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Table S1. Retention times of microcystins detected in P. prolifica NIVA-CYA 544 or authentic samples 

analysed using the three LC–MS methods. 
 

 Microcystin Confidence 
tR (min) 

method A method B method C 

1 [D-Asp3]MC-RR confirmed 2.81 4.28 — 

4 [D-Asp3]MC-LR confirmed 5.72 7.04 4.46 

11 [D-Asp3,Mser7]MC-RR probable 2.59 4.14 1.82 

12 [D-Asp3]MC-ER probable 3.63 6.24 3.53 

13 [D-Asp3]MC-EE probable 4.99 11.62 3.93 

14 [D-Asp3]MC-RW probable 10.01 9.72 8.40 

15 Sulfide conjugate of 1 tentative 9.85e 7.50 7.47 

16 15-sulfoxide tentative 6.50f 6.53 — 

17 [D-Asp3]MC-RY probable 7.16 8.73 — 

18 [D-Asp3]MC-RF probable 9.94 9.82 — 

19 GSH-conjugate of 1 confirmed 2.05 4.09 — 

20 [D-Asp3]MC-RCit probable 3.44 6.79 — 

— Cys-conjugate of 1 tentative — 3.74 — 

— oxidized 1 tentative — 4.09 — 

2 MC-RR standard 3.12 4.63 2.31 

3 MC-YR standard 5.22 7.14 4.09 

5 [Dha7]MC-LR standard — 7.28 4.67 

6 MC-LR standard 5.84 7.29 4.58 

7 MC-LA standard 9.35 15.10 8.39 

8 MC-LY standard 10.65 15.34 9.67 

9 MC-LW standard 13.83 17.20 12.80 

10 MC-LF standard 13.91 17.85 12.89 

23 [D-Asp3,Dhb7]MC-RR standard 2.97 — 2.19 

24 [D-Asp3]MC-EHar tentative — 6.55 — 

25 [D-Asp3]MC-RY(OMe) tentative — 8.89 — 

26 [D-Asp3]MC-HarY tentative — 8.90 — 
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Figure S1. LC–HRMS (method A) full scan chromatogram in positive ion mode of a standard mixture 

(200 ng/mL) of 9 microcystins (MCs) and Nodularin-R, used to optimize the method: [D-

Asp3,Dhb7]MC-RR (23) (wrongly labelled by Enzo as [D-Asp3]MC-RR), MC-RR (2), NOD-R, MC-YR 

(3), [D-Asp3]MC-LR (4), MC-LR (6), MC-LA (7), MC-LY (8), MC-LW (9), MC-LF (10). The 

chromatogram was extracted at the specified m/z of standard compounds, as reported in Figure 1, with 

5 ppm tolerance.  
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Figure S2. Left, LC−HRMS chromatograms (method B) before (top left) and after (bottom left) 

treatment with sodium periodate. Both chromatograms are extracted at both m/z 1059.0088 and 

1067.0060, and show complete conversion of sulfide 15 to sulfoxide 16. To the right are the mass spectra 

of the main peak the sulfide (top right) and sulfoxide (bottom right), showing a change in m/z 

corresponding to addition of one oxygen atom (theoretical Δ m/z = 7.9975).
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Figure S3. LC–HRMS chromatograms before (top) and 15 min after (bottom) treatment with sodium 

periodate. Both chromatograms are extracted at both m/z 1059.0088 and 1067.0060, and displayed with 

the same vertical scale. Equivalent injection volumes were used for both chromatograms, and integration 

of the peaks (peak areas in arbitrary units) shows complete conversion of sulfide 15 to sulfoxide 16. 
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Figure S4. Top, LC–HRMS/MS (method A) product ion spectra, and; bottom, LC–MS2 (method C) 

product ion spectra from collision-induced fragmentation of the [M + H]+ ions of [D-Asp3]MC-LR (4) 

and [D-Asp3]MC-ER (12). The blue lines link examples of conserved fragments while the red lines link 

examples of fragments shifted by the exact difference between the masses of L and E (15.9585). 
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Figure S5. LC−HRMS (method B) chromatograms (2.0–4.5 min) in positive ionization mode of an HP-20 extract of NIVA-CYA 544, showing 

the polar doubly-charged microcystins. Extracted ion chromatograms were at the specified m/z with 5 ppm tolerance.  
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Figure S6. LC−HRMS (method B) chromatograms (5.5–7.5 min) in positive ionization mode of an HP-20 extract of NIVA-CYA 544, showing 

the less polar singly-charged microcystins. Extracted ion chromatograms were at the specified m/z with 5 ppm tolerance.  
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Figure S7. LC−HRMS (method B) chromatograms (5.8–7.8 min) in positive ionization mode of an HP-20 extract of NIVA-CYA 544, showing 

the less polar doubly-charged microcystin conjugates. Extracted ion chromatograms were at the specified m/z with 5 ppm tolerance. Note the 

presence of a major and a minor stereoisomer of 16, each of which appears to be present as a pair of sulfoxide diastereoisomers.
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Figure S8. LC−HRMS (method B) chromatograms (8.5–12 min) in positive ionization mode of an HP-20 extract of NIVA-CYA 544, showing the 

least polar singly-charged microcystins. Extracted ion chromatograms were at the specified m/z with 5 ppm tolerance. 
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Figure S9. Negative ionization LC−MS/MS FS/DIA chromatograms of an extract of NIVA-CYA 544 at natural abundance (left) and 

in a 15N-labelled culture (right), extracted at m/z 128.0353 (C5H6
14NO3

-, left) and 129.0324 (C5H6
15NO3

-, right) from the Glu6-moiety.  
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Figure S10. Positive ionization LC−MS/MS FS/DIA chromatograms of an extract of NIVA-CYA 544 at natural abundance extracted 

at m/z 135.0804 (C9H11O
+) from the Adda5-moiety.  
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Figure S11. Positive ionization LC−MS/MS FS/DIA chromatograms of an extract of NIVA-CYA 544 at natural abundance extracted 

at m/z 135.0804 (C9H11O
+) from the Adda5-moiety.  
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Figure S12. LC–MS2 (method C) product ion spectra from collision-induced fragmentation of the [M + 

H]+ ions of [D-Asp3]MC-ER (12), [D-Asp3]MC-EE (13) and [D-Asp3]MC-RW (14).  
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Figure S13. LC–MS/MS (method C) positive product ion spectra from collision-induced fragmentation 

of the [M + H]+ ions of MC-LR (6), [Dha7]MC-LR (5), [D-Asp3]MC-LR (4) and [D-Asp3]MC-ER (12).  
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Figure S14. LC–MS/MS (method C) negative product ion spectra from collision-induced fragmentation 

of the [M − H]− ions of MC-LR (6), [Dha7]MC-LR (5), [D-Asp3]MC-LR (4) and [D-Asp3]MC-ER (12).  
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Figure S15. Extracted ion (at m/z for 1 and 19) LC−HRMS (method A) chromatograms of: a standard 

solution of [D-Asp3]MC-RR (1) (black); the gradual conversion of standard [D-Asp3]MC-RR (1) to the 

GSH-conjugate of 1 (19) by reaction with glutathione in weakly basic solution (blue); an extract of 

NIVA-CYA 544 showing extracted m/z corresponding to [M + H]+ for the GSH-conjugate of 1 (19) and 

[D-Asp3]MC-RR (1) (purple). Results of the reaction (blue) supported the identification of 19 as the 

GSH-conjugate of the major microcystin congener 1, together with elemental composition calculation 

and comparison of the LC–HRMS characteristics of the products with those of 19 in the culture extract. 

LC-HRMS/MS spectra of natural 19 in the culture extract and semi-synthetic 19 produced by reaction 

of 1 with GSH are shown in Figure S39. 
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Figure S16. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of [D-Asp3]MC-RR (1) at m/z 512.8 (top), and of nitrogen-15 

labelled [D-Asp3]MC-RR (1) at m/z 519.3 (bottom).  
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Figure S17. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of [D-Asp3]MC-RR (1) at m/z 512.8 (top), and of [M + H]+ of [D-

Asp3]MC-RR (1) at m/z 1024.5 (bottom).  
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Figure S18. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 (top), and of nitrogen-15 labelled 

[D-Asp3]MC-LR (4) at m/z 991.5 (bottom).  
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Figure S19. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of [D-Asp3,Mser7]MC-RR (11) at m/z 521.8 (top), and of nitrogen-

15 labelled [D-Asp3]MC-RR (11) at m/z 528.3 (bottom).  
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Figure S20. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-ER (12) at m/z 997.5 (top), and of nitrogen-15 

labelled [D-Asp3]MC-ER (12) at m/z 1007.5 (bottom).  
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Figure S21. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 (top), and of [D-Asp3]MC-ER 

(12) at m/z 997.5 (bottom).  
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Figure S22. Expansion (m/z 68–250) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 

(top), and of [D-Asp3]MC-ER (12) at m/z 997.5 (bottom). Blue lines join selected peaks that differ by m/z +15.9595, which is the exact 

mass difference between 4 and 12, and between leucine and glutamic acid. The bold purple numbers indicate the amino acid residue 

numbers of the amino acids attributed to selected product ions based on Yilmaz et al.1 The results show that 4 and 12 differ by 15.9595 

Da in amino acid-2.  



S26 

 

 
Figure S23. Expansion (m/z 250–410) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 

(top), and of [D-Asp3]MC-ER (12) at m/z 997.5 (bottom). Blue lines join selected peaks that differ by m/z +15.9595, which is the exact 

mass difference between 4 and 12 (and between leucine and glutamic acid). The bold purple numbers indicate the amino acid residue 

numbers of the amino acids attributed to selected product ions based on Yilmaz et al. (2019). The results show that 4 and 12 differ by 

15.9595 Da in amino acid-2.  
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Figure S24. Expansion (m/z 410–630) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 

(top), and of [D-Asp3]MC-ER (12) at m/z 997.5 (bottom). Blue lines join selected peaks that differ by m/z +15.9595, which is the exact 

mass difference between 4 and 12 (and between leucine and glutamic acid). The bold purple numbers indicate the amino acid residue 

numbers of the amino acids attributed to selected product ions based on Yilmaz et al. (2019). The results show that 4 and 12 differ by 

15.9595 Da in amino acid-2.  
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Figure S25. Expansion (m/z 630–981) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LR (4) at m/z 981.5 

(top), and of [D-Asp3]MC-ER (12) at m/z 997.5 (bottom). Blue lines join selected peaks that differ by m/z +15.9595, which is the exact 

mass difference between 4 and 12 (and between leucine and glutamic acid). The bold purple numbers indicate the amino acid residue 

numbers of the amino acids attributed to selected product ions based on Yilmaz et al. (2019). T 

he results show that 4 and 12 differ by 15.9595 Da in amino acid-2.  
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Figure S26. LC–HRMS/MS PRM spectrum (method B) of [M + H]+ of [D-Asp3]MC-EE (13) at m/z 970.5.  
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Figure S27. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LA at m/z 896.5 (top), and of [D-Asp3]MC-EE (13) 

at m/z 970.5 (bottom).  
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Figure S28. Expansion (m/z 80–350) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LA at m/z 896.5 

(top), and of [D-Asp3]MC-EE (13) at m/z 970.5 (bottom). Blue lines join peaks differing by m/z +73.9640 (the exact mass difference 

between [D-Asp3]MC-LA and 13) and contain both amino acid-2 and -4; orange lines join peaks differing by m/z +58.0055 (the difference 

in exact mass between Ala and Glu) and contain amino acid-4 but not -2; green lines join peaks differing by m/z +15.9585 (the difference 

in exact mass between Leu and Glu) and contain amino acid-2 but not -4; red lines join peaks that do not differ between the two 

compounds, and thus contain neither amino acid-2 nor -4. Bold purple numbers indicate the amino acid residue numbers of the amino 

acids attributed to selected product ions based on LeBlanc et al.2 The results show that 13 and [D-Asp3]MC-LA differ by +15.9585 Da 

in amino acid-2 and by +58.0055 in amino acid-4.  
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Figure S29. Expansion (m/z 330–670) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LA at m/z 896.5 

(top), and of [D-Asp3]MC-EE (13) at m/z 970.5 (bottom). Blue lines join peaks differing by m/z +73.9640 (the exact mass difference 

between [D-Asp3]MC-LA and 13) and contain both amino acid-2 and -4; orange lines join peaks differing by m/z +58.0055 (the difference 

in exact mass between Ala and Glu) and contain amino acid-4 but not -2; green lines join peaks differing by m/z +15.9585 (the difference 

in exact mass between Leu and Glu) and contain amino acid-2 but not -4; red lines join peaks that do not differ between the two 

compounds, and thus contain neither amino acid-2 nor -4. Bold purple numbers indicate the amino acid residue numbers of the amino 

acids attributed to selected product ions based on LeBlanc et al.2 The results show that 13 and [D-Asp3]MC-LA differ by +15.9585 Da 

in amino acid-2 and by +58.0055 in amino acid-4.  



S33 

 

 
Figure S30. Expansion (m/z 560–980) of the LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-LA at m/z 896.5 

(top), and of [D-Asp3]MC-EE (13) at m/z 970.5 (bottom). Blue lines join peaks differing by m/z +73.9640 (the exact mass difference 

between [D-Asp3]MC-LA and 13) and contain both amino acid-2 and -4; orange lines join peaks differing by m/z +58.0055 (the difference 

in exact mass between Ala and Glu) and contain amino acid-4 but not -2; green lines join peaks differing by m/z +15.9585 (the difference 

in exact mass between Leu and Glu) and contain amino acid-2 but not -4; red lines join peaks that do not differ between the two 

compounds, and thus contain neither amino acid-2 nor -4. Bold purple numbers indicate the amino acid residue numbers of the amino 

acids attributed to selected product ions based on LeBlanc et al.2 The results show that 13 and [D-Asp3]MC-LA differ by +15.9585 Da 

in amino acid-2 and by +58.0055 in amino acid-4.  
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Figure S31. LC–HRMS/MS PRM spectrum (method B) of [M + H]+ of [D-Asp3]MC-RW (14) at m/z 1054.5.  
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Figure S32. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfide conjugate of [D-Asp3]MC-RR (15) at m/z 1059.0 

recorded with setting z = 1 (top) leading to scanning from m/z 73–1100, and recorded with setting z = 2 leading to scanning from m/z 

145–2180 (bottom).  
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Figure S33. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfoxide conjugate of [D-Asp3]MC-RR (16) at m/z 1067.0 

recorded with setting z = 1 (top) leading to scanning from m/z 73–1105, and recorded with setting z = 2 leading to scanning from m/z 

146–2195 (bottom).  
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Figure S34. Extracted positive ion LC−MS chromatograms (method B) at m/z 1031.5197 an extract of: A, NIVA-CYA 544, and; B, 

Lake Victoria bloom sample BSA8,3 showing co-elution of 17 with a sample containing [D-Asp3]MC-RY (17). Panel C shows a weak 

positive ion mode MS/MS spectrum of 17 from NIVA-CYA 544 showing characteristic product ions for an [D-Asp3]MC-RZ congener 

(cf. Figures S31, S35–37). Panels D1 and D2 show positive and negative ion full scan MS spectra of 17 in a mixture of extracts from an 

unlabelled culture of NIVA-CYA 544 and a culture grown in medium containing 98% 15N, showing that 17 contains 10 nitrogen atoms 

(see also Figure S51 for application of the NRC formula calculator to this data).  
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Figure S35. LC–HRMS/MS PRM spectrum (method B) of [M + H]+ of [D-Asp3]MC-RF (18) at m/z 1015.5.  
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Figure S36. LC–HRMS/MS PRM spectrum (method B) of [M + H]+ of [D-Asp3]MC-RCit (20) at m/z 1025.5.  
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Figure S37. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of [D-Asp3]MC-RF (18) at m/z 1015.5 (top), [D-Asp3]MC-RCit (20) 

at m/z 1025.5 (middle), and [D-Asp3]MC-RW (14) at m/z 1054.5 (bottom). Note the prominent product ions at m/z 375.1915 (Adda5–D-

Glu6–Mdha7 minus C9H10O), and 426.2096 (Dha7–D-Ala1–Arg2-D-Masp3) that are characteristic 3-desmethylated MCs containing Arg 

at position-2 (i.e. [D-Asp3]MC-RZ) (cf also spectra of [D-Asp3]MC-RR (1)).
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Figure S38. Extracted ion LC–HRMS chromatograms (method A) of an extract of NIVA-CYA 544 

before (blue) and after (red) esterification with diazomethane. Left, extracted for m/z corresponding to 

[M + H]+ for [D- Asp3]MC-ER (12) and its mono-, di-, and tri-methyl esters; right, extracted for m/z 

corresponding to [M + H]+ for [D-Asp3]MC-EE (13) and its mono-, di-, and tri-methyl esters. Results 

confirmed the presence of one extra carboxylic acid group in 12, and two extra carboxylic acid groups 

in 13, relative to [D-Asp3]MC-LR (4), which was converted almost completely to its mono-methyl ester 

in the same experiment. Earlier retention times (compared to those ones reported in Table 1 and Table 

S1) result from use of an older column for monitoring this reaction. 
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Figure S39. LC−HRMS/MS PRM spectra (method A) of [M + 2H]2+ of putative GSH-conjugate of 1 (19) extracted at m/z 666.3. Top, 

in an extract of NIVA-CYA 544; bottom, in the product obtained from the reaction of a standard of [D-Asp3]MC-RR (1) with glutathione 

(Figure S15). The mass range has been split into two segments with different vertical scales because of the dominance of the Adda-

fragment (m/z 135.0804) in the spectra. The low mass range (m/z 70–150) is shown at full vertical scale (0–100%), whereas an expanded 

vertical scale (0–13%) was used in the range m/z 150–700 to allow visualization of the low-intensity fragments. 
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Figure 40. LC-HRMS (method B) spectrum of [D-Asp3]MC-RR (1) in negative ionization mode ([M − H]−) from a sample containing 

a mixture of an extract from an unlabelled culture of P. prolifica NIVA-CYA 544 and from the same culture grown for an extended 

period in 15N-enriched (>98% 15N) culture medium. Peaks are labelled with their elemental compositions, with all mass errors Δ ≤ 1.0 

ppm. The measured level of 15N-incorporation for the labelled 1 was 98% (see Figure 3). The m/z values and isotopomer peak intensities 

were used in the NRC Molecular Formula Calculator to obtain candidate elemental compositions for 1 (see Figure S42). Similar data 

was used with the NRC Molecular Formula Calculator to obtain candidate elemental compositions for other microcystins in the culture 

(see Figures S43–57).  
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Figure 41. LC-HRMS (method B) spectrum of [D-Asp3]MC-RR (1) in positive ionization mode ([M +2 H]2+) from a sample containing 

a mixture of an extract from an unlabelled culture of P. prolifica NIVA-CYA 544 and from the same culture grown for an extended 

period in 15N-enriched (>98% 15N) culture medium. Peaks are labelled with their elemental compositions, with all mass errors Δ ≤ 2.0 

ppm. The measured level of 15N-incorporation for the labelled 1 was 98% (see Figure 3). The m/z values and isotopomer peak intensities 

were used in the NRC Molecular Formula Calculator to obtain candidate elemental compositions for 1 (see Figure S42). Similar data 

was used with the NRC Molecular Formula Calculator to obtain candidate elemental compositions for other microcystins in the culture 

(see Figures S43–57). 
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Figure S42. Most probable elemental compositions for [D-Asp3]MC-RR (1) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in 

negative (left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. 

Candidate formulae and their scores are shown above the pairs of spectra in each panel, with the 

measured m/z and intensities indicated by the circles and the calculated values shown with vertical 

lines. For original data, see Figures S40 and S41.  
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Figure S43. Most probable elemental compositions for oxidized [D-Asp3]MC-RR (1-oxide) based on 

full-scan LC–MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) 

cultures in negative (left) and positive (right) ionization modes using the NRC Molecular Formula 

Calculator. Candidate formulae and their scores are shown above the pairs of spectra in each panel, with 

the measured m/z and intensities indicated by the circles and the calculated values shown with vertical 

lines.  
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Figure S44. Most probable elemental compositions for [D-Asp3]MC-LR (4) based on full-scan LC–MS 

(method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. Candidate 

formulae and their scores are shown above the pairs of spectra in each panel, with the measured m/z and 

intensities indicated by the circles and the calculated values shown with vertical lines.  
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Figure S45. Most probable elemental compositions for [D-Asp3,Mser7]MC-RR (11) based on full-scan 

LC–MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in 

negative (left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. 

Candidate formulae and their scores are shown above the pairs of spectra in each panel, with the 

measured m/z and intensities indicated by the circles and the calculated values shown with vertical lines.  
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Figure S46. Most probable elemental compositions for [D-Asp3]MC-ER (12) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) ionization mode using the NRC Molecular Formula Calculator. Candidate formulae and their 

scores are shown above the pairs of spectra in each panel, with the measured m/z and intensities indicated 

by the circles and the calculated values shown with vertical lines.  
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Figure S47. Most probable elemental compositions for [D-Asp3]MC-EE (13) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) ionization mode using the NRC Molecular Formula Calculator. Candidate formulae and their 

scores are shown above the pairs of spectra in each panel, with the measured m/z and intensities indicated 

by the circles and the calculated values shown with vertical lines.  
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Figure S48. Most probable elemental compositions for [D-Asp3]MC-RW (14) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in 

negative (left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. 

Candidate formulae and their scores are shown above the pairs of spectra in each panel, with the 

measured m/z and intensities indicated by the circles and the calculated values shown with vertical 

lines.  
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Figure S49. Most probable elemental compositions for the sulfide conjugate of [D-Asp3]MC-RR (15) 

based on full-scan LC–MS (method B) data for normalized 15N-labelled (red) and natural abundance 

(black) cultures in negative (left) and positive (right) ionization modes using the NRC Molecular 

Formula Calculator. Candidate formulae and their scores are shown above the pairs of spectra in each 

panel, with the measured m/z and intensities indicated by the circles and the calculated values shown 

with vertical lines.  
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Figure S50. Most probable elemental compositions for the sulfoxide conjugate of [D-Asp3]MC-RR (16) 

(i.e. 15-oxide) based on full-scan LC–MS (method B) data for normalized 15N-labelled (red) and natural 

abundance (black) cultures in negative (left) and positive (right) ionization modes using the NRC 

Molecular Formula Calculator. Candidate formulae and their scores are shown above the pairs of spectra 

in each panel, with the measured m/z and intensities indicated by the circles and the calculated values 

shown with vertical lines.  
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Figure S51. Most probable elemental compositions for [D-Asp3]MC-RY (17) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. Candidate 

formulae and their scores are shown above the pairs of spectra in each panel, with the measured m/z and 

intensities indicated by the circles and the calculated values shown with vertical lines.  
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Figure S52. Most probable elemental compositions for [D-Asp3]MC-RF (18) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. Candidate 

formulae and their scores are shown above the pairs of spectra in each panel, with the measured m/z and 

intensities indicated by the circles and the calculated values shown with vertical lines.  
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Figure S53. Most probable elemental compositions for the glutathione conjugate of [D-Asp3]MC-RR 

(19) based on full-scan LC–MS (method B) data for normalized 15N-labelled (red) and natural 

abundance (black) cultures in negative (left) and positive (right) ionization modes using the NRC 

Molecular Formula Calculator. Candidate formulae and their scores are shown above the pairs of spectra 

in each panel, with the measured m/z and intensities indicated by the circles and the calculated values 

shown with vertical lines.  
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Figure S54. Most probable elemental compositions for [D-Asp3]MC-RCit (20) based on full-scan LC–

MS (method B) data for normalized 15N-labelled (red) and natural abundance (black) cultures in negative 

(left) and positive (right) ionization modes using the NRC Molecular Formula Calculator. Candidate 

formulae and their scores are shown above the pairs of spectra in each panel, with the measured m/z and 

intensities indicated by the circles and the calculated values shown with vertical lines.
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Figure S55. Left, LC-HRMS (method B) chromatograms of the [D-Asp3]MC-RR cysteine conjugate in unlabelled and 15N-labelled 

cultures of P. prolifica NICA-CYA 544 in positive and negative modes extracted at m/z for [M + 2H]2+ and [M – H]−. Note the presence 

of a major and a minor isomer. Centre, positive mode mass spectra of the major isomer in the unlabelled (top) and 15N-labelled cultures 

(bottom). Right, negative mode mass spectra of the major isomer in the unlabelled (top) and 15N-labelled cultures (bottom). Analysis of 

the isotope patterns with the NRC Molecular Formula Calculator is shown in Figure S57.  
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Figure S56. Left, LC-HRMS (method B) chromatograms of the [D-Asp3]MC-RR cysteine conjugate in unlabelled and 15N-labelled 

cultures of P. prolifica NICA-CYA 544 in positive and negative modes extracted at m/z for [M + 2H]2+ and [M – H]−. Note the presence 

of a major and a minor isomer. Centre, positive mode mass spectra of the minor isomer in the unlabelled (top) and 15N-labelled cultures 

(bottom). Right, negative mode mass spectra of the minor isomer in the unlabelled (top) and 15N-labelled cultures (bottom).
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Figure S57. Most probable elemental compositions for the major isomer of the cysteine conjugate of 

[D-Asp3]MC-RR based on the full-scan LC–MS (method B) data shown in Figure S55. The panels show 

normalized 15N-labelled (red) and natural abundance (black) mass spectra for cultures in negative (left) 

and positive (right) ionization modes using the NRC Molecular Formula Calculator. Candidate formulae 

and their scores are shown above the pairs of spectra in each panel, with the measured m/z and intensities 

indicated by the circles and the calculated values shown with vertical lines.
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Figure S58. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfide conjugate of the: top, unlabelled [D-Asp3]MC-RR 

(15) at m/z 1059.0 recorded with setting z =1; bottom, 15N-labelled 15 at m/z 1069.5. Note the characteristic product ions indicating the 

presence of [D-Asp3]MC-RR (1) in conjugate-15.  
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Figure S59. Expansion of LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfide conjugate (see Figure S58) of the: top, 

unlabelled [D-Asp3]MC-RR (15) at m/z 1059.0 recorded with setting z =1; bottom, 15N-labelled 15 at m/z 1069.5. Note the characteristic 

product ions indicating the presence of [D-Asp3]MC-RR (1) in conjugate-15.  
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Figure S60. Expansion of LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfide conjugate (see Figure S58) of the: top, 

unlabelled [D-Asp3]MC-RR (15) at m/z 1059.0 recorded with setting z =1; bottom, 15N-labelled 15 at m/z 1069.5. Note the characteristic 

product ions indicating the presence of [D-Asp3]MC-RR (1) in conjugate-15.  
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Figure S61. LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfoxide conjugate of the: top, unlabelled [D-Asp3]MC-RR 

(16) at m/z 1067.0 recorded with setting z =1; bottom, 15N-labelled 16 at m/z 1077.5. Note the characteristic product ions indicating the 

presence of [D-Asp3]MC-RR (1) in conjugate-16.  
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Figure S62. Expansion of LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfoxide conjugate (see Figure S61) of the: 

top, unlabelled [D-Asp3]MC-RR (16) at m/z 1067.0 recorded with setting z =1; bottom, 15N-labelled 15 at m/z 1077.5. Note the 

characteristic product ions indicating the presence of [D-Asp3]MC-RR (1) in conjugate-16.  
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Figure S63. Expansion of LC–HRMS/MS PRM spectra (method B) of [M + 2H]2+ of the sulfoxide conjugate (see Figure S61) of the: 

top, unlabelled [D-Asp3]MC-RR (16) at m/z 1067.0 recorded with setting z =1; bottom, 15N-labelled 15 at m/z 1077.5. Note the 

characteristic product ions indicating the presence of [D-Asp3]MC-RR (1) in conjugate-16.  
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Figure S64. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of: top, unlabelled [D-Asp3]MC-RCit (20) at m/z 1025.5, and; bottom, 
15N-labelled 20 at m/z 1037.5. Note the prominent neutral loss of isocyanic acid (HNCO, 43.0058 Da) in unlabelled 20, which 

characteristic of citrulline residues in peptides.4  
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Figure S65. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of: top, unlabelled [D-Asp3]MC-RW (14) at m/z 1054.5, and; bottom, 
15N-labelled 14 at m/z 1069.5.  
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Figure S66. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of: top, unlabelled [D-Asp3]MC-RF (18) at m/z 1015.5, and; bottom, 
15N-labelled 18 at m/z 1025.5.  
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Figure S67. LC–HRMS/MS PRM spectra (method B) of [M + H]+ of: top, unlabelled [D-Asp3]MC-RR (1) at m/z 1024.5, and; bottom, 
15N-labelled 1 at m/z 1037.5. Note the presence of the characteristic singly-charged product ions at m/z 135.0804 (derived from Adda5), 

426.2096 (derived from Mdha7–Ala1–Arg2–Asp3), and 599.3552 (derived from Arg4–Adda5–Glu6) that were also observed in the MS/MS 

spectra of 15 and 16 (Figures S32–33 and S58–63).
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