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Abstract: Sea snakes have wide application prospects in medicine, health food and other fields.
Several novel polysaccharides were successfully obtained from the skin and the meat of a sea snake
(Lapemis curtus). The structures of polysaccharides LSP3 and LMP3, which were extracted and
purified from Lapemis curtus, were determined to be new and highly heterogenic glycosaminoglycans
(GAGs) by means of FT-IR, ESI-MS/MS and NMR. LSP3 is a hybrid dermatan sulfate (DS) and
composed of 48% 4-sulfated disaccharides (Di4S), 42% 6-sulfated disaccharides (Di6S) and 5%
disulfated disaccharides (Di2,6S), while LMP3 is a hybrid chondroitin sulfate (CS) and composed of
70% Di4S, 20% Di6S, and 8% Di2,6S. More importantly, LSP3 and LMP3 showed a strong scavenging
ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, iron (Fe2+) chelating activity and total
antioxidant capacity in vitro, especially LSP3, with high contents of uronic acid and sulfate, which
possessed a higher scavenging ability of DPPH radicals than other fractions. These data suggested
that the sea snake polysaccharides could be promising candidates for natural antioxidant ingredients.

Keywords: Lapemis curtus; glycosaminoglycans; chondroitin sulfate; dermatan sulfate; structural
characterization; antioxidant activities

1. Introduction

Glycosaminoglycans (GAGs) are polyanionic polysaccharides composed of amino sugar and
uronic acid, which are widely distributed in animals. According to the difference of disaccharide
composition and glycosidic bond, GAGs are generally divided into four groups, namely, chondroitin
sulfate and dermatan sulfate (CS/DS), keratan sulfate (KS), heparin and heparan sulfate (HP/HS),
and hyaluronic acid (HA) [1]. CS and DS have been confirmed to be closely related to inflammation,
immune response, cardiovascular disease, tumorigenesis, infection, wound repair and fibrosis, and
especially iduronic acid (IdoA), which influences multiple cellular properties [2].

Antioxidant activity is a focus of intensive scientific investigations because of the ever-increasing
demand of food and pharmaceutical industries to develop natural antioxidant compounds [3]. The
process of oxidative stress plays a major role in the development of chronic and degenerative illness,
such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, as well as cardiovascular
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and neurodegenerative diseases [4]. The human body can counteract oxidative stress by producing
antioxidants to protect cells from oxidation. Among these antioxidants, CS and DS have increasingly
attracted interest of many research groups [5].

Sea snakes are the largest group of marine reptiles that inhabit the tropical and subtropical waters
of the Indian and Pacific Oceans [6]. Sea snakes have wide application prospects in medicine, health
food and other fields. The oil in the viscera of the Erabu sea snake is used as a functional food in
Japan [7]. The current research on sea snakes mainly focuses on the snake venom, which is mainly
considered to be used in the treatment of infectious, hematological, inflammatory, cardiovascular,
and malignant diseases [8]. To the best of our knowledge, there has been no systematic study of sea
snake polysaccharides. In this study, several polysaccharides were extracted and purified from the
skin and meat of Lapemis curtus, and their physicochemical properties, structures, and antioxidant
activities were studied (Figure 1). The aim of this study is to provide a basis for further research and
development of sea snake polysaccharides.
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Figure 1. Experimental flowchart of Lapemis curtus polysacchloarides.
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2. Results and Discussion

2.1. Chemical Composition

Two crude polysaccharides (LSP and LMP) were obtained by enzymolysis extraction from the
skin and the meat of Lapemis curtus, respectively. LSP and LMP were further fractionated on a Q
Sepharose Fast Flow column (Figure 2), and three sub-fractions of LSP (LSP1, LSP2, and LSP3) and
three sub-fractions of LMP (LMP1, LMP2, and LMP3) were obtained. Physicochemical properties of
these polysaccharide sub-fractions were analyzed (as shown in Table 1). Non-sulfated polymers were
eluted by pure water and a low concentration of NaCl solution (0.4 mol/L), and sulfated polymers
were eluted by a high concentration of NaCl solution (2.0 mol/L), both from LSP and LMP. In addition,
the fractions eluted by a high concentration of NaCl solution possessed a higher content of uronic acid
and a lower content of protein than that of fractions eluted by pure water and a low concentration
of NaCl solution. LSP3 displayed a higher content of uronic acid and degree of sulfation than that
of LMP3.

