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Abstract: Sepia ink polysaccharide (SIP) isolated from squid and cuttlefish ink is a kind of acid
mucopolysaccharide that has been identified in three types of primary structures from squid
(Illex argentinus and Ommastrephes bartrami), cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink.
Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated
its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer
treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the
current findings on SIP, we have summarized four topics in this review, including: chemopreventive,
antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative
closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and
thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to
chemotherapeutic agents.
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1. Introduction

Sepia ink, a black suspension of melanin granules, is a traditional Chinese medicine listed in the
Compendium of Materia Medica compiled by Shizhen Li, a famous doctor at the time of the Ming Dynasty,
and has been used in Asia for millennia [1]. The ancient medicine book records the treatment efficacies
on heart pain and haemostasis, especially gynaecological haemostasis [1]. Based on the plentiful findings
in the latest two decades, the dark ink has been proved useful and to be a kind of multifunctional
bioactive marine substance as antioxidant [1–8], anti-inflammatory [9,10], anti-ulcerogenic [10,11],
anti-retroviral [12], anti-hypertensive [13], antimicrobial [14–17], and anti-radiation reagent [18], and
to have anticancer properties [9,17,19–21], as well as haematopoietic [1,18], immunoregulatory [1,4,7],
procoagulant [22] and chemoprophylactic activities [1,5–8]. Sepia ink is a mixture secreted from two
glands: the ink gland in the ink sac, and a mucus-producing gland that is a poorly understood
funnel organ [23]. The ink contains melanin, proteins, peptidoglycans, amino acids, lipid, metals,
tetrodotoxin, etc. [1,23]. The peptidoglycans are composed of sepia ink polysaccharide (SIP) and
oligopeptide (SIO) [23]. SIPs derived from ink of different cuttlefishes and squids have distinct primary
structures. To date, only one kind of SIO has been characterized, and this is a tripeptide consisting
of glutamine (Gln), proline (Pro) and lysine (Lys), the peptide chain is N-Gln-Pro-Lys-C derived from
Sepia esculenta ink [21].

The biological functions of melanin, proteins, amino acids, SIO, and metals in the ink have been
investigated by various researchers [23]. According to the published work, in contrast, SIP has
undoubtedly attracted more attention. The polysaccharide is a glycosaminoglycan that can be
absorbed rapidly by the host gastrointestinal tract, and its content in serum can reach a peak at
1 h after gavage [24]. Reports have outlined the activities of this marine polysaccharide. In this paper,
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the biological properties based on chemopreventive, antineoplastic and chemosensitive effects, the
molecular mechanisms involved, and the molecular characteristics of SIPs have been summarized.

2. Molecular Characteristics of SIPs

As shown in Table 1, the polysaccharide from the ink of the squid Illex argentinus was the
first known SIP that was reported by Takaya et al. in 1994 [25]. The fucose-rich glycosaminoglycan
is composed by equimolar ratios of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc) and
fucose (Fuc). Its primary structure was initially determined to have a linear repeating structure of
(-6GalNAcα1-3GlcAβ1-3Fucα1-)n [25], but this was amended to (-3GlcAβ1-4(GalNAcα1-3)Fucα1-)n

by the discoverers themselves in their next work [26]. The main chain of the polysaccharide was a
repeating unit of di-saccharide, GlcA-Fuc, branched at Fuc H-3 by GalNAc [26]. Interestingly, the SIP’s
primary structure is identical to another SIP derived from squid Ommastrephes bartrami ink that was
reported by Chen et al. [27].

Apart from the two kinds of SIPs from squids, SIPs from cuttlefish have been reported in recent
years. A heteropolysaccharide was isolated from cuttlefish Sepiella maindroni ink using enzymolysis,
anion-exchange, and gel-permeation chromatography [28]. This SIP contained GlcA, mannose (Man),
GalNAc, and Fuc in a molar ratio of 1:1:2:2. Its primary structure was determined to comprise a main chain
composed of a repeating unit of (-Fuc-Fuc-GalNAc-Man-GalNAc-)n and a branch of GlcA at Man H-3;
the structural characteristic was (-4Fucβ1-4Fucβ1-4GalNAcα1-6(GlcAα1-3)Manα1-4GalNAcα1-)n,
which differentiates it from squid ink polysaccharides.

Recently, a novel SIP was isolated from the ink of cuttlefish Sepia esculenta in our laboratory [29].
This polysaccharide has a unique primary structure mainly composed of galactosamine (GalN)
and arabinose (Ara) in an approximate molar ratio of 1:1. The two monosaccharides account for
81.72% of the total monosaccharide mass. This SIP also contains small amounts of Fuc (9.00%), xylose
(Xyl, 4.32%), Man (0.09%), glucosamine (GlcN, 1.35%), GlcA (1.98%), and galacturonic acid (GalA,
1.53%). The detailed molecular structure of this SIP will be revealed in a future report.

Table 1. Molecular characteristics of SIPs.

Species Monosaccharides
(Molar Ratio) Primary Structure Sulphate (Molar Ratio:

Sulphate/Monsaccharides) Literature

Illex argentinus GlcA, GalNAc, Fuc
(1:1:1)

(-3GlcAβ1-4(GalNAcα1-3)Fucα1-)n
1/3 [25,26]

Ommastrephes bartrami no [27]

Sepiella maindroni Fuc, GalNAc, GlcA, Man
(2:2:1:1)

(-4Fucβ1-4Fucβ1-4GalNAcα1-6
(GlcAα1-3)Manα1-4GalNAcα1-)n

unknown [28]

Sepia esculenta GalN, Ara, Fuc (5:5:1) unknown unknown [29]

To date, a great number of bioactive polysaccharides have been characterized from marine
organisms, including marine animals, plants, and microorganisms. Most of these reports are focused
on polysaccharides from marine animals and plants. The published marine plant origin carbohydrates
mainly include marine algae saccharides, such as alginates, carrageenans, and fucoidans. Chitosans,
hyaluronans and chondroitin sulphates are the main polysaccharides of marine animals, and have been
studied for several decades. Table 2 indicates that these polysaccharides, which have unique molecular
characteristics, possess biological activities and action mechanisms [30–32]. Obviously, SIP is a different
polysaccharide compared with other marine origin polysaccharides. Based on structure and function
observations, SIP possesses specific activities that differ from the well-studied marine polysaccharides.
Therefore, the following section reviews research progress of SIP properties in recent years.
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Table 2. Molecular characteristics and properties of some marine polysaccharides [30–32].

Species Polysaccharides Monosaccharides Properties

Marine plants

alginate L-guluronate,
D-mannuronate antibacterial, tissue regeneration

carrageenan D-galactose,
D/L-galactose

anticoagulant, antitumour,
immunomodulatory, antihyperlipidemic,

antioxidant, antibacterial, antifungal, antiviral

fucoidan L-fucose antitumour, anticoagulant,
anti-adhensive,‘antiviral

Marine animals

chitosan D-glucosamine antimicrobial, antitumour, anti-inflammatory

chondroitin sulphate glucuronic,
N-acetyl-galactosamine

Improving function and elasticity of the
articular cartilage, hemostasis and

anti-inflammation, regulation of cell
development, cell adhesion, cell proliferation,

cell differentiation, anticoagulation

hyaluronan N-acetyl-D-glucosamine,
D-glucuronic acid

tissue regeneration, cell prolifernation, cell
differentiation, cell migration

3. Biological Activities of SIPs

SIP has been confirmed to have chemoprevention, antitumour, chemosensitization and anticoagulation
activities. This section summarizes the properties listed in Table 3.

Table 3. Biological activities of SIPs.

Species Sulfation Properties Targets Literature

Illex argentinus no no
antitumouractivity Meth-A [33]

Ommastrephes bartrami
no chemoprevention intestinal tract (mice) [34–40]

yes antitumour HepG2 [41]
anticoagulant blood (in vitro experiment) [42]

Sepiella maindroni yes antitumour SKOV-3, KB, HT-29, S180, B16F10 [43–47]

Sepia esculenta no chemoprevention testis, ovary, spleen, kidney, liver,
lung, heart, bone marrow (mice) [29,48–56]

antitumour B16F10, MDA-MB-231 [57,58]

3.1. Chemoprevention

3.1.1. Protection of the Reproductive System

With increasing incidence and mortality rates, cancer is the leading cause of death in China and
is a major public health problem. Because of its large population, China’s cancer cases constitute
almost 22% of global new cancer cases and close to 27% of global cancer deaths [59]. Furthermore,
cancers are becoming more likely to be found in younger patients, resulting in increasing numbers
of cancer patients of childbearing age. Since chemotherapy is still a major therapeutic method for
cancer, anticancer agents exerting toxic effects on the reproductive system in patients of childbearing
age is almost inevitable, and can potentially lead to damage and consequent infertility. Therefore,
screening substances with chemopreventive properties in order to attenuate the negative effects
of chemotherapeutic drugs is urgent for the treatment of the increasing number of cancer cases of
childbearing age.

SIP has been verified to have chemoprophylactic actions on the reproductive system [29,48–53].
When male mice exposed to cyclophosphamide were administered SIP, the abnormal rates of their
sperm declined, and the foetal abnormalities in female mice mated with them also declined, with total
foetal count and average foetal count increasing [48].

The toxicity mechanisms of cyclophosphamide are complicated. Drug-induced oxidative stress
and DNA strand breakage are two critical causes [60–64]. Cyclophosphamide-exposed mice/rats
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showed disruption of testicular antioxidant capacity and histopathologic changes through suppression
of the nuclear factor erythroid 2 related factor 2 (Nrf2)/antioxidant response element (ARE) signalling
pathway [48–52,60–62]; however, testicular functional disorders of the chemotherapeutic model
animals were prevented by SIP via activation of the antioxidant signalling pathway [48–52]. In addition,
SIP can prevent animals from cyclophosphamide-mediated mutation in vivo and H2O2/UV-induced
DNA strand break in vitro [28,65]. The testicular cells of cyclophosphamide-exposed mice,
including spermatogonia, Sertoli cells, and Leydig cells, were protected by SIP via repression
of cyclophosphamide-induced autophagy-associated cell death and apoptosis; the mechanisms
involved p38 mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/Akt signalling
pathways [51–53]. Similarly, for cyclophosphamide-mediated ovarian failure, SIP also successfully
inhibited follicle deletion and granule cell disruption by repressing cyclophosphamide-induced
autophagy-associated cell death and apoptosis via regulation of p38 mitogen-activated protein kinase
and PI3K/Akt pathways, resulting in functional rescue of the ovaries of cyclophosphamide-exposed
mice [29]. These data show that SIP can prevent mice from reproductive system damage caused by
cyclophosphamide-associated toxicities.

3.1.2. Protection of Intestinal Tract

Cyclophosphamide-mediated augmentation of intestinal pathogenic bacterial counts and
intestinal permeability was found to have a negative effect on cancer patients. Intestinal imbalance
and consequent infections were consequences of the immune system disruption resulting from
chemotherapy [66], and can be partly attributed to a decrease in immunoglobulin A (IgA) production
due to the anticancer agent-induced reduction of IgA-producing cells [67]. Tang et al. found that,
in cyclophosphamide-exposed mice, SIP could recover the balance of intestinal microflora by blocking
the anticancer agent-mediated reduction of the quantity of probiotic Bifidobacterium [34]. Intestinal
microbiota promote development and regulation of the acquired mucosal immune system [68,69]. As an
important element of the intestinal mucosal immune system, under exposure to a chemotherapeutic
agent, IgA-producing cell reduction is responsible for the imbalance in intestinal microflora. In one study,
SIP promoted the expression of IL-6, IL-10, and TNF-α and up-regulated the expression of IgA J chain
gene in IgA-producing cells and pIgR gene in epithelial cells. Meanwhile, SIP increased the expression
of unfolded protein response effecters XBP-1s and Bip to accelerate IgA secretion. As a result, the IgA
content in the intestinal tract of mice exposed to SIP was elevated [35]. A further investigation with
high-throughput sequencing analysis revealed that SIPs altered the imbalance of the gut microbial ecology
caused by cyclophosphamide; amounts of Ruminococcus, Bilophila, Oscillospira, Dorea and, especially,
Mucispirillum were reduced, resulting in the repression of early disruption of the colonic surface mucus
layer and an increase in the risk of inflammatory disorders [36].

The intestinal epithelium is a vital barrier contributing to preventing infection and to innate
immunity, and maintaining its integrity is necessary for normal intestinal function and a healthy body.
However, maintaining the integrity of the intestinal mucosa is almost impossible under exposure
to chemotherapeutic drugs. Chemotherapy-induced disruption of intestinal barrier function has
been confirmed [68,69]. The goblet cells, Paneth cells, and epithelial junctions (tight junctions and
adherent junctions) are responsible for the integrity of the barrier, but these three important elements
can be destroyed by the chemotherapeutic drug cyclophosphamide [37–40]. As a type of major
epithelial cell in the small intestine, goblet cells provide first-line protection for the host against
possible pathogens, which is an important part of the innate mucosal immune system. SIPs are capable
of increasing quantities of goblet cells in mice to express more mucins, such as Cyto18, avoiding
pathogens penetrating or colonising in the intestinal mucosa, and rescuing mucosal immunity of
cyclophosphamide-treated mice [37]. Additionally, Paneth cells, another intestinal epithelial cell
contributing to innate immunity by secreting antimicrobial proteins onto the mucosal surface, can be
promoted by SIP to express antimicrobial proteins, including lysozyme, angiogenin-4, defensin alpha
5, and type-2 secretory phospholipase. The mechanisms depend on the relatively highly developed
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endoplasmic reticulum structure, not on increases in the quantity of endoplasmic reticulum, which is
associated with the SIP-activated, IRE-1 mediated, XBP-1s pathway [38]. In addition, chemotherapy
damages epithelial junctions and destroys the intestinal barrier, resulting in disruption of the innate
immune system and consequent infections, and chemotherapeutic mucositis. Zuo et al. discovered
that SIP effectively improves expression of occludin, zonulae occluden 1/2/3, claudin, cingulin, and
E-cadherin genes, stabilizing tight junctions and adherent junctions, which was helpful for protecting
immune function of intestinal mucosa in mice exposed to chemotherapeutic drugs [39].

Histopathological observation showed that mice treated with SIP have longer small intestinal villi,
deeper crypts, and a larger ratio of villus height/crypt depth compared with cyclophosphamide-treated
mice [40]. Moreover, SIP-treated mice have stronger antioxidant capacity in the intestinal tissue when
compared with model mice [40].

3.1.3. Protection of Other Tissues/Organs

Apart from the reproductive system and intestinal tract, chemoprevention of some other
organs/tissues by SIP was also investigated in our laboratory, including liver, kidney, heart, spleen,
lung, and bone marrow. SIP repressed cyclophosphamide-induced alterations of biochemistry
indicators in the serum and tissues/organs of model animals, such as relative masses of liver and
spleen, activities of glutamic-pyruvic transamine, glutamic-oxalacetic transaminease, catalase, lactic
dehydrogenase, and creatine kinase in serum, antioxidant capacity of liver and heart, serum urea
nitrogen content, peripheral blood profile including quantities of erythrocytes, leukocytes, and platelets,
and haemoglobin content, as well as the DNA content in bone marrow [54–56].

3.2. Antitumour Activities

Initially, SIP’s antitumour activity was investigated by Takaya et al. in 1994 [33]. Their results
showed that SIP had no inhibitory activity on Meth-A fibrosarcoma cells transplanted into BALB/c
mice, but peptidoglycan had. Therefore, the researchers deduced that the antitumour activity was
attributable to the complex of SIP and other components (for example, peptide or melanin) [33].
However, in the last decade, many reports have verified the antitumour effects of SIP on several types
of tumours.

Unmodified naturally occurring SIPs were found to be able to inhibit both melanoma cell
B16F10 [57] and human adenocarcinoma cell line MDA-MB-231 [58]. Growth and proliferation of
B16F10 were repressed, tyrosinase activity and melanin production were also effectively reduced.
Similarly, proliferation and migration of MDA-MB-231 were significantly blocked [58]. It is well known
that polysaccharide sulphates have stronger antitumour properties. Now, several studies have also
reported anticancer activities of sulphated SIP (S-SIP).

A S-SIP isolated by Chen et al. inhibited invasion and migration, but not proliferation, of human
hepatocellular liver carcinoma cell line HepG2, and inhibited angiogenesis in a chick embryo
chorioallantoic membrane model [41].

Another S-SIP decreased MMP-2 expression of SKOV-3 and human umbilical vein vascular
endothelial cells ECV304, leading to inhibition of SKOV-3 cell penetration and ECV304 cell
migration [43]. The SIP inhibits proliferation, migration, invasion, and MMP-2 expression of human
epidermoid carcinoma cell line KB by inhibiting the EGFR/Akt/p38 MAPK/MMP-2 signalling
pathway [44]. Furthermore, the sulphated SIP combines with the cell membrane of human ovarian
cancer cell line SKOV-3, human colorectal adenocarcinoma cell line HT-29, and mouse fibroblast
cell line L929 cells. In SKOV-3 cells, SIP binds to epidermal growth factor receptor (EGFR) and
inhibits EGF-induced expression and activation of EGFR as well as cell migration. Consequently,
the SIP suppressed EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signalling pathways to inhibit
migration, invasion, and MMP-2 expression of SKOV-3 cells [45].

