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Abstract: The extraction and purification of collagen are of great interest due to its biological function
and medicinal applications. Although marine invertebrates are abundant in the animal kingdom,
our knowledge of their extracellular matrix (ECM), which mainly contains collagen, is lacking.
The functions of collagen isolated from marine invertebrates remain an untouched source of the
proteinaceous component in the development of groundbreaking pharmaceuticals. This review
will give an overview of currently used collagens and their future applications, as well as the
methodological issues of collagens from marine invertebrates for potential drug discovery.
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1. Introduction

Collagen is one of the most abundant proteins in the extracellular matrix of animal bodies. This
protein is the main fibrous, structural protein and supports the formation of all joints in the body.
Supplementing collagen is an important way to keep our body healthy. Nowadays, collagen-based
biomedical materials are used for the treatment of many human diseases (e.g., bone tissue regeneration).
The challenge currently facing scientists is to find a suitable source of collagen, and the extraction and
purification of collagen, which would be appropriate for applying to medical applications.

There is a huge source of collagen from marine organisms, and recent research has demonstrated
that the marine source is the most convenient and safest way to obtain it, with invertebrates
and crustose coralline algae [1–9] being the most abundant and potential sources (see Figure 1A
for examples). A marine source also has lots of advantages over land animals such as being
environmentally friendly, having a high quantity of collagen, having biological toxins that are almost
negligible, having better absorption due to low molecular weight, having a minimal inflammatory
response, having less religious and ethical constraints, being metabolically compatible, and having
few regulatory and quality control problems.

In this review, I included crustose coralline algae (CCA) because they have similar characteristics
of proteinaceous components and mineralization processes like calcifying marine invertebrates. CCA
are rock-hard calcareous with two key functional roles in coral reef ecosystems: (1) reef calcification
and cementation and (2) inducing the larval settlement of many benthic organisms. CCA contain
calcium carbonate with hard skeletons and minerals (e.g., calcite) similar to coral skeletons. In addition,
CCA have a high content of organic matrix skeletal proteins, including chitin and collagen [5,9]. CCA
are abundant and are found in marine waters all over the world. I therefore introduce these abundant
marine sources with the invertebrates presented in this review, which might have a high potential for
the extraction of collagens, and moreover use for medical applications.

Invertebrates make up almost 95% of the animal kingdom, but our knowledge of their extracellular
matrices, in particular, the polymer collagen is very weak. The information on the biology of
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collagen within the extracellular matrix is scanty. A large number of marine invertebrates produce
polysaccharides and extracellular matrices [10–14] within their connective tissues, and their molecular
structures and functions are similar to humans [15,16]. Moreover, polysaccharides extracted from
marine calcifiers that contain extracellular matrices have an enormous assortment of structures
(Figure 1B), and they can be considered an extraordinary source of biochemical variety. We therefore
discuss the studies of collagens of invertebrates (including related marine calcifiers) and their plausible
medical application.

Treatment of bone defects such as replacing tissue or regeneration requires biomaterials with
similar mechanical integrity to natural bone, which can adapt and contribute to the tissue growth
processes. From an applicable biomaterials point of view, the mineralized extracellular matrix
of collagen in marine invertebrate structures has a vast richness for tissue engineering [17,18].
The skeletons in marine invertebrates are classic bio-resources that have tailored architectures to give
structural support, and their functions are feasible for human tissue regeneration and repair. Marine
calcifiers, for example, coralline, sea urchin, and coral, have interconnected porous structures that are
enriched with bioactive elements and medical materials that could be used for tissue engineering and
drug design applications [5,11,12,19–23]. The main purpose of this review is to provide an overview
of currently used collagens from marine invertebrates and related calcifying organisms, and their
medicinal potential, as well as the technical issues in purifying collagen from them.
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Figure 1. Marine calcifiers and their collagens. (A) Examples of marine calcifiers/invertebrates.
(B) A model image on the biological synthesis of collagens from the marine invertebrates and crustose
coralline algae.

2. Current State of Collagen Research and its Medical Application

There has been significant progress in the research of marine natural products in the purpose of
medical application nowadays. Marine invertebrates are the main source of this purpose; however,
finding collagen for the treatment of bone-related diseases is not well established yet. Many research
groups have been studying collagen in some marine calcifier tissues with a focus on structure and
functional relationships [1–10]. The biology of the extracellular matrix (Figure 2), particularly of
collagen in invertebrates is essential to understanding the continuing research in the field of marine
natural products. One of the key components of the structure of the collagen is a glycoprotein (see
Figure 2, left panel), and many organisms in the CCA and invertebrate such as corals (especially, soft
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corals), coralline algae, and jewelry corals [5,24–26] have already demonstrated this key molecule (see
Figure 3 for some examples). Helman et al. [24] reported collagen production in the ECM of both
soft (Xenia elongata) and hard (Montipora digitata) corals. They clearly demonstrated the presence of
glycoprotein in the ECM of corals, which means the presence of collagen must exist if the glycoprotein
is present in the species. This is an indicator for species that contain collagen molecules.