Table 1. The chemical compositions of each fraction from Lapemis curtus. The total mole number
of unsaturated disaccharides of each sample was taken as 100% in disaccharide compositions. “-”
represents not detected.

Composition
Polysaccharides from Skin Polysaccharides from Meat

LSP1 LSP2 LSP3 LMP1 LMP2 LMP3

Uronic acid (%) 0.5 1.8 25.3 1.1 1.9 15.2
Total proteins (%) 48.3 46.0 19.2 42.4 63.8 12.3

Sulfated groups (%) 0.7 0.4 11.2 0.5 0.4 10.1
Molecular weight (kDa) 3.7 3.1 82.0 2.1 2.7 79.0

Monosaccharide (molar ratio)
Mannose 5.6 4.7 - 4.8 2.5 -

N-acetyl Glucosamine 12.6 17.2 1.8 18.1 13.8 2.0
Rhamnose - - - - - -

Glucuronic acid - 1.1 16.2 - - 12.3
Galacturonic acid - - - - - -

N-acetyl Galactosamine 1.1 1.6 30.1 2.3 1.5 15.9
Glucose 9.4 3.3 1.2 15.4 3.1 2.0

Galactose 22.9 14.6 10.8 19.9 8.8 8.8
Xylose - - 1.3 - - 1.5

Arabinose - - - 1.1 1.6 -
Fucose 1 1 1 1 1 1

Disaccharide (%)
∆Di0S 5.0 1.6
∆Di6S 42.2 20.0
∆Di4S 47.9 70.5

∆Di2,6S 4.9 8.0

Results of monosaccharide composition analysis showed that LSP1 and LMP1, LSP2 and LMP2
were mainly composed of mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and galactose
(Gal), with different molar ratios (Table 1). LSP3 and LMP3 were mainly composed of iduronic acid
(IdoA), glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc) and Gal (Figure 3). However, LSP3
contained a high content of IdoA, while LMP3 contained a high content of GlcA. Results of disaccharide
compositions analysis showed that LSP3 and LMP3 contained mainly ∆Di6S and ∆Di4S at a molar
ratio of 1:1.1 and 1:3.5, respectively (Table 1), that is to say, LSP3 possessed a higher content of ∆Di6S
and a lower content of ∆Di4S than that of LMP3. In addition, disulfated disaccharides (∆Di2,6S) was
detected in LSP3 and LMP3, and the contents of ∆Di2,6S were 4.9% and 8.0%, respectively.
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Figure 2. Isolation of the polysaccharides LSP and LMP. 
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Figure 3. Monosaccharide composition of LSP3 and LMP3. Chromatograms of the acid hydrolysates of
LSP3 and LMP3, which were hydrolyzed in 3 mol/L TFA for 3 h at 110 ◦C to ensure a high response
value of IdoA.

2.2. FT-IR Spectroscopy of LSP3 and LMP3

The FT-IR spectra of LSP3 and LMP3 were shown in Figure 4. The broad and intense absorption at
3389 cm−1 was attributed to the O–H stretching vibration. The characteristic C–H stretching vibration
of sugar ring was at 2936 cm−1. The signal at 1649 cm−1 was attributed to the H–O–H vibration. The
peak at 1412 cm−1 was assigned to the O–H in-plane bending vibration. The signal at 1055 cm−1 was
related to the C–O–C skeletal vibration. The signals at 1241 cm−1 and 840 cm−1 were attributed to the
stretching vibrations of S=O and C–O–S [9,10], respectively. The peak at 1549 cm−1 was assigned to
the N–H variable angle vibration. Therefore, it was concluded that LSP3 and LMP3 contain sulfate
groups and carboxyl groups, which are in accordance with the structural features of GAGs.



Mar. Drugs 2018, 16, 170 5 of 14
Mar. Drugs 2018, 16, x FOR PEER REVIEW  6 of 14 

 

84
0.
3
3

93
5.
5
4

10
55
.
68

12
41
.
8514

12
.
00

15
49
.
22

16
49
.
56

29
36
.
06

33
89
.
82

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

%透
过

率

 1000   2000   3000   4000  
波数 (cm-1)

Wavelength (cm-1)

%
T

ra
n

sm
it

ta
n

ce

LSP3

LMP3

 

Figure 4. The IR spectra of LSP3 and LMP3. 

2.3. ESI-MS Analysis of LSP3 and LMP3 

ESI-MS is a soft ionization technique commonly coupled with liquid chromatography for 

identification of oligosaccharides. As shown in Figure 5, the main deprotonated ion [M − H]− of LSP3 

was produced at m/z 458.06 in negative ESI-MS mode, which is in accordance with the structure of 

ΔHexA-GalNAc, with one sulfate group digested by chondroitinase ABC afterwards. In order to 

identify the substitution and the linkage of this fraction, the singly charged molecule ion [M − H]− 

m/z 458.06 was further selected as the precursor ion for ESI-MS/MS analysis. The ion m/z 282.03, 

produced from ΔDi6S cleavage, was assigned as Z1 from the reducing terminal. The ions m/z 342.05, 

m/z 300.04 and m/z 282.03, produced from ΔDi4S cleavage, were assigned as 0,2X1, Y1 and Z1 from the 

reducing terminal [11], respectively. The results showed that LSP3 contains mainly ΔDi6S and 

ΔDi4S, which are in close agreement with the analysis of disaccharide compositions. The ESI-MS 

spectrum of LMP3 is essentially identical to that of LSP3. 

201705115-HSP-2_170515154248 2017/5/15 15:58:20 HSP-2

RT: 0.00 - 2.52

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Time (min)

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

0.51

0.36
0.50

0.33

2.47

0.31

0.26

0.21
0.17

0.72 1.57 1.62 1.740.750.69 0.94 2.441.861.03 1.11 1.93 2.181.18 1.35 2.01 2.061.48 2.35

NL:

2.26E8

TIC  MS 

201705115

-HSP-

2_1705151

54248

201705115-HSP-2_170515154248 #52 RT: 0.50 AV: 1 NL: 3.04E6

T: FTMS - p ESI Full ms [185.00-2000.00]

200 250 300 350 400 450 500 550 600 650 700 750

m/z

0

20

40

60

80

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

458.06

302.16

339.23

642.73617.97388.20340.23 672.07 707.99 754.62571.98

ESI-MS

201705115-HSP-2_170515154248 2017/5/15 15:58:20 HSP-2

RT: 0.00 - 2.52

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Time (min)

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

0.51

0.36
0.50

0.33

2.47

0.31

0.26

0.21
0.17

0.72 1.57 1.62 1.740.750.69 0.94 2.441.861.03 1.11 1.93 2.181.18 1.35 2.01 2.061.48 2.35

NL:

2.26E8

TIC  MS 

201705115

-HSP-

2_1705151

54248

201705115-HSP-2_170515154248 #55-165 RT: 0.53-2.45 AV: 46 NL: 2.85E5

T: FTMS - p ESI Full ms2 458.00@cid20.00 [125.00-2000.00]

200 250 300 350 400 450 500 550 600 650

m/z

0

20

40

60

80

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

300.04

458.06

282.03

342.05

616.08
379.05 405.38 418.55 537.07476.07 510.73 634.09197.90

ESI-MS/MS

 

Figure 5. The ESI-MS and MS/MS spectra of LSP3. The green lines are arrow marks from the 

software system. 

Figure 4. The IR spectra of LSP3 and LMP3.

2.3. ESI-MS Analysis of LSP3 and LMP3

ESI-MS is a soft ionization technique commonly coupled with liquid chromatography for
identification of oligosaccharides. As shown in Figure 5, the main deprotonated ion [M − H]−

of LSP3 was produced at m/z 458.06 in negative ESI-MS mode, which is in accordance with the
structure of ∆HexA-GalNAc, with one sulfate group digested by chondroitinase ABC afterwards. In
order to identify the substitution and the linkage of this fraction, the singly charged molecule ion
[M − H]− m/z 458.06 was further selected as the precursor ion for ESI-MS/MS analysis. The ion
m/z 282.03, produced from ∆Di6S cleavage, was assigned as Z1 from the reducing terminal. The ions
m/z 342.05, m/z 300.04 and m/z 282.03, produced from ∆Di4S cleavage, were assigned as 0,2X1, Y1

and Z1 from the reducing terminal [11], respectively. The results showed that LSP3 contains mainly
∆Di6S and ∆Di4S, which are in close agreement with the analysis of disaccharide compositions. The
ESI-MS spectrum of LMP3 is essentially identical to that of LSP3.
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2.4. NMR Spectroscopy Analysis of LSP3 and LMP3

The structures of LSP3 and LMP3 were further elucidated by means of 1H-NMR and 13C-NMR
(Figure 6) spectroscopy. Take LMP3, for example: four major anomeric carbon signals at δ

103.35 ppm (A), 101.08 ppm (B), 103.13 ppm (C) and 101.68 ppm (D) were observed in the 13C-NMR
spectrum (Figure 6b), and four protons at δ 4.35 ppm (A), 4.44 ppm (B), 4.77 ppm (C) and 4.56 ppm (D)
were observed accordingly in the 1H-NMR spectrum. The presence of CS and DS units in the
structures of LMP3 were confirmed by two series of signals related to uronic acid (A, C) and
GalNAc (B, D) residues, as the previous report indicated [1]. A series of 2D-NMR (NOESY,
TOCSY, COSY, HSQC, HMBC) experiments allowed almost complete assignment of GlcA-GalNAc4S,
GlcA-GalNAc6S, IdoA-GalNAc4S and IdoA-GalNAc6S disaccharide fragments of LSP3 and LMP3
(as listed in Table 2) [1,12,13]. The signals of B(H1)-B(C1) (4.44 ppm/101.08 ppm) and D(H1)-D(C1)
(4.56 ppm/101.68 ppm) in the HSQC spectrum of LMP3 (Figure 6c) were attributed to GlcA-GalNAc4S
and IdoA-GalNAc4S disaccharides of LMP3, due to the different chemical environment for GalNAc
sugar ring. By calculating the signal intensities of C-1(A)/C-1(C), it was found that LSP3 and LMP3
contained GlcA and IdoA, with a molar ratio of 2.9:7.1 and 7.0:3.0, respectively. The structures of LSP3
and LMP3 were determined as CS/DS chains. LSP3 is a DS-rich GAG and LMP3 is a CS-rich GAG.
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Table 2. The 1H-NMR and 13C-NMR assignments of LSP3 and LMP3.

Signal/ppm H1 H2 H3 H4 H5 H6
Residue

(C1) (C2) (C3) (C4) (C5) (C6)

A →4)-β-GlcA-(1→ 4.35 3.27 3.47 3.66 3.57 -

→4)-β-GlcA-(1→3)-β-GalNAc4S-(1→(103.35) (72.31) (73.46) (80.18) (76.42) (174.27)

B →3)-β-GalNAc4S-(1→ 4.44 3.91 3.90 4.63 3.71 3.69
(101.08) (51.43) (75.38) (76.28) (74.45) (60.83)

C →4)-β-IdoA-(1→ 4.77 3.42 3.78 3.97 4.60 -

→4)-β-IdoA-(1→3)-β-GalNAc4S-(1→(103.13) (69.33) (71.46) (80.53) (69.72) (173.62)

D →3)-β-GalNAc4S-(1→ 4.56 3.93 3.84 4.55 3.71 3.69
(101.68) (51.76) (75.25) (76.09) (74.45) (60.83)

A′ →4)-β-GlcA-(1→ 4.40 3.16 3.50 3.59 3.56 -

→4)-β-GlcA-(1→3)-β-GalNAc6S-(1→(104.00) (72.29) (73.41) (81.20) (76.39) (174.27)

B′ →3)-β-GalNAc6S-(1→ 4.42 3.91 3.74 4.00 3.86 4.10
(101.27) (51.41) (74.50) (67.71) (72.46) (67.51)

C′ →4)-β-IdoA-(1→ 4.73 3.50 3.74 ND ND -

→4)-β-IdoA-(1→3)-β-GalNAc6S-(1→(102.98) (69.00) (70.85) ND ND (173.62)

D′ →3)-β-GalNAc6S-(1→ 4.50 3.93 3.75 4.03 ND 4.13
(101.68) (51.76) (80.21) (68.13) ND (67.90)



Mar. Drugs 2018, 16, 170 8 of 14

GAGs in marine animals are different to those of terrestrial organisms, mainly in terms of
molecular weight and sulfation pattern. CS extracted from squid possesses antiviral and anti-metastatic
activities. DS from sea squirts and hybrids CS/DS from sharks can promote the outgrowth of neurite,
and are useful for nerve regeneration [14]. CS and DS are complex molecules with potential impacts
on many biological systems, and it is important to consider the sulfation pattern and the size of the
molecules to better understand the structure/function relationships of CS/DS [15]. The structural
schematic representations of LSP3 and LMP3 were shown in Figure 7, based on the analysis of
disaccharide compositions, ESI-MS/MS and NMR. The structures of LSP3 and LMP3 are different in
sulfation patterns and molecule sizes compared with the structures of CS extracted from the cartilage
of different animal species [15]. LSP3 and LMP3 possessed higher molecular weight than the C4S,
bovine trachea (BT) and chicken sternum (Ch) of terrestrial organisms. Especially, LSP3 and LMP3
contain significant amounts of disulfated disaccharides (Di2,6S), which is only found in ocean animals,
like sharks and skates. Therefore, LSP3 and LMP3 are new structure types of GAGs, which might
display different functions.
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Figure 7. Schematic representation of the structure of LSP3, LMP3 and CS extracted from the cartilage
of bovine trachea (BT), chicken sternum (Ch) and skate (Sk). Two commercial preparations were also
used: C4S, from bovine trachea, and C6S, from shark cartilage [15].

2.5. Antioxidant Activity of Fractions

DPPH is a useful reagent to evaluate the free radical scavenging ability of hydrogen-donating
antioxidants, which can transfer hydrogen atoms or electrons to DPPH radicals. Iron is the most
abundant transition metal in biological systems and plays critical roles in redox systems. ABTS
[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical cation scavenging assay is an excellent
tool for determining the antioxidant activity of hydrogen-donating antioxidants and chain-breaking
antioxidants. The results showed that the DPPH radicals’ scavenging ability, ferrous chelating power
and total antioxidant capacity of each Lapemis curtus polysaccharides was concentration-dependent
(Figure 8), and all the fractions exhibited significant antioxidant activity, especially for LSP3.
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Figure 8. Antioxidant properties of polysaccharide sub-fractions from Lapemis curtus. (a) DPPH 
radical scavenging activities, (b) iron chelating effect, (c) 2,2′-azino-bis(3-ethylbenzothiazoline-6- 
sulfonic acid) (ABTS) radical scavenging activities of different samples. LSP1, LSP2 and LSP3, 
extracted from the skin of Lapemis curtus. LMP1, LMP2 and LMP3 extracted from the meat of Lapemis 
curtus. BHT, EDTA and Vc were used as positive controls. 
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Figure 8. Antioxidant properties of polysaccharide sub-fractions from Lapemis curtus. (a) DPPH radical
scavenging activities, (b) iron chelating effect, (c) 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) radical scavenging activities of different samples. LSP1, LSP2 and LSP3, extracted from the
skin of Lapemis curtus. LMP1, LMP2 and LMP3 extracted from the meat of Lapemis curtus. BHT, EDTA
and Vc were used as positive controls.

The fractions LSP1, LSP2, LSP3 from the skin of Lapemis curtus exhibited stronger scavenging
activity than that of fractions LMP1, LMP2, LMP3 from the meat of Lapemis curtus, which eluted
at the same concentration of NaCl on a Q-Sepharose Fast Flow column. Especially, the scavenging
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ability of LSP3 on DPPH radicals was up to 65.8% at 6.4 mg/mL (Figure 8a), which was similar to
that of Butylated hydroxytoluene (BHT). The fractions LMP1, LMP2 from the meat of Lapemis curtus
exhibited higher chelating activities than that of fractions LSP1, LSP2 from the skin of Lapemis curtus.
LMP2 exhibited the most effective chelating activity fraction, followed by LSP2 and LSP3. In addition,
the chelating activity of LMP2 was up to 93.7% at 3.2 mg/mL (Figure 8b), which was similar to
that of Ethylene diamine tetraacetic acid (EDTA). The highest total antioxidant capacities were
recorded in LSP2 and LSP3 (Figure 8c), with 57.8% and 49.2% of total antioxidant capacities at
6.4 mg/mL, respectively.

The results showed that DPPH and Fe2+ were more sensitive to Lapemis curtus polysaccharides
than ABTS. LSP3 and LMP3 with high DS/CS content possessed a strong scavenging ability of DPPH
radicals, iron (Fe2+) chelating activity and total antioxidant capacity. In addition, LSP3 possessed
stronger antioxidant activities than that of LMP3, which may be related to its high content of uronic
acid and degree of sulfation. LSP2 possessed a strong scavenging ability of DPPH radicals, iron
(Fe2+) chelating activity and total antioxidant capacity, which may be related to its high contents of
GlcNAc [16] and proteins. The polysaccharides from Lapemis curtus showed great potential for future
human health applications.

3. Materials and Methods

3.1. Materials and Reagents

Lapemis curtus was provided by the Ocean College of Hainan University (Haikou, Hainan
Province, China). Chondroitinase ABC was provided by the Marine Biomedical Research Institute of
Qingdao (Qingdao, Shandong Province, China). Neutral protease of Bacillus subtilis was purchased
from Novozymes (Copenhagen, Denmark), papain was purchased from AppliChem (Darmstadt,
Germany), and trypsin was purchased from Amresco (Washington, DC, USA). Monosaccharide
standards of glucose (Glc), galactose (Gal), glucosamine (GlcN), xylose (Xyl), arabinose (Ara),
mannose (Man), rhamnose (Rha), fucose (Fuc), galactosamine (GalN), glucuronic acid (GlcA),
galacturonic acid (GalA), and unsaturated disaccharides standards of ∆UA-GalNAc (∆Di0S),
∆UA-GalNAc6S (∆Di6S), ∆UA-GalNAc4S (∆Di4S), ∆UA2S-GalNAc6S (∆Di2,6S), ∆UA4S-GalNAc6S
(∆Di4,6S), ∆UA2S-GalNAc4S (∆Di2,4S), ∆UA2S-GalNAc4S6S (∆Di2,4,6S), were purchased from
Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade acetonitrile was purchased from Merck KGaA
(Darmstadt, Germany). All of the other chemicals and solvents used were of analytical grade, unless
otherwise specified.

3.2. Extraction and Purification

Polysaccharides were extracted from the skin and the meat of Lapemis curtus. The skin of
Lapemis curtus was minced and digested with 1.0% of papain and trypsin at a ratio of 1:2 (v/v) at 50 ◦C
for 3 h. The digested mixture was centrifuged, and the supernatant was precipitated by four volumes
of ethanol (95%). The precipitate was resuspended and dialyzed against water using a 1 kDa MWCO
(molecular weight cut off) dialysis tube, and then freeze-dried to obtain a crude polysaccharide from
the skin (named LSP). The meat of Lapemis curtus was minced and digested with 1.0% of neutral
protease of Bacillus subtilis at 55 ◦C for 3 h, and a crude polysaccharide from meat (named LMP) was
obtained after a similar process as that of LSP. LSP and LMP were further fractionated on a Q-Sepharose
Fast Flow column and eluted with a step-wise gradient of 0, 0.4 and 2.0 mol/L NaCl solution to obtain
LSP1, LSP2, LSP3, and LMP1, LMP2, LMP3, respectively. Finally, the purified components were pooled,
dialyzed and lyophilized.

3.3. Chemical Analysis and Molecular Weight Analysis

Total uronic acid content was determined by a colorimetrical method [17] using glucuronic acid
as a standard. Protein content was measured by a Bicinchoninic Acid Protein Assay Kit (BCA kit)
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(Sigma-Aldrich, 3050 Spruce Street, St Louis, MO 63103, USA) [18] using bovine serum albumin as a
standard. Sulfate content was assayed using an ion chromatography method [19]. Molecular weight
(Mw) was determined by a high-performance liquid chromatography, coupled with a refractive index
detector (Agilent Technologies, Wilmington, DE, USA), with a column of TSKgel G3000PWXL (TOSOH,
Tokyo, Japan). Aqueous Na2SO4 solution (0.1 mol/L) was used as the mobile phase and the flow rate
was 0.5 mL/min. The temperature of the column was maintained at 35 ◦C. Dextrans were used as
standards to calibrate the column [20].

3.4. Composition Analysis

Monosaccharide composition was determined using a 1-phenyl-3-methyl-5-pyrazolone (PMP)
pre-column derivatization HPLC method [21]. The PMP-labeled carbohydrates were separated by a
BDS-C18 column (4.6 mm × 250 mm, 5 µm, Hypersil, Waltham, MA, USA) with 0.1 mol/L phosphate
buffer (pH 6.0) and acetonitrile at a ratio of 84:16 (v/v, %) as a mobile phase at a flow rate of 1.0 mL/min.
Disaccharide composition analysis was performed by enzymatic degradation and chromatographic
separation on a Zorbax SAX column (9.4 mm × 250 mm, 4.6 µm). A gradient elution was performed
using pure water and 2 mol/L NaCl solution (pH = 3.5) as a mobile phase at a flow rate of 1.0 mL/min.
The identification and quantitation of each unsaturated disaccharide was performed by comparing
with standard disaccharides [22].

3.5. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis

The FT-IR spectra of Lapemis curtus polysaccharides were recorded on a Nexus 470 FT-IR
spectrophotometer (Nicolet, Pleasanton, CA, USA) in KBr pellets over a wavelength range of 400 cm−1

–4000 cm−1.

3.6. Electrospray Mass Spectroscopy (ESI-MS) Analysis

Negative-ion ESI-MS/MS analysis was carried out on a Micromass LTQ-Orbitrap XL instrument
(Thermo Fisher Scientific, Waltham, MA, USA). Nitrogen was used as sheath gas at a flow rate of 8 arb.
The capillary temperature was 275 ◦C. The spray voltage, capillary voltage, and tube lens voltage were
3 KV, 43 V, and 80 V, respectively. The mobile phase was acetonitrile/H2O (1:1, v/v) at a flow rate of
10 µL/min. All of the samples were dissolved in mobile phase before injection [23].

3.7. NMR Spectroscopy Analysis

The lyophilized polysaccharides (20–30 mg) were co-evaporated with D2O (99.96%) three times
to remove the exchangeable protons and then finally dissolved in 500 µL D2O. Deuterated acetone
was used as an internal standard (2.08 ppm for 1H-NMR and 29.34 ppm for 13C-NMR). 1H-NMR,
13C-NMR, 1H-1H COSY, HSQC, HMBC, TOCSY and NOESY experiments were recorded at 298 K on
an Agilent DD2-500 spectrometer (Agilent Technologies, Wilmington, DE, USA) [24].

3.8. Determination of Antioxidant Activity

3.8.1. DPPH Free Radical Scavenging Activity

The scavenging ability of Lapemis curtus polysaccharides on DPPH radicals was measured as
previously described [25]. Briefly, 100 µL of sample solution at different concentrations was added to
400 µL of 0.004% ethanol solution of DPPH. Absorbance at 517 nm was measured after 30 min. BHT
was used as a positive control. The scavenging ability was calculated as follows:

Scavenging ability (%) = (1 − Asample/Acontrol) × 100.

where Acontrol is the absorbance of control without test samples, and Asample is the absorbance in the
presence of test samples. The test was carried out in triplicate.
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3.8.2. Iron (Fe2+) Chelating Activity

The iron chelating effect of Lapemis curtus polysaccharides was tested as previously described [26].
Briefly, 50 µL of sample solution at different concentrations was mixed with 25 µL of 0.5 mmol/L
FeCl2 and 225 µL of methanol solution. The mixtures were incubated at room temperature for 5 min
and the reaction was initiated by the addition of 100 µL of 5 mmol/L ferrozine solution. The mixtures
were then vigorously shaken and remained at room temperature for 10 min. EDTA was used as a
positive control. The absorbance of solution was measured at 562 nm, and the chelating activity (%)
was calculated as follows:

Metal chelating activity (%) = (1 − Asample/Acontrol) × 100

where Acontrol is the absorbance of control without test samples, and Asample is the absorbance of test
samples. The test was carried out in triplicate.

3.8.3. Total Antioxidant Capacity Assay Kit with ABTS Method

The total antioxidant capacity of Lapemis curtus polysaccharides was measured by the ABTS
method, as previously described [27]. The working solution was prepared by mixing ABTS solution
and oxidant solution in equal quantity and remained in the dark at room temperature for 16 h.
Next, 10 µL of sample solution at different concentrations were mixed with 200 µL of diluted ABTS
solution and then stored at room temperature for 6 min. The absorbance of solution was measured at
734 nm. Vitamin C (Vc) and trolox were used as positive controls. Trolox, a water-soluble analogue of
vitamin E, was used as a reference standard to prepare a calibration curve at a concentration range of
0.05–1.6 mmol/L. Results were expressed as mmol/g Trolox equivalent antioxidant capacity (TEAC).
The test was carried out in triplicate.

4. Conclusions

Two crude polysaccharides were extracted from the skin and the meat of Lapemis curtus (LSP and
LMP), and further purified to obtain polysaccharide sub-fractions of LSP1, LSP2, LSP3 and LMP1,
LMP2, LMP3, respectively. The structures of LSP3 and LMP3 were determined as a new hybrid
CS/DS by means of IR, ESI-MS, NMR and composition analysis. LSP3 is a DS enriched GAG and
LMP3 is a CS enriched GAG. The polysaccharides extracted from Lapemis curtus exhibited significant
antioxidant activities. Especially, LSP3 possessed a strong scavenging ability of DPPH radicals, iron
(Fe2+) chelating activity and total antioxidant capacity, and this may be related to its high contents of
uronic acid and sulfate. Our data suggested that the polysaccharides from Lapemis curtus could be
promising candidates for natural antioxidant ingredients.
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