Additionally, in vivo data showed that the derivative SIP repressed tumour growth and enhanced
immune function in S180-bearing mice, also induced SKOV-3 cells apoptosis in vivo and in vitro [46].
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Further investigation indicated that sulphated SIP decreased melanoma cell B16F10 pulmonary
metastasis in mice models, and down-regulated expression of the intercellular adhesion molecule
1 (ICAM-1) and basic fibroblast growth factor (bFGF) in lung metastasis nodules. Furthermore,
neovascularisation was suppressed in chick chorioallantoic membrane exposed to S-SIP [46]. In vitro
experiments exhibited an expression reduction of ICAM-1 and bFGF in SKOV-3 and EA.hy926 cells,
respectively [46]. These results suggested that S-SIP down-regulated the expression of ICAM-1 and
bFGF to inhibit tumour adhesion and angiogenesis. Consequently, invasion and migration of tumour
cells were restrained.

3.3. Chemosensitization

Combination treatment is frequently used in cancer treatment to reduce drug resistance, alleviate
adverse effects, and enhance anticancer efficacy.

Currently, only two papers have reported chemosensitization by SIP. Zong et al. found that
sulphated SIP increased the killing effects of cyclophosphamide on tumours and reduced the toxicity
of the chemotherapy drug on the thymus in S180-bearing mice [47]. Our previous work indicated that
SIP enhanced inhibition of proliferation and migration of MDA-MB-231 cells by cisplatin [58].

3.4. Anticoagulant and Procoagulant Activities

It has now been confirmed that chemotherapy induces hypercoagulability of blood, and consequent
thrombus formation is a critical cause of cancer death, so a potential anticancer agent should possess
anticoagulation properties.

Ancient Chinese medicine used sepia ink as a coagulant drug for internal haemorrhage, especially
as a coagulant for gynaecology. Modern medicine, directly or indirectly, has noted the coagulant
property of the ink [22,70]. Although there is no direct evidence, to date, indicating the coagulant
activity of SIP, a report of the haemostatic effects of a SIP-chitosan hybrid haemostatic sponge implies
that natural SIP might possess procoagulant activity [71]; however, the confusion should be removed
as early as possible by future investigation.

In contrast, a paper showed anticoagulant activity of SIP. Chen et al. prepared a derivative SIP
that was sulphated chemically in pyridine-sulphur-trioxide complex in a dimethyl sulphoxide system
or triethylamine pyridine-sulphur-trioxide complex in a dimethyl sulphoxide system. The sulphation
mainly occurred at the 4,6-positions of GalNAc, the active primary structure of the sulphated SIP
was identified to be (-GlcAβ1-4(4,6-SO4-GalNAcα1-3)Fucα1-)n. The sulphated SIP in vitro increased
partial thromboplastin time and prothrombin time, suggesting that the derivative SIP could play
an anticoagulation role by inhibiting endogenous and exogenous blood coagulation processes.
The sulphated SIP effectively suppressed activities of clotting factors, FIIa and FXa, mediated by
antithrombin III or heparin cofactor II [42].

Other reports have shown that the sulphated group in polysaccharides has an important function
with regard to anticoagulant activity; sulphation can promote anticoagulation of a non-sulphated
group polysaccharide, and the degree of sulphation is positively correlated to anticoagulation [42,72].
Recently reported natural SIPs include acid mucopolysaccharides with or without a small quantity
of sulphated groups. The low sulphated group content of polysaccharides has been deduced to
have procoagulant activity, but an experiment has shown that sulphation-modified SIP exhibited
anticoagulant activity [42], which implies that sulphated SIP is more suitable for developing an
ancillary antitumour drug for cancer treatment.

4. Conclusions

This review summarized chemopreventive, antineoplastic, chemosensitive, and procoagulant/
anticoagulant properties of SIPs, as well as their molecular characteristics. Various SIPs with distinct
primary structures from different sepia inks share similar biological actions. The number of sulphated
groups is crucial to the coagulant actions of SIP, with low sulphated group content leading to
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procoagulation activities and high sulphated group content leading to anticoagulation activities.
The sulphated SIP may be an important bioactive marine substance, which could be developed as
a clinical antitumour agent or chemotherapy-supplementary functional food for application in the
clinical treatment of cancer.
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