
marine drugs 

Review

Mycosporine-Like Amino Acids: Making
the Foundation for Organic Personalised Sunscreens

Nedeljka N. Rosic 1,2,*
1 School of Health and Human Sciences, Southern Cross University, Southern Cross Drive,

Bilinga, QLD 4225, Australia
2 Marine Ecology Research Centre, Southern Cross University, Lismore, Military Rd,

East Lismore, NSW 2480, Australia

Received: 27 October 2019; Accepted: 10 November 2019; Published: 12 November 2019 ����������
�������

Abstract: The surface of the Earth is exposed to harmful ultraviolet radiation (UVR: 280–400 nm).
Prolonged skin exposure to UVR results in DNA damage through oxidative stress due to the
production of reactive oxygen species (ROS). Mycosporine-like amino acids (MAAs) are UV-absorbing
compounds, found in many marine and freshwater organisms that have been of interest in use
for skin protection. MAAs are involved in photoprotection from damaging UVR thanks to their
ability to absorb light in both the UV-A (315–400 nm) and UV-B (280–315 nm) range without
producing free radicals. In addition, by scavenging ROS, MAAs play an antioxidant role and suppress
singlet oxygen-induced damage. Currently, there are over 30 different MAAs found in nature and
they are characterised by different antioxidative and UV-absorbing capacities. Depending on the
environmental conditions and UV level, up- or downregulation of genes from the MAA biosynthetic
pathway results in seasonal fluctuation of the MAA content in aquatic species. This review will
provide a summary of the MAA antioxidative and UV-absorbing features, including the genes
involved in the MAA biosynthesis. Specifically, regulatory mechanisms involved in MAAs pathways
will be evaluated for controlled MAA synthesis, advancing the potential use of MAAs in human
skin protection.

Keywords: mycosporine-like amino acids; mycosporine-like amino acid biosynthesis; sunscreen;
antioxidant; antiaging; anti-inflammatory; DNA protection; ultraviolet-absorbing compounds;
cosmetics; mycosporine-like amino acid gene regulation

1. Introduction

Due to a reduction in aerosols and cloud cover, the levels of ultraviolet radiation (UVR) reaching
the Earth’s surface are predicted to increase during the 21st century [1]. Organisms have developed
several photoprotective mechanisms to survive high levels of UVR. Different mitigation strategies
are utilised by different species and often in combination including DNA repair systems, antioxidant
activities, and the application of UV-absorbing compounds. Exposure to UVR results in reactive oxygen
species (ROS) production, oxidative stress and DNA damage. The mitigation strategies to reduce
the UV-induced damage include DNA repair mechanisms via processes such as photoreactivation,
excision, and mismatch repair. In response to the generation of ROS, organisms start accumulating
antioxidants to capture free radicals. In addition, as a part of the UVR interception response, organisms
accumulate photoprotective compounds with UVR absorption capabilities such as mycosporine-like
amino acids (MAAs) [2–5]. MAAs are found in a large number of aquatic species, including marine
and freshwater organisms that have been exposed to high levels of damaging UVR [6]. The vast variety
of species containing MAAs includes phytoplankton, cyanobacteria, fungi, macroalgae, microalgae,
as well as animals coming from both aquatic and terrestrial ecosystems [7]. These ubiquitous and
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highly abundant secondary metabolites are found to have a critical photoprotective role in these aquatic
species [8]. MAAs have been evolutionarily conserved in aquatic organisms [9], together with some
other important photoprotective compounds such as scytonemin in cyanobacteria [10,11], carotenoid
pigments in plants and many microorganisms [12,13].

In this review, the aim was (1) to provide a summary of the MAA UV-absorbing, antioxidative,
anti-inflammatory; antiaging features; (2) to discuss the genes involved in MAA biosynthesis and
(3) to evaluate the regulatory mechanisms involved in MAA synthesis. In particular, this review
assesses current knowledge about the biosynthesis of MAAs and suggests possible directions for the
evolving biotechnological potential of MAAs in human skin protection.

2. MAA Diversity

MAAs are a diverse group of colourless and hydrophilic compounds characterised by their small
molecular mass (<400 Da). In their core, MAAs are composed of a cyclohexenone or a cyclohexenimine
ring conjugated to an amino acid residue or its imino alcohol (Figure 1A) [14–16]. MAAs absorb mainly
in the range of 310 to 362 nm and are characterised with high molar extinction coefficients (ε = 28,100
to 50,000 M−1 cm−1) [6,17]. There are over 30 different MAA compounds identified in nature [18,19]
and probably more to be discovered with further development of novel high-throughput technologies.
The examples of five major MAAs found in most aquatic species including their direct precursor,
4-deoxygadusol (4-DG), are presented in Figure 1B.

A huge variety of MAAs have been reported in cyanobacteria [20–22], red algae [23–28], fungi [29],
green algae [30,31], dinoflagellates [32–34], invertebrates (e.g., sponges [15,35,36], corals [21,37,38],
sea urchins [39,40]) and vertebrates such as fish [41–44]. However, not all species have all the MAAs.
From all organisms exposed to high levels of UV radiation, cyanobacteria have been under an especially
huge evolutionary pressure to survive damaging UV radiation. An overview of MAAs reported in
this diverse taxonomic group provides an important summary of the organisms’ ability to adapt for
survival [22]. Red algae (Rhodophyta) are characterised by the highest diversity and concentrations of
MAAs [16,45]. In a new study, MAA profiles were established for 23 red algae, with the most abundant
MAAs being shinorine, palythine, asterina-330; porphyra-334 [28]. Furthermore, six new MAAs were
recently chemically characterised in the red alga Bostrychia scorpioides [46]. In addition, two new MAAs
(LC (Lendenfeldia chondrode)-343 and mycosporine-ethanolamine) along with well-known asterina-330
and shinorine were recently isolated from the marine sponge Lendenfeldia chondrode [36].

MAAs were also reported in many other animals (e.g., fish and sea stars) that naturally
lack the MAA biosynthetic pathway, but do acquire MAAs through their algal diet or symbiosis
with algae or/and bacterial symbionts [6,7,42,47]. However, beyond the diet, de novo synthesis
of gadusol (the MAA precursor) was reported in some fish [43,44] and corals [48]. A wide
range of MAAs was reported in the coral Pocillopora capitate, including both primary and
secondary MAAs: mycosporine-glycine, shinorine, porphyra-334, mycosporine-methylamine-serine,
mycosporine-methylamine-threonine, palythine-serine, palythine, and palythine-threonine [49].
In holobionts like corals, the presence of their microbial symbionts may be an efficient way to
develop and adapt to different UV conditions [6,32]. However, coral dinoflagellates in cultures had less
diverse MAA profiles compared to when dinoflagellates were in symbiosis within the coral host [32,49].

Identification and characterisation of MAAs requires the use of multiple diverse chemistry
methods and measurements. The overview of different methodologies applied for the identification
and characterisation of some common MAAs are provided in a very comprehensive review by
Carreto and Carigan [16]. Furthermore, different methods of the MAA extractions are used for the
successful isolation of MAAs. The appropriate methods for MAA extractions are influenced by the
organisms’ characteristics and the tissue types used for extraction [45]. For the characterisation of
MAAs, the combination of different methods is required, usually including the use of high-performance
liquid chromatography (HPLC) and mass spectrometry (Figure 2, [45]). Multiple methods including
HPLC analysis, reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) and hydrophilic



Mar. Drugs 2019, 17, 638 3 of 17

interaction liquid chromatography (HILIC) were recently used for the discovery and characterisation of
novel MAAs in cyanobacteria [50]. The importance of combining different methods of chemical analyses
characterised by improved sensitivity was recently confirmed by Lagegerie et al. [27]. The initial analyses
of MAAs in red macroalgae from the Brittany region in France resulted in the detection of 23 potential
MAAs using HPLC; further analyses using liquid chromatography–mass spectrometry (LC-MS)
confirmed that only six different types of MAAs (shinorine, palythine, asterina-330, porphyra-334,
usurijene; palythene) were found in 40 species of red macroalgae [27]. Additional and more
comprehensive characterisation of the MAA chemical structures can be done by a combination
of nuclear magnetic resonance (NMR) and LC-MS analyses [51]. In addition, the combination of
infrared (IR) spectroscopic analysis and gas chromatography (GC)-MS analysis is also used for
improving the characterisation of MAAs [52].Mar. Drugs 2019, 17, x FOR PEER REVIEW 3 of 18 
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maximum absorbance values. 
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Figure 1. Chemical structures of mycosporine-like amino acids (MAAs): (A) MAA core composed
of a cyclohexenone, a cyclohexenone, or cyclohexenimine ring conjugated to an amino acid residue
or its imino alcohol; (B) MAA precursor 4-deoxygadusol, plus the primary MAAs found including
mycosporine-glycine, mycosporine-2-glycine, shinorine, palythine and porphyra-334, including the
maximum absorbance values.
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Figure 2. Chemical structures and masses (m/z) of commonly found MAAs in the red alga
(indicated by #), Symbiodiniaceae (indicated by $) and the hermatypic coral Stylophora pistillata
(indicated by *) as adapted from Rosic et al. [45].

2.1. MAA UV-Absorbing Features

In nature, various compounds are used for protection against the mutagenic effects of UV radiation.
Dark pigment melanins found in humans and animals absorb the light in the UV and visible range.
In humans, melanin protects skin by providing a physical barrier to UV and by absorbing 50%–75% of
UVR [53]. Beyond UV absorbing properties, melanin pigments play a role as antioxidants [54]. In plants
and many microorganisms, carotenoid pigments have a photoprotective role and are characterised
by absorption in the range of 300–600 nm [13]. These pigments are important not only for the UV
protection [4,17] but also in photosynthesis as an essential part of the photosynthetic apparatus [12,17].
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Another well-known photoprotective compound is scytonemin, a small, yellow-brown,
hydrophobic pigment that is found only in cyanobacteria [11]. Scytonemin absorbs in the UV-A
wavelength region, with maximum absorption in purified form at 384 nm [55,56] and in vivo
at 370 nm [20]. This pigment works not only as a potent UV protector but also as a powerful
antioxidant [57] and has significant potential for sunscreen application in cosmetics [57,58]. Over a long
period of history, cyanobacteria were exposed to extremely high UVR and consequently, these organisms
developed additional protection of their DNA by applying two powerful UV-absorbing compounds,
scytonemin and MAAs [10,59].

MAAs are the most common group of secondary metabolites found in aquatic species [17].
Marine and freshwater organisms utilising MAA compounds in UV protection include a variety of
species from cyanobacteria, fungi, algae, to higher-order animals such as cnidaria, fishes, arthropods,
mollusks, tunicates and echinoderms [7]. MAAs are involved in photoprotection due to their ability
to absorb light in the range of UV-A (315–400 nm; making ~95 % of UV energy that penetrates
the atmosphere) and UV-B (280–315 nm) without production of free radicals. The vast majority of
different MAAs absorb within the UV-A range, like mycosporine-2-glycine, shinorine; porphyra-334
with Lmax in the range of 332–334 nm (Figure 1B) [16]. Palythine, palythine-threonine, palythine-serine
and palythinol have Lmax at 320 nm, while palythine-serine sulfate and palythine-threonine sulfate
have maximum absorbance at 321 nm. Usujirene, palythene; euhalothece-362 are characterised by the
ability to absorb UV at higher UV-A wavelengths in the range of 357–362 nm [16].

MAAs containing cyclohexenone ring have maximum absorption within the UV-B range including
mycosporine-glycine (Lmax = 310 nm), mycosporine-taurine (Lmax = 309 nm) and mycosporine-serine
(Lmax = 310 nm). On the other hand, MAA precursor 4-deoxygadusol is characterised by maximum
absorption at 268 nm in acidic conditions and at 294 nm in basic environments [60]. Various amino
acids in the MAA core result in different MAA profiles, which are characterised by different UV
screening properties [60]. Therefore, only slight changes in the MAA structures will result in quick
changes in the level of UV protection. This MAA property allows organisms to adjust to changeable
UV conditions, which is important from the evolutionary perspective for survival under harsh and
damaging UV radiation. Consequently, the accumulation of MAAs, like adaptable sunscreen, plays
a critical role in the UV protection of marine organisms [8].

2.2. MAA Antioxidative Properties

Oxidative stress happens due to the production of ROS, which includes, in general, the following
products: hydrogen peroxide (H2O2), hydroxyl radical (OH•) and superoxide anion (O2

•−).
Prolonged exposure to sun radiation results in UV-induced oxidative stress. MAAs are ubiquitous
metabolites that beyond their photoprotective role, also have a role as antioxidants [3,7,52]. MAAs are
able to scavenge ROS and suppress singlet oxygen-induced damage [24,61–63]. An overview of the
antioxidant properties of different MAAs has been provided in recent reviews [52,60]. In addition,
a number of studies are summarised in Table 1 that assessed the antioxidative, anti-inflammatory and
antiaging activities of individual MAAs in vitro.

Large differences in antioxidative capacities were reported for different MAAs. In vitro
analyses of MAA antioxidative activities were done using different assays and it was apparent
that modification in the external environment, such as the acidity or temperature, may increase
their antioxidative properties [52]. Weak antioxidative activity was described for shinorine and
porphyra-334 [24], although changes in the environment, like heat stress, resulted in an increase
in the antioxidative properties for porphira-343 [67]. On the other hand, a highly abundant
primary MAA mycosporine-glycine demonstrated effective antioxidant properties [24], as well as
4-deoxygadusol [16,72]. The antioxidant capacity of mycosporine-glycine was initially tested using
peroxidation assay [24]. The concentration-dependent inhibition of lipid peroxidation was reported
as a result of antioxidant action of this MAA [24]. The highest antioxidant activity was reported
for mycosporine-glycine isolated from the marine lichen Lichina pygmaea at pH 8.5, which was



Mar. Drugs 2019, 17, 638 6 of 17

eightfold higher than for ascorbic acid [61]. Furthermore, using the extracts of marine green alga,
antioxidant properties were confirmed for mycosporine-glycine via the 2,2-diphenyl-1-picryhydrazyl
(DPPH) assay, but not for porphyra-334 and shinorine [31]. On the contrary, Gacesa and colleagues [64]
recently demonstrated antioxidant properties of porphyra-334 and shinorine using different free-radical
quenching assays. The in vitro antioxidant activities were tested using the DPPH assay and were
lower in two analysed MAAs compared to ascorbic acid [64]. The second assay, an oxygen radical
absorption capacity (ORAC) assay, actually demonstrated substantial antioxidant activities for both
MAAs [64]. Porphyra-334 and shinorine were also shown as the activator of the cytoprotective pathway
demonstrating the potential for treating human degenerative diseases related to aging [64]. Specifically,
the antioxidative activities of the two MAAs were related to the Keap1-Nrf2 pathway, which regulates
cytoprotective cellular responses during oxidative stress. The Kelch-like ECH-associated protein 1
(Keap1) actin protein was found to detect changes in the redox status within the cell by controlling
the activity of transcription nuclear factor erythroid 2-related factor 2 protein (Nrf2). Under oxidative
stress, Nrf2 is activated due to detachment from Keap1 and Nrf2 was shown to regulate the expression
of genes involved in the antioxidant response (antioxidant response element: ARE) and to play a role
in oncogenesis [73]. In primary skin fibroblast cells, MAAs porphyra-334 and shinorine were able
to provide protection from UVR-induced oxidative stress via the activation of the Keap1-Nrf2-ARE
pathway and plus directly, by quenching free radicals [64]. Another MAA, mycosporine-2-glycine,
in both in vivo and in vitro studies, demonstrated a high antioxidant activity that was equivalent
to ascorbic acid [69]. To induce oxidative stress, the macrophage cells were exposed H2O2, while
the presence of mycosporine-2-glycine resulted in downregulation of the expression of oxidative
stress-induced genes such as Cu/Zn-superoxide dismutase 1 (Sod1) and catalase (Cat) [70].

Table 1. Properties of main MAAs based on in vitro studies using cell cultures exposed to individual
MAAs isolated from various species.

MAAs Activity:
UV-Absorbing

Activity:
Antioxidative

Activity: Anti-
Inflammatory

Activity:
Antiaging

Sources of MAAs
and References

Mycosporine-glycine Yes
Lmax = 310 nm Yes [24,31,51,61,63] Yes [31] Yes [31]

Red alga Porphyra tenera [24]
Green alga Chlamydomonas

hedleyi [31]
Ascidian Lissoclinum

patella [63]
Marine lichen Lichina

pygmaea [61]

Shinorine Yes
Lmax = 333 nm

Yes [24,51,64]

No [31]

Yes [31]

No [65]
Yes [31,66]

Red alga Chondrus
yendoi [64]

Red alga Porphyra sp. [65]
Green alga Chlamydomonas

hedleyi [31]
Red algae Porphyra sp. &

Palmaria palmate [66]

Porphyra-334 Yes
Lmax = 334 nm

Yes [24,51,64,67,68]
No [31]

Yes [65,68]

No [31]

Yes [31,66]

No [31]

Green alga Chlamydomonas
hedleyi [31]

Red algae Porphyra sp. &
Palmaria palmate [66]

Red alga Porphyra
yezoensis [68]

Mycosporine-2-glycine Yes
Lmax = 332 nm Yes [51,69,70] Yes [70] Yes [70]

Cyanobacterium
Aphanothece

halophytica [51,69,70]

Palythine Yes
Lmax = 320 nm

Yes [71]

No [69]
- Yes [66]

Red alga Chrondus
yendoi [71]

Cyanobacterium
Aphanothece halophytica [69]

Red algae Porphyra sp. &
Palmaria palmate [66]

Cyanobacterium
Aphanothece halophytica [69]
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The prevention of UV-induced damage and oxidative stress in epidermal skin cells involves the role
of an endogenous defense system [74]. Antioxidant enzymes that play a critical role in this endogenous
defense system include superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase
and thioredoxin oxidase enzymes. However, the cellular defense due to accumulated UV-absorbing
compounds has been shown to be the first line of defense from oxidative stress [75]. In two scleractinian
corals, the antioxidant capacities of MAAs were highly important as the protection coming from MAAs
occurred before the action of antioxidative enzymes such as superoxide dismutase and catalase [75].
Thanks to the MAAs’ capacity to quench ROS and scavenge free radicals, UV induced damage is
minimised in these vulnerable aquatic species. Consequently, the antioxidant defense mechanisms and
ROS scavenging are critical for organisms’ survival [52].

2.3. MAA Anti-Inflammatory and Antiaging Properties

The ROS production happening due to UV damage may lead to inflammation and immune stress
responses [76]. Free radicals are able to work as signalling molecules changing gene expression, leading
to oxidative stress, protein oxidation and resulting in the activation of inflammatory processes through
the activation of different cellular pathways [77]. Inflammatory processes induced by UV exposure are
mainly regulated by nuclear factor kappa b (NF-κB) and include a number of signalling mediators such
as nitric oxide (NO), inducible NO synthase (iNOS) tumor necrosis factor α (TNF- α), cyclooxygenase
(COX-2) and cytokines (i.e., interleukins) [52].

The anti-inflammatory activity in the microalga MAA extracts was tested in vitro by Suh et al. [31].
The HaCAT cells (immortal human keratinocytes) were exposed to UV radiation and supplemented
with an increased concentration of MAAs (0.03, 0.15, or 0.3 mM). Real-time qPCR was used
to evaluate the changes in gene expression of the COX-2 gene that is found to be elevated
in the case of tissue inflammation. MAAs have shown different anti-inflammatory properties,
with porphyra-334 having no effect on COX-2 gene expression, while mycosporine-glycine and
shinorine had the inhibitory effect on the expression of inflammation-related gene (i.e., COX-2 gene) [31].
Similarly, mycosporine-2-glycine reduced the transcription of genes critical for the inflammatory
signalling processes, COX-2 and iNOS [70]. Anti-inflammatory properties of MAAs shinorine
and porphyra-334 were tested in human myelomonocytic cells under inflammatory stimulation
by lipopolysaccharide (LPS) [65]. Both MAAs stimulated NF-κB activity prior to LPS induction,
while under LPS-induced conditions, shinorine increased the activity of transcription factor NF-κB
in a dose-dependent manner. On the other hand, porphyra-334 reduced the activity of NF-κB
and demonstrated anti-inflammatory action. The aqueous extracts of red algae Hydropuntia cornea
and Gracilariopsis longissima containing the mixture of MAAs (palythine, asterina-330, shinorine,
porphyra-334; palythinol) and other compounds were reported to actively induce the production of
TNF-α and anti-inflammatory/pro-inflammatory cytokine interleukin-6 [78].

The skin aging process is happening as a result of collagen destruction and elastin content
reduction [79]. Exposure to UV radiation increases the rate of skin aging via oxidative stress and
DNA mutations [80–82]. As UV exposure leads to photoaging, the evaluation of MAAs antiaging
property is also critical when assessing MAAs’ potential for use in cosmetics. Suh et al. [31] tested the
expression of genes related to the skin aging processes (i.e., genes for procollagen c-endopeptidase
enhancer and elastin). The mRNA levels of these UV-suppressed genes were elevated in the presence
of all analysed MAAs. The UV-induced downregulation of another gene related to skin aging
(involucrin) was suppressed in the presence of mycosporine-glycine and shinorine, but not porphyra-334.
Additional studies also confirmed the potential of MAAs as anti-photoaging molecules [66,68,82].
Consequently, more studies are needed to extend the promising potential of MAAs for their application
in skin-care products.
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3. Fluctuation of the MAA Content in Aquatic Species

MAAs are multifunctional secondary metabolites that beyond the role in photoprotection and
as antioxidants, also play a part in osmotic regulation, control of reproduction, as well as nitrogen
reservoirs; an accessory light-harvesting pigment in photosynthesis [83]. In the soft coral species
Lobophytum compactum, MAA accumulation was three times higher in eggs than in maternal tissue
indicating MAA importance for larval survival [84]. MAA levels and diversity are affected by seasonal
fluctuations [85]. UV radiation is a major factor influencing MAA accumulation and resulting in
changes in organisms’ MAA profile [38]. Spectral variability and intensity were found to affect the
synthesis of MAAs [17]. Blue light within photosynthetically active radiation (PAR) and UV-A lights
stimulated the production of MAAs in free-living algae and Antarctic diatoms [86–90]. The positive
effect of blue light and UV-A exposure was also reported in the red macroalga Chondrus crispus [91],
while UV-B had a positive effect on the MAA level in Nodularia cyanobacteria [92]. In some corals, both
UV levels and PAR were required for successful MAA production [93,94]. Host–microbe interactions
are another important factor influencing the diversity of MAAs. Lower MAA levels and diversity
were reported for symbiotic dinoflagellates when in cultures than were in symbiosis within the coral
host [32,95].

Together with UVR, there are other factors that stimulate the production of MAAs such as
variation in salinity conditions and changes in nutrient availability [84,96–99]. In the halotolerant
cyanobacterium Aphanothece halophytica, the production of mycosporine-2-glycine was stimulated
more by the high salinity condition than by UV-B stress. In addition, the upregulation of MAA
biosynthetic genes was reported in parallel to the accumulation of mycosporine-2-glycine in response
to salt stress [100]. When hypersalinity is present in the surrounding environment, it can result in
cell dehydration and the production of ROS, leading to oxidative stress. Via the synthesis of MAAs
under the salt stress condition, MAAs are considered to be osmotic solutes that are helping in osmotic
regulation and reestablishing osmotic balance [83]. Furthermore, when aquatic species are challenged
by cold environmental conditions, MAAs are found to act as osmotic protector [83].

Beyond salinity stress and UV radiation [83,98,100] other environmental stress factors were
reported to influence MAA levels such as desiccation [101] and heat stress [6,75]. Seasonal changes
in UV levels and temperature had a positive effect on MAA accumulation in phytoplankton and the
copepod Cyclops abyssorum tatricus obtained from an alpine lake [102]. These different environmental
stress factors contribute to oxidative stress and MAA accumulation. Consequently, the importance
of MAAs and their role as antioxidants is strongly stimulated by changes in external environmental
conditions [60].

4. Genes from the MAA Biosynthetic Pathway and Their Regulation

The shikimate pathway was the first pathway proposed to be responsible for MAA
biosynthesis [6,94]. In this pathway, 3-dehydroquinate (DHQ) was used as a basis for the production of
4-deoxygadusol (4-DG), which is recognised as a direct precursor of MAAs, leading to the production
of primary and secondary MAAs [8,96,103]. The second pathway was proposed by Balskus and
Walsh [104] and suggested that synthesis of MAAs occurs via the pentose phosphate pathway and
from another intermediate sedoheptulose 7-phosphate (SH 7-P) through the four-enzyme shinorine
pathway. The role of this pathway in the synthesis of primary MAA shinorine in the cyanobacterium
Anabaena variabilis ATCC 29413 was confirmed when the entire gene cluster (containing all four genes)
was cloned and expressed in vitro using heterologous expression system in Escherichia coli. The 6.5-kb
shinorine biosynthetic gene cluster included the following genes: dehydroquinate synthase (DHQS),
O-methyltransferase (O-MT), adenosine triphosphate (ATP) grasp and a nonribosomalpeptide synthetase
(NRPS) [104]. Via this pathway, 4-DG was initially produced thanks to the activity of DHQS and
O-MT, followed by the second part of the pathway resulting in the generation of mycosporine-glycine
and then shinorine. The same gene cluster has been also found in dinoflagellates [104], as well as
in the sperm samples of the coral Acropora digitifera [48]. In coral dinoflagellates, three genes from
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the shinorine biosynthetic gene cluster were reported including two forms of O-MT gene, NRPS
and ATP grasp homolog genes [9]. The lack of one gene from the shinorine biosynthetic pathway
encoding DHQS reported for Symbiodiniaceae [9] may be due to limited sequence coverage, but could be
potentially explained by the importance of host factors for the MAA biosynthesis [32,94]. Similar to coral
dinoflagellate, the three-gene shinorine pathway was also reported in dinoflagellate Heterocapsa triquetra,
in which 4-deoxygadusol (DDG) synthase-encoding gene was fused to the O-MT-encoding gene
(Figure 3A) [4,105]. Furthermore, not all genes from the shinorine pathway (called the mys cluster) were
identified in the 363 cyanobacterial genomes (Figure 3B) [106]. Huge genetic variability was observed
among different cyanobacteria species, indicating that the formation of shinorine may happen due to
the activity of different enzymes. The major genetic variability reported was in terms of presence or
absence of two distinct enzymes NRPS (encoded by gene mysE; from Anabaena-type mys cluster) and
D-Ala-D-Ala ligase (encoded by gene mysD from Nostoc-type mys cluster) in different cyanobacterial
species [106]. Further variability was detected in terms of the presence of dehydrogenases or reductases
and duplication of ATP-grasp genes [106,107]. Consequently, there are still considerable gaps in
understanding the genetic diversity and regulatory mechanisms of the MAA biosynthetic pathways.

5. Potential Use of MAAs in Human Skin Protection

UV radiation can lead to substantial skin damage, particularly within epidermal cells, resulting
in an increased incidence of skin cancer [108]. In humans, excessive exposure to UVR is associated
with the development of over 95% of skin cancers [109]. The effect of UV radiation depends on the UV
range, where high energy UVB usually leads to direct DNA damage and has a highly mutagenic and
carcinogenic effect compared to lower energy UVA radiation [110]. Both UVA and UVB damage DNA
directly and indirectly through oxidative stress [110]. A major mechanism leading to skin cancer occurs
due to the UV-induced formation of cyclobutane pyrimidine dimers (CPDs) leading to DNA base
damage [111]. The mechanisms of skin protection include mitigation strategies in reducing UV-induced
damage, such as DNA repair mechanisms, the accumulation of antioxidants and UV-absorbing
compounds [4]. In the human body, the pigment melanin helps in the protection from UV-induced
damage due to its broad spectrum and its antioxidant activity [54]. However, there are two forms of
melanin, the brown/black pigment eumelanin that plays a photoprotective role and the orange/yellow
pigment pheomelanin that is considered to be photosensitizing [112]. Pheomelanin produces superoxide
and nitric oxide resulting in the generation of ROS that can damage DNA [112]; as recently revealed,
this damage even occurs in darkness, with increased CPD formation during the first 2–3 hours after UV
exposure [113]. Also, in human skin, only 50%–75% of UVR is absorbed by melanin [53]. Subsequently,
human skin needs additional protection via externally applied sunscreens. However, current chemical
UVR protection is not adequate because these commercially available sunscreen products contain
active ingredients that lack photostability, can produce free radicals leading to skin damage, irritation,
skin aging and also can cause allergic reactions. Furthermore, the UV-filter compounds included
in cosmetic products and used in the packing industry are disposed of, resulting in environmental
pollution [114]. These organic compounds coming from wastewater reach groundwater and lead
to the destruction of ecosystems such as coral reefs. Toxic effects of the sunscreens and specifically
the UV-filter compound (oxybenzone, benzophenone-3), have been reported on marine life, particularly
on tested coral planulae and cultured cells [115]. Consequently, biodegradable solutions, such as
nature-based UV-filters like MAAs, should be used instead of the current chemical UV-filters and may
help in the prevention of further environmental damage.

Interest in MAAs has been growing during the past decades. The use of MAAs for health products
and cosmetics was recently reviewed by Chrapusta and colleagues [116]. MAAs are photostable,
transparent compounds found in a wide range of aquatic species. As an old-new ecologically
friendly option, MAAs show a stable photoprotective and antioxidative capacity against a range of
UVR [117,118]. A number of research–based partnerships led to the generation of over 60 patents
around the world [116]. The first application of MAAs, specifically shinorine, has been utilised in
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the product Helioguard®365 [119]. In vitro studies on the human keratinocyte cells confirmed the
antiaging activity of the product when exposed to UV-A and stable activity of MAAs for a three-month
period [119]. There are a few other products on the market that also utilise MAAs such as Helionori®

and an increasing number of industry patents [116]. Still, more can be done in the market still
dominated by chemical UV sunscreen products by enhancing industry–research collaborations to
speed up the technological advancement of the MAA application as organic sunscreens.
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6. Conclusions

Environmental pollution coming from the use of chemical UV filters is becoming an increasing
problem that destabilizes the natural environment and contaminates groundwater. MAAs are excellent
candidates for use in the cosmetic industry and for improved skin protection in an ecologically friendly
way as water-soluble, colourless; highly diverse compounds. The MAAs’ ability to easily change
form, as well as their UV properties and antioxidant capacities, present enormous biotechnological
potential. The fact that MAA synthesis is adjustable in relation to changes in the environment, such as
an increase in UV radiation, could be utilised further. Improving our understanding of the regulatory
mechanisms and genetic diversity of MAA biosynthetic pathways will allow us to use MAAs in
various biotechnological applications. Future research is needed to allow for better control of MAA
biosynthesis and the production of adjustable, personalised natural sunscreens.
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