Supporting Information

Bacillamidins A-G from a Marine-Derived Bacillus pumilus

- Si-Yu Zhou¹, Yi-Jie Hu¹, Fan-Cheng Meng, Shen-Yue Qu¹, Rui Wang¹, Raymond J. Andersen², Zhi-Hua Liao³ and Min Chen^{1,*}
- ¹ College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400715, P.R. China; E-Mails: vividysz@sina.com (S.-Y.Z.), ejeahoo@live.com (Y.-J.H.); (F.-C.M.); (S.-Y.Q.); (R.W.); mminchen@swu.edu.cn (M.C.)
- ² Departments of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1; raymond.andersen@ubc.ca (R.J.A)
- ³ School of Life Sciences, Southwest University, Chongqing 400715, P.R. China; zhliao@swu.edu.cn (Z.-H.L.)
- * Correspondence: mminchen@swu.edu.cn; Tel.: +86-023-6825-1225

Contents

OR Calculation Details **ECD Calculation Details** Figure S1. ¹H-NMR spectrum of compound 1 (400 MHz, DMSO-d₆) Figure S2. ¹³C-NMR spectrum of compound 1 (100 MHz, DMSO-d₆) Figure S3. HSQC spectrum of compound 1 (400 MHz, DMSO-d₆) Figure S4. HMBC spectrum of compound 1 (400 MHz, DMSO-*d*₆) Figure S5. COSY spectrum of compound 1 (400 MHz, DMSO-d₆) Figure S6. HR-ESI-MS spectrum of compound 1 Figure S7. IR spectrum of compound 1 Figure S8. UV spectrum of compound 1 Figure S9. ¹H-NMR spectrum of compound 2 (400 MHz, DMSO-*d*₆) Figure S10. ¹³C-NMR spectrum of compound 2 (100 MHz, DMSO-d₆) Figure S11. HSQC spectrum of compound 2 (400 MHz, DMSO-d₆) Figure S12. HMBC spectrum of compound 2 (400 MHz, DMSO-d₆) Figure S13. COSY spectrum of compound 2 (400 MHz, DMSO-d₆) Figure S14. HR-ESI-MS spectrum of compound 2 Figure S15. IR spectrum of compound 2 Figure S16. UV spectrum of compound 2 Figure S17. ¹H-NMR spectrum of compound 3 (400 MHz, DMSO-*d*₆) Figure S18. ¹³C-NMR spectrum of compound 3 (100 MHz, DMSO-d₆) Figure S19. HSQC spectrum of compound 3 (400 MHz, DMSO-d₆) Figure S20. HMBC spectrum of compound 3 (400 MHz, DMSO-d₆) Figure S21. COSY spectrum of compound 3 (400 MHz, DMSO-d6) Figure S22. HR-ESI-MS spectrum of compound 3 Figure S23. IR spectrum of compound 3 Figure S24. UV spectrum of compound 3 Figure S25. ¹H-NMR spectrum of compound 4 (400 MHz, DMSO-*d*₆) Figure S26. ¹³C-NMR spectrum of compound 4 (100 MHz, DMSO-*d*₆) Figure S27. HSQC spectrum of compound 4 (400 MHz, DMSO-d₆) Figure S28. HMBC spectrum of compound 4 (400 MHz, DMSO-d₆) Figure S29. COSY spectrum of compound 4 (400 MHz, DMSO-d6) Figure S30. HR-ESI-MS spectrum of compound 4 Figure S31. IR spectrum of compound 4 Figure S32. UV spectrum of compound 4 Figure S33. ¹H-NMR spectrum of compound 5 (400 MHz, DMSO-d₆) Figure S34. ¹³C-NMR spectrum of compound 5 (100 MHz, DMSO-d₆) Figure S35. HSQC spectrum of compound 5 (400 MHz, DMSO-d₆) Figure S36. HMBC spectrum of compound 5 (400 MHz, DMSO-d6) Figure S37. COSY spectrum of compound 5 (400 MHz, DMSO-d₆) Figure S38. NOESY spectrum of compound 5 (400 MHz, DMSO-d6) Figure S39. HR-ESI-MS spectrum of compound 5 Figure S40. IR spectrum of compound 5 Figure S41. UV spectrum of compound 5

Figure S42. ECD spectrum of compound 5 Figure S43. ¹H-NMR spectrum of compound 6 (400 MHz, DMSO-*d*₆) Figure S44. ¹³C-NMR spectrum of compound 6 (100 MHz, DMSO-d₆) Figure S45. HSQC spectrum of compound 6 (400 MHz, DMSO-d₆) Figure S46. HMBC spectrum of compound 6 (400 MHz, DMSO-d₆) Figure S47. COSY spectrum of compound 6 (400 MHz, DMSO-d₆) Figure S48. HR-ESI-MS spectrum of compound 6 Figure S49. IR spectrum of compound 6 Figure S50. UV spectrum of compound 6 Figure S51. ¹H-NMR spectrum of compound 7 (400 MHz, DMSO-d₆) Figure S52. ¹³C-NMR spectrum of compound 7 (100 MHz, DMSO-d₆) Figure S53. HSQC spectrum of compound 7 (400 MHz, DMSO-d₆) Figure S54. HMBC spectrum of compound 7 (400 MHz, DMSO-d₆) Figure S55. COSY spectrum of compound 7 (400 MHz, DMSO-*d*₆) Figure S56. HR-ESI-MS spectrum of compound 7 Figure S57. IR spectrum of compound 7 Figure S58. UV spectrum of compound 7 Table S1. ¹H and ¹³C-NMR data (400 and 100 MHz, in DMSO-d₆) of 6 and 7 Spectral Data of 6 and 7

OR Calculation Details

Monte Carlo conformational searches were carried out by means of the Spartan's 10 software using Merck Molecular Force Field (MMFF). The conformers with Boltzmann-population of over 5% were chosen for OR calculations, and then the conformers were initially optimized at B3LYP/6-31+g (d, p) level in MeOH using the CPCM polarizable conductor calculation model. The theoretical calculation of OR was conducted in MeOH using Time-dependent Density functional theory (TD-DFT) at the B3LYP/6-31+g (d, p) level for all conformers of compounds *R*-1. Cartesian coordinates for the low-energy reoptimized MMFF conformers of *R*-1 at B3LYP/6-31+G (d, p) level of theory in CH₃OH.

1. The optimized conformers of *R*-1

2. Gibbs free energies^{*a*} and equilibrium populations^{*b*} of low-energy conformers of *R*-1:

	In MeOH			
Conformers	Boltzmann population (%)	OR		
<i>R-</i> 1- 1	60.58	-35.15		
<i>R</i> - 1- 2	21.82	31.91		
<i>R-</i> 1- 3	1.65	-98.51		
<i>R</i> - 1- 4	10.29	-4.4		
<i>R-</i> 1- 5	5.66	23.68		
average		-15.07		

ECD Calculation Details

1. The optimized conformers of *R*-1

2. B3LYP-calculated relative energies (Kcal/mol) and	d conformational population (%) for the
most stable conformers of <i>R</i> - 1 .	

Compound	conformer	$\Delta E (kcal/mol)^a$	Population (%) ^b
	C1	0	49.57
	C2	0.000112	41.74
1	C3	0.002962	0.15
	C4	0.002136	2.99
	C5	0.001892	5.55

^{*a*}Relative to conformer C1 with $E_{6-31+G(d, p)} = -1083.1236585$ Kcal/mol. ^{*b*}Calculated using free energy values from Gaussian 03W according to $\Delta G = -RT$ In K.

3. The optimized conformers of *R*-**2**

4. B3LYP-calculated relative energies (Kcal/mol) and conformational population (%) for the most stable conformers of R-2

Compound	conformer	$\Delta E (kcal/mol)^a$	Population (%) ^b
	C1	0	65.85
2	C2	0.000258	26.79
2	C3	0.000268	4.59
	C4	0.001321	1.52

^{*a*}Relative to conformer C1 with $E_{6-31+G(d, p)} = -1021.1352285$ Kcal/mol. ^{*b*}Calculated using free energy values from Gaussian 03W according to $\Delta G = -RT$ In K.

3.5.5. The optimized conformers of *R*-3

3.5.6. B3LYP-calculated relative energies (Kcal/mol) and conformational population (%) for the most stable conformers of R-3

Compound	und conformer $\Delta E (kcal/mol)^a$		Population (%) ^b
	C1	0	33.66
	C2	0.000352	25.62
3	C3	0.001761	25.34
	C4	0.002321	8.30
	C5	0.002981	7.07

^{*a*}Relative to conformer C1 with E_{6-31+G(d, p)} = -1001.2235296 Kcal/mol. ^{*b*}Calculated using free energy values from Gaussian 03W according to ΔG = -RT In K.

3.5.8. B3LYP-calculated relative energies (Kcal/mol) and conformational population (%) for the most stable conformers of R-4.

Compound	conformer	ΔE (kcal/mol)	Population (%)
	C1	0	68.92
Δ	C2	0.000372	29.91
4	C3	0.003496	1.20
	C4	0.003701	0.97

^{*a*}Relative to conformer C1 with E6-31+G(d) = -1080.07154857 Kcal/mol. ^{*b*}Calculated using free energy values from Gaussian 03W according to ΔG = -RT In K.

Figure S1. ¹H-NMR spectrum of compound 1 (400 MHz, DMSO-*d*₆)

Figure S2. ¹³C-NMR spectrum of compound 1 (100 MHz, DMSO-d₆)

Figure S3. HSQC spectrum of compound 1 (400 MHz, DMSO-d₆)

Figure S4. HMBC spectrum of compound 1 (400 MHz, DMSO-d₆)

Figure S5. COSY spectrum of compound 1 (400 MHz, DMSO-d₆)

Item name: WM-32_2 Channel name: Centroided : Combined : Average Time 0.5216 minutes : 1: TOF MS^E (100-100... Description:

Figure S6. HR-ESI-MS spectrum of compound 1

352.2096

352.2100

C17H31NO5

329.2202

-0.9

-0.3

HIMADZU

Figure S7. IR spectrum of compound 1

Figure S9. ¹H-NMR spectrum of compound 2 (400 MHz, DMSO-d₆)

Figure S10. ¹³C-NMR spectrum of compound 2 (100 MHz, DMSO-d₆)

Figure S11. HSQC spectrum of compound 2 (400 MHz, DMSO-d6)

Figure S12. HMBC spectrum of compound 2 (400 MHz, DMSO-d₆)

Figure S13. COSY spectrum of compound 2 (400 MHz, DMSO-d₆)

Item name: WM-21 Channel name: Centroided : Combined : Average Time 0.5215 minutes : 1: TOF MS^E (100-1000)... Description:

 Formula
 Calculated Mass
 Calculated Mz
 Mz
 m/z error (mDa)
 m/z error (PPM)

 C19H35NO5
 357.2515
 380.2413
 380.2409
 -0.3
 -0.9

Figure S14. HR-ESI-MS spectrum of compound 2

SHIMADZU

Figure S15. IR spectrum of compound 2

Figure S17. ¹H-NMR spectrum of compound 3 (400 MHz, DMSO-*d*₆)

Figure S18. ¹³C-NMR spectrum of compound 3 (100 MHz, DMSO-d₆)

Figure S19. HSQC spectrum of compound 3 (400 MHz, DMSO-d₆)

Figure S20. HMBC spectrum of compound 3 (400 MHz, DMSO-d₆)

Figure S21. COSY spectrum of compound 3 (400 MHz, DMSO-d₆)

Item name: WM-36 Channel name: Centroided : Combined : Average Time 0.5250 minutes : 1: TOF MS^E (100-1000)... Description:

 Formula
 Calculated Mass
 Calculated Mz
 Mz
 m/z error (mDa)
 m/z error (PPM)

 C17H30N2O3
 310.2256
 333.2154
 333.2145
 -0.3
 -0.9

Figure S22. HR-ESI-MS spectrum of compound 3

Figure S23. IR spectrum of compound 3

Figure S24. UV spectrum of compound 3

Figure S25. ¹H-NMR spectrum of compound 4 (400 MHz, DMSO-d₆)

Figure S26. ¹³C-NMR spectrum of compound 4 (100 MHz, DMSO-d₆)

Figure S27.HSQC spectrum of compound 4 (400 MHz, DMSO-d₆)

Figure S28. HMBC spectrum of compound 4 (400 MHz, DMSO-d₆)

Figure S29. COSY spectrum of compound 4 (400 MHz, DMSO-d₆)

Item name: WM-16 Channel name: Centroided : Combined : Average Time 0.5070 minutes : 1: TOF MS^E (100-1000)... Description:

 Formula
 Calculated Mass
 Calculated Mz
 Mz
 m/z error (mDa)
 m/z error (PPM)

 C17H34N2O3
 338.2569
 361.2467
 361.2461
 -0.2
 -0.7

Figure S30. HR-ESI-MS spectrum of compound 4

() SHIMADZU

Figure S31. IR spectrum of compound 4

Figure S32. UV spectrum of compound 4

Figure S33. 1H-NMR spectrum of compound 5 (400 MHz, DMSO-d6)

Figure S34. ¹³C-NMR spectrum of compound 5 (100 MHz, DMSO-d₆)

Figure S35. HSQC spectrum of compound 5 (400 MHz, DMSO-d6)

Figure S36. HMBC spectrum of compound 5 (400 MHz, DMSO-d₆)

Figure S37. COSY spectrum of compound 5 (400 MHz, DMSO-d₆)

Figure S38. NOESY spectrum of compound 5 (400 MHz, DMSO-d₆)

Item name: WM-28 Channel name: Centroided : Combined : Average Time 0.5177 minutes : 1: TOF MS^E (100-1000)... Description:

Formula	Calculated Mass	Calculated Mz	Mz	m/z error (mDa)	m/z error (PPM)
C35H54N2O8	630.3880	653.3778	653.3775	-0.2	-0.9

Figure S39. HR-ESI-MS spectrum of compound 5

SHIMADZU

Figure S40. IR spectrum of compound 5

Figure S41. UV spectrum of compound 5

Figure S42. ECD spectrum of compound 5

Figure S43. ¹H-NMR spectrum of compound 6 (400 MHz, DMSO-d₆)

Figure S44. ¹³C-NMR spectrum of compound 6 (100 MHz, DMSO-d₆)

Figure S45. HSQC spectrum of compound 6 (400 MHz, DMSO-d₆)

Figure S46. HMBC spectrum of compound 6 (400 MHz, DMSO-d₆)

Figure S47. COSY spectrum of compound 6 (400 MHz, DMSO-d₆)

Item name: WM-25 Channel name: Centroided : Combined : Average Time 0.5214 minutes : 1: TOF MS^E (100-1000)... Description:

Formula	Calculated Mass	Calculated Mz	Mz	m/z error (mDa)	m/z error (PPM)
C15H31NO	241.2406	264.2303	264.2301	-0.01	-0.07

Figure S48. HR-ESI-MS spectrum of compound 6

Figure S49. IR spectrum of compound 6

Figure S50. UV spectrum of compound 6

Figure S51. ¹H-NMR spectrum of compound 7 (400 MHz, DMSO-d₆)

Figure S52. ¹³C-NMR spectrum of compound 7 (100 MHz, DMSO-d₆)

Figure S53. HSQC spectrum of compound 7 (400 MHz, DMSO-d₆)

Figure S54. HMBC spectrum of compound 7 (400 MHz, DMSO-d₆)

Figure S55. COSY spectrum of compound 7 (400 MHz, DMSO-d₆)

Item name: WM-26 Channel name: Centroided : Combined : Average Time 0.4929 minutes : 1: TOF MS^E (100-1000)... Description:

Formula	Calculated Mass	Calculated Mz	Mz	m/z error (mDa)	m/z error (PPM)
C17H35NO	269.6719	292.2616	292.2612	-0.02	-0.07

Figure S56. HR-ESI-MS spectrum of compound 7

SHIMADZU

Figure S57. IR spectrum of compound 7

Figure S58. UV spectrum of compound 7

	_					
	0		6		7	
Position	<i>δ</i> н (<i>J</i> , Hz)	δς	<i>δ</i> н (<i>J</i> , Hz)	δς		
1-NH	6.68, s		6.68, s			
	7.22, s		7.22, s			
2		174.2		174.2		
3	2.00, t (7.2)	35.1	2.00, t (7.2)	35.0		
4	1.48, m	25.0	1.48, m	25.0		
5	1.23, m	28.6	1.23, m	28.6		
6	1.23, m	28.7	1.23, m	28.7		
7	1.23, m	28.9	1.23, m	28.8		
8	1.23, m	28.9	1.23, m	28.8		
9	1.23, m	28.9	1.23, m	28.9		
10	1.23, m	29.0	1.23, m	28.9		
11	1.23, m	29.2	1.23, m	29.0		
12	1.23, m	26.7	1.23, m	29.3		
13	1.23, m	38.4	1.23, m	26.4		
14	1.48 (1H, m)	27.3	1.09, m; 1.27 m	36.0		
15	0.84, d (6.4)	22.5	1.30, m	33.7		
16	0.84, d (6.4)	22.5	1.08, m	29.0		
17	. ,		0.83, t (9.0)	11.2		
18			0.78, d (9.0)	19.1		

Table S1 ¹H and ¹³C-NMR data (400 and 100 MHz, in DMSO-*d*₆) of 6 and 7.

Spectral Data of 6 and 7

Bacillamidin F (6): amorphous, white powder; UV (MeOH) λ_{max} (log ε) 223 (2.47) nm; IR (KBr) ν_{max} 3202, 2961, 2849, 1659, 1634, 1468, 1418, 1086 cm⁻¹; ¹H and ¹³C NMR data, Table 1; HRESIMS *m*/*z* 264.2301 [M + Na]⁺ (calcd. for C₁₅H₃₁NONa, 264.2303).

Bacillamidin G (7): amorphous, white powder; UV (MeOH) λ_{max} (log ε) 223 (2.45) nm; IR (KBr) ν_{max} 3180, 2922, 2849, 1649, 1560, 1420, 1084 cm⁻¹; ¹H and ¹³C NMR data, Table 1; HRESIMS *m*/*z* 292.2612 [M + Na]⁺ (calcd. for C₁₇H₃₅NONa, 292.2616).