer, inflammation, microbial infections, and various other deadly
diseases [36]. Cancer is the biggest challenge of the current century, and marine calcifying organisms
show new promise in fighting against this and other dangerous diseases.
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4. A Novel Approach to Isolation, Purification and Characterization of Marine Skeletal Proteins

Isolation and purification of skeletal proteins from marine calcifiers are complex because of
the potential for contamination of the soft tissues and the high sensitivity of organic matrices to
handling. However, successfully purified skeletal proteins from several groups of marine calcifiers
have recently emerged [4,5,14,22,23,37]. The overview concerning marine skeletal proteins presented
above allows us to understand some newly developed techniques [5,12,14–16,23,38–40] as well as
useful methods for isolating and purifying skeletal proteins and proteomic analysis. Among marine
calcifiers, we recently investigated coralline red algae, which has specific biological characteristics [7]
and contains high concentrations of soluble organic matrix (SOM) and insoluble organic matrix (IOM)
fractions. High concentrations of both chitin and collagen biopolymers are present in SOM and IOM
(Figure 1). Coralline algal concentrations of SOM (0.9%) and IOM (4.5%) are significantly higher
than those of other skeletal marine calcifiers such as octocorals, with SOM and IOM concentrations
of 0.03% and 0.05%, respectively [5,13,15]. The highly concentrated biopolymers present in skeletal
organic matrices open up the possibility for future drug development, because these two polymers are
frequently utilized in drug design [24,29–31,41–46].
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Figure 1. Identification of chitin and collagen in algal skeletal protein-polysaccharides complexes.
Structural comparison of FTIR spectra between organic matrix fractions (soluble organic matrix (SOM)
and insoluble organic matrix (IOM)) and bulk skeletal powder. Graphs for SOM, IOM fractions and
bulk skeletal powder are indicated. Different colored boxes in the spectra indicate involvement of
molecules in SOM and IOM fractions in forming skeletal structure in coralline algal calcification system.
(Reproduced from Scientific Reports, Rahman and Halfar 2014 [7]).

Detailed geochemical studies of coralline algae [47–51] provide a broad spectrum of
environmental and structural background information. However, there is a lack of information on
the protein-polysaccharide complex in the coralline algal skeleton, which plays a key role in the
regulation of biocalcification [7] and may contain prospective biomaterials for drug development.
Hence, we have developed a useful technique from sample preparation to protein isolation for
the Sub-Arctic coralline alga Clathromorphum compactum (Figure 2, see Ref. [7] for details) using
recently developed analytical approaches for other marine calcifiers (Figure 2, References [5,12,23]).
We characterized the SOM-polysaccharide complex from its CaCO3 skeleton, which is involved in
the biocalcification process. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
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analysis [52] of the preparations [5,14,23] showed two bands of proteins with molecular masses of
250-kDa and 30-kDa (Figure 3A, lane 1 and 2). The protein with molecular masses of 30-kDa was
by far the most abundant protein, whereas the 250 kDa protein band was weak and somewhat
faint (Figure 3A, lane 2). Periodic acid-Schiff (PAS) staining was used to identify chitin associated
glycoproteins. Interestingly, the 250-kDa protein was identified with high abundance as the only
glycoprotein contained in the skeleton (Figure 3B, lane 1 and 2), even though it only appeared as
a weak band in Coomassie Brilliant Blue (CBB) staining solution (Figure 3A). Chitin is the main
component of the protein-polysaccharide complex of cell walls [7,53,54]), which is also composed of
glycoprotein [55]. Protein-polysaccharide complexes are also present in coralline algal cell structures [7].
Therefore, detection of a strong glycosylation protein in coralline algal skeletons reveals the presence
of highly abundant chitin. The chitin found in coralline alga has been recognized to be involved in the
calcification process [7] and this polymer is considered highly useful for drug design [24,29–31,41–46].
Our observations therefore strongly suggest that the skeletal matrix proteins in coralline alga are not
only a structural protein but also have potential for drug development.
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Figure 3. Electrophoretic analysis of skeletal matrix proteins extracted from the coralline red alga
C. compactum. (A) SDS-PAGE fractionation with Coomassie Brilliant Blue (CBB) staining after
purification of the skeletal proteins. Lane 1 and 2 indicate purified skeletal proteins. Arrows indicate
protein bands; (B) SDS-PAGE gel with Periodic Acid-Schiff (PAS) staining to identify glycoprotein in
skeletal matrix proteins of C. compactum. Lane 1 and 2, a strong abundant chitin associated glycoprotein
was identified (indicated by arrow) by periodic Acid-Schiff staining. An eluate (derived from 5 g of
algal skeleton) was run on 12% polyacrylamide gel M, protein marker. The Precision Plus SDS-PAGE
standard (Bio-Rad) was used as protein marker for electrophoresis.

5. Conclusions

In this brief review, recent advances in applications of protein-polysaccharides of marine calcifiers
in the medical and pharmaceutical fields have been discussed. The results demonstrate the potential
for marine calcifiers to generate new drugs. Understanding the proteinaceous components of marine
calcifiers is an important step toward advancing the science of marine medicinal chemistry. Among the
different sources of polysaccharides, algal polysaccharides such as chitin and collagen could play an
important role in future development of tissue engineering, bone regeneration, and much more. In light
of these emerging findings, in the near future established techniques may also be potentially useful
for isolating skeletal proteins from similar marine calcifiers for drug discovery. As a discovery-driven
science, the techniques discussed here allow researcher to identify candidate proteins for drug
discovery and identify unknowns without missing unanticipated interactions. These techniques
can be employed to dramatically improve the range of applications within the field of marine drug
discovery. Since the marine realm consists of diverse ecosystems and matrices in which these proteins
reside, the development of effective methods for accessing proteins will be a continuing challenge in
future years.
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