Figure 2. Collagen of extracellular matrix and its biology in invertebrates. The right panel shows
a model of cells. The left panel shows the structural components of the extracellular matrix, which are
involved in the formation of collagen in marine invertebrates.

To date, collagen has been identified in corals, sponges, sea urchin, salmon, jellyfish, mollusk, and
coralline red algae [2–5,7–10,20,27–33], among others. Most of these organisms have also been applied
for use in tissue engineering [34]. Collagen from marine invertebrates and related calcifiers have been
discussed in numerous review papers [5,6,31,35–42] where the authors highlighted details regarding
the structure and application of the collagen of this abundant marine source. It is a great possibility
to use the huge source of marine invertebrates for extracting and purifying collagen, not only for the
medical application and bone-related disease but also for use in cosmetics and anti-aging [43–48].

Recently, our group explored collagen in coralline red algae [5,9]. The research is now continuing,
and a high number of collagens have now been extracted from this organism (papers in preparation).
Some portions of this organism contain both chitin and collagen (Figures 4 and 5). Because of the huge
number of these organisms available in shallow water of the sea, it would be an easy way to collect
this marine group for extracting collagen. However, purification of collagen from these organisms has
been a problem, and this issue has already been mostly solved (see Section 3 for details). This is a new
group of marine organisms, which could get special attention for the extraction of collagen molecules
in the near future.
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Figure 3. Collagen associated glycoproteins in marine calcifiers. Coralline red algae: Sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a periodic acid-schiff (PAS) staining to
detect glycoprotein in the extracellular matrix of Clathromorphum compactum. M, protein ladder. Lane 1
and 2, high molecular weight (250 kDa) of a glycoprotein. Soft coral (Sinularia polydactyla): SDS-PAGE
with a PAS staining to detect glycoprotein in the extracellular matrix of S. polydactyla. M, protein
ladder. Two glycoproteins (83 and 63 kDa) were identified in this species. Soft Coral (Lobophytum
crassum): SDS-PAGE with a PAS staining. The PAS staining to detect glycoprotein in the extracellular
matrix of L. crassum. M, protein ladder. Two glycoproteins (102 and 67 kDa) were identified in this soft
coral species. The Precision Plus SDS-PAGE protein ladder (Bio-Rad) was used for the electrophoresis
analysis of all above-mentioned glycoproteins. The glycoproteins presented here were reproduced
from Rahman [5] for the coralline red algae and Rahman et al. [25] for the two soft corals (S. polydactyla,
L. crassum).

Figure 4. X-ray diffraction (XRD) analysis of C. compactum. The 2θ scan identifies the mineral form of
CaCO3 crystal planes, which were nucleated by chitin and collagen matrices. Purple arrows show the
collagen bands. Reproduced with permission from Rahman and Halfar [9].
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Figure 5. Infrared (IR) of collagens in C. compactum. Attenuated total reflection (ATR)–Fourier–transform
infrared spectroscopy (FTIR) spectra reveal the collagen bands in both soluble (A) and insoluble (B) organic
matrix fractions. [Reproduced from Rahman and Halfar (9)].

It is assumed that half of all marine-derived biomaterials are sourced from marine sponges, which
might be the highest number of organisms in the invertebrates currently being used for the extraction
of collagen. In sponges, collagen fibers have an interesting structural feature [45,49], and the molecules
isolated from this group have a wide range of activities that can be used for promising biomedical
applications [4,6], especially collagenous marine sponge skeletons, which are extremely strong, highly
absorbent, elastic, and resistant to bacterial attack. A recent review by Ehrlich et al. [6] described
details about collagen and collagen-like structural proteins from sponges. They also highlighted the
prospects and trends of collagen extracted from sponges in biomedical applications, materials science,
and technology. From the same research group [1], a hydroxylated fibrillar collagen containing an
unusual motif of “Gly–3Hyp–4Hyp” was isolated from the glass sponge (Hexactinellida). The authors
hypothesized that this motif in fibrillar collagen subject is a silica precipitation and a template for
biosilicification. Recently, Tziveleka et al. [4] isolated and characterized the collagens from the marine
demosponges Suberites carnosus (Suberitidae) and Axinella cannabina (Axenillidae) and found three
different collagen-insoluble collagen (InSC), spongin-like collagen (SlC), and intracellular collagen
(ICC) for biomedical applications. Collagen was isolated from many other marine sponges, for instance,
Chondrosia reniformis [47], Microciona prolifera, Spongia graminea, Haliclona oculata [42], Cacospongia
scalaris, Hippospongia communis [49], Chondrosia reniformis [50,51], Geodia cydonium [52], and several
Ircinia species [53].

Corals are an abundant source of biologically and structurally active compounds. Coral
skeletons have interconnected pores and are composed of CaCO3, with appropriate porosity and
pore sizes, making them a suitable material for bone implant application [17]. Regarding its interesting
structural formation, coral has been in use commercially since the 1990s and is available as interpore
and bio-coral [21]. There are several studies that have been found for such kinds of application,
e.g., a three-dimensional coral skeleton structure endorsed the hard tissue growth and was totally
replaced by new bone [22]. Similarly, a coral skeleton was used in human grafting [23]. Because of the
structural compositions of coral, it absorbed CaCO3 very quickly in growing new bone tissue, allowing
for a formation of a scaffold. These reports indicate that the corals might have collagenous molecules,
which can be applied as a treatment for bone-related disease.

However, the research for collagen on corals, especially for soft corals, has remarkably improved.
Over the last several years [2,3,44,54], very interesting findings on collagen molecules have been
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demonstrated from soft corals. Also, a number of collagen-associated glycoproteins have been
detected in soft corals [14,24,25,55,56]. The researchers found unique collagen fibers from the soft
coral Sarcophyton ehrenbergi [2,3]. These fibers expose a 3D structure and hyper-elastic behavior, which
are analogous to natural human tissues. The peculiarity of these fibers is too long (9 ± 0.37 µm).
The research also demonstrated the collagen I and II types. The structural characterization of these
collagen fibers reveals a highly suitable biomaterial for medical applications. Benayahu et al. [54]
invented an interesting patent from the same soft coral species S. ehrenbergi. The inventors claimed
that “(1) the collagen fibers from the soft coral have high adjustable extensibility compared with
mammalian collagen fibers and (2) the stiffness of the collagen fibers isolated from this species is at the
top range of the reported stiffness range of mammal collagen fibers”. Another study [24] demonstrated
the structural differentiation of collagen production in the ECM of soft corals; however, the authors
did not investigate the types of collagen. Besides the above-mentioned marine organisms, sea urchin,
marine fish, and mollusk organisms have been used for extracting different types of collagen, and the
evidence showed that these collagen molecules have a strong role in the treatment of bone-related
disease [20,27,29–31,33].

As mentioned above, research on the medical application of marine invertebrate collagen
is currently progressing well. However, most collagen research findings from marine
calcifiers/invertebrates are used in the application of bone-related disease (34), but the research
in this field is still suffering from various complications. The medical application of marine collagens
has been highlighted in recent reviews [6,31,35,57,58]. A review report by Cicciù et al. [57] suggested
the facial bone reconstruction defect by applying marine collagen. During this review, the authors
conducted a search using the MEDLINE and EMBASE databases (2007 to 2017), and their search results
suggested that marine collagen can support the stability of the bone graft and could be an excellent
carrier for growth factors. There are some recent reports of marine sources (coral, sponge, sea urchin,
and fish) focused on the medical application (including bone tissue engineering and related diseases)
of collagen available in the literature [3,6,17,31,59–61]. Moreover, collagen derived from mollusks,
echinoderms, and sponges was reported [62–71], with some other important medical applications.

3. Purification Technique of Collagens from Marine Invertebrates

The molecules in invertebrates are complex, and therefore the purification of any specific molecule
from this group is tricky. An individual species is required to apply different techniques, as the
characterization of their components is multifaceted. For instance, soft corals have sclerites and soft
tissue (unlike the stony corals) comprising complex organic matrices [14]. For these complexities,
it was difficult to purify molecules; however, our group successfully purified the molecules [11,14],
including the functional extracellular matrix proteins (e.g., ECMP-67), enzymes, calcium-binding
proteins, and glycoproteins (see Figure 3 for examples). Glycoprotein in the extracellular matrix
protein is a key component of collagen (Figure 2) that plays the main role in the biological process of
collagen in invertebrates. Applying similar techniques, we recently investigated coralline algae, which
have a high concentration of both chitin and collagen biopolymers and are functional in both soluble
and insoluble organic matrix fractions (Figures 4 and 5) [5,9].

Coralline algal concentrations of the soluble organic matrix (0.9%) and insoluble organic matrix
(4.5%) fractions are significantly higher than those of other marine invertebrates such as soft corals,
with a soluble organic matrix and insoluble organic matrix of 0.03% and 0.05%, respectively [56,72].
The evidence of purified collagen in the coralline skeletons was also shown by X-ray diffraction (XRD)
analysis (Figure 4). Jiang et al. [73] identified mineral crystals in collagen fibrils in a different marine
invertebrate. The findings by Jiang et al. support our XRD results, and this technique has been revealed
as a promising tool in analyzing collagens in the mineralization process. The results obtained by XRD
demonstrated that XRD will become an important tool to study biological materials like collagen from
the ECM of invertebrates. Such a high concentration of collagen present in the organic matrices of
marine calcifiers presents the opportunity for future drug development in bone-related disease, and,
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moreover, both chitin and collagen present in the same species can take a significant role in drug design
of other related diseases, because these two polymers are commonly used in drug design [74–83].

At present, the methods for the isolation and purification of collagens from the octocorals have
been significantly improved. A patented protocol on the collagen purification from the soft coral [54]
is now on the market. Since this method is patented, it is not open to the public. However, there
are several publications by the same research group that currently exist in the literature, in which
they established the methods in purifying collagens (including collagen types I and II) from the soft
coral [2,3]. The development of these new technologies, along with the technologies established by our
group as mentioned above, will be extremely beneficial for purifying functional collagens from these
marine organisms.

Despite the importance of collagenous marine sponge skeletons being documented, the techniques
for the purification of collagens from this group are not well-established yet because of their insolubility
and mineralization, which might cause difficulties in its separation and characterization [84,85].
However, researchers are trying to resolve these issues, and numerous investigations have so far been
reported in this group [47,50,53,86,87]. Recently, Pozzolini et al. [47] established several new methods
to purify collagenous fibrillar suspensions from the Chondrosia reniformis demosponge. The authors
demonstrated that the obtained fibrillar collagens are extensively useful for tissue engineering and
regenerative medicine, as well as in antioxidant activity.

There are some techniques that have been established in purifying collagens from the invertebrates;
however, a proteomic approach might be a useful tool to learn more about the collagen and
its functions in detail. Proteomics have already been established as an important tool for the
detection, characterization, and analysis of pharmaceutically useful proteins from marine organisms,
and this approach provides the most precise evaluation of protein identities, abundance, composition,
and protein expression profiling [5,26,88–90]. Therefore, in regard to collagen, the proteomics
approach could be a promising toolkit in the near future. The overview regarding marine collagen of
invertebrates stated above allows us to understand some newly developed techniques and suitable
methods for extracting and purifying collagen, as well as for applying proteomics approach for
medical applications.

4. Future Applications of Invertebrate Collagens in Medical Field

The marine ecosystem provides suitable and numerous diversified resources for human health
in comparison to the terrestrial ecosystem. In the last few decades, marine resources, especially
invertebrates, have been recognized to be a promising source for many drugs (e.g., Cytarabine,
Vidarabine, and Halichondrin B) [91]. According to the discussion above (Sections 1–3), marine
invertebrates and related calcifying organisms such as soft and hard corals, sponge, mollusk, sea
urchin, and coralline algae could be a major source of medicines over the next decades. However,
extraction and purification of collagen for the purpose of medical application of these resources is still
under investigation developing. Despite some impressive work having been performed on collagenous
sponges and corals [1–4,6,7,15–17,47,54,91–93], an intensive study is necessary with these two groups
and other invertebrates to use these huge apposite resources in future years. The potential of marine
invertebrates for collagen could be realized by developing new technologies; indeed, there are many
methods such as proteomics, computer-aided design, bioinformatics, and combinatorial synthesis that
are now being applied.

The biological diversity of marine invertebrates and complex protein and peptide components
direct us toward discovery of many new drugs for various therapeutic areas, including bone-related
disease (e.g., osteoporosis) [94]. Besides cancer, microbial infections, and inflammation, drug discovery
for bone-related disease is the biggest challenge of the current century, and collagen extraction from
marine invertebrates shows new promise in fighting against this and other related diseases.



Mar. Drugs 2019, 17, 118 8 of 12

5. Concluding Remarks

In this review, the current state of research on collagen extracted from the ECM of invertebrates
and its applications in the medical field have been discussed, and some light has been shed on future
perspectives of this important marine material. The methodological issues of collagen purification
from invertebrates, which the researchers are currently struggling with, have also been highlighted.
The discussion concerning the purification techniques in this review could be of tremendous help
in the extraction of purified collagen from invertebrates. The extracellular matrix, which is one
of the key components in invertebrates and is responsible for producing collagen in this marine
group, has been elaborated with informative imaging. In addition, the glycosylation activity with the
formation of glycoproteins (size of the protein, which varies from species to species) in invertebrates,
whose biological processes are involved in producing collagen, has been discussed for the first time in
this review. The obtained results demonstrate the potential for marine invertebrates to generate new
drugs, especially for bone tissue regeneration.

Conflicts of Interest: The authors declare no conflict of interest.
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