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Abstract: Understanding subtype specific ion channel pore blockage by natural peptide-based toxins
is crucial for developing such compounds into promising drug candidates. Herein, docking and
molecular dynamics simulations were employed in order to understand the dynamics and binding
states of the p-conotoxins, PIIIA, SIITA, and GIIIA, at the voltage-gated potassium channels of the
KV1 family, and they were correlated with their experimental activities recently reported by Leipold
et al. Their different activities can only adequately be understood when dynamic information about
the toxin-channel systems is available. For all of the channel-bound toxins investigated herein,
a certain conformational flexibility was observed during the molecular dynamic simulations, which
corresponds to their bioactivity. Our data suggest a similar binding mode of p-PIIIA at KV1.6 and
KV1.1, in which a plethora of hydrogen bonds are formed by the Arg and Lys residues within
the o-helical core region of pu-PIIIA, with the central pore residues of the channel. Furthermore,
the contribution of the K+ channel’s outer and inner pore loops with respect to the toxin binding.
and how the subtype specificity is induced, were proposed.
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1. Introduction

Voltage-gated ion channels, such as potassium (Ky), calcium (Cay), or sodium (Nay), mediate
the ion flow through the membrane that is essential for various physiological functions. Whereas
Ky channels are of the utmost importance for the electrical excitability of muscle cells and neurons,
sodium selective Nay channels are crucial for the initiation and propagation of action potentials [1].

Unlike Nay channels, which are heterotetramers, Ky channels are homotetrameric complexes.
Both Nay and Ky ion channels consist of six transmembrane helices (51-56). The loop-like linker
segment that connects the transmembrane helices S5 and S6 is located within the center of the channel’s
pore duct, and harbors the selectivity filter [2,3]. Furthermore, the voltage-sensing 54 segments are
responsible for the opening of the channel [3,4], which is further controlled by the outer located helical
segments 51-53 [5,6]. As the mechanism of ion-conduction through voltage-gated potassium channels
appears to be well understood [4,7], the mechanism of sodium ion conduction through Nay channels
is still under intense investigation [1,8-13].

The agonistic and antagonistic deactivation of the ion channels form the basis of the analgesic
effects, either triggering a constant opening or direct occlusion of the channel [14-16]. For example,
peripheral Nay1.7 channels are essential for mediating the pain signal [17], and are suggested as being
a valuable target.
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Conotoxins—small, cysteine-rich polypeptides obtained from the venom of marine cone
snails—are such ion channel antagonists. Some of these toxins are known to block voltage-gated ion
channels by occluding their pores [18-20], thus interrupting the signal transmission between neurons.
Conotoxins usually consist of 10 to 30 amino acids and are grouped into superfamilies according
to their disulfide pattern. p-Conotoxins, which are known to specifically inhibit Nay channels, are
typically 16 to 25 amino acids long and harbor three disulfide bridges, with the so-called “native
fold” connecting Cys1-Cys4, Cys2—Cys5, and Cys3—Cys6 (numbered in the order of occurrence in
the amino acid sequence) [21,22]. As some of these p-conotoxins (pu-SIITA and p-PIITA) show some
inhibitory activity towards Nay1.7, are considered as having a potential for analgesics, as long as they
are specific [23,24].

Unlike the conotoxin, p-GIIIA, which exclusively blocks skeletal muscle voltage-gated sodium
channel NaV1.4, the conopeptides p-PIIIA and p-SIIIA additionally inhibit the neuronal sodium channel
NaV1.2. Recently, the latter two were shown to not be exclusively specific for NaV channels [1,25-27].
u-PIIA and p-SIIA were inactive on subtypes KV1.2 to KV1.5, and KV2.1 p-SIIIA only partially
inhibited KV1.1 and KV1.6, while u-PIIIA blocked both of the channels, unveiling a nanomolar affinity
towards them (Figure 1b) [1]. Additionally, Leipold et al. constructed and evaluated the chimeras
between KV1.5 and KV1.6, unveiling that the channel block by p-PIIIA involves the pore regions,
whereas the subtype specificity is determined in part by the sequence close to the selectivity filter (P2
inner loop, Figure 1a), but predominantly by the so-called turret domain (P1 outer loop, Figure 1a) [1].
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Figure 1. (a) Aligned amino acid sequence of the central, toxin-interacting channel region shown for one
subunit of the Kv1 family (Kv1.1-Kv1.6), Kv2.1, and of the chimeras Kv1.6-5P2 and Kv1.6-5P1, which
were all tested against p-PIIIA, p-SIIIA, and/or p-GIIIA, respectively. by Leipold et al. [1]. Amino
acids are coloured according to their physicochemical properties (basic—light blue; acidic—magenta;
polar/neutral—green; non-polar polar/hydrophobic—orange). The secondary structure elements are
indicated above the alignment. (b) Activity rates [%] of u-PIIIA, u-SIIIA, and p-GIIIA on potassium
channels Kv1.1-Kv1.6, Kv2.1, and Kv1.5-Kv1.6 chimera channels, as published by Leipold et al. [1].
Lower percentage values of Liemaining correspond to higher blocking activities.
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Unfortunately, this clearly limits their analgesic potential. Despite Leipold et al.’s disappointing
observations, the high number of well resolved potassium channel crystal structures would certainly
allow for a profound and detailed in-silico analysis of p-conotoxin binding to Ky channels. Moreover,
the experimental data obtained by Leipold and coworkers might allow us to shed light on the questions
of how toxins achieve their subtype specificity on a much higher qualitative level, as this would
currently be possible for p-conotoxin binding at Nay.

Thus, this work makes use of powerful state-of-the-art in-silico approaches, investigating the
subtype-specific inhibition of potassium channels by p-conotoxins. Based on the experimental data
published by Leipold et al. [1], we performed docking and subsequent molecular dynamics (MD)
simulation experiments illustrating the dynamic interplay between p-conotoxins p-PIIIA, p-SIIIA, and
p-GIIIA at the potassium channels Ky1.1, Ky1.5, and Ky1.6, and at two chimeric channel constructs.
In this context and for reasons of comparison, p-SIIIA was investigated as a partially channel blocking
semi-active system, while pu-GIIIA was investigated as an inactive candidate. In particular, the different
pore blocking modes—full or partial pore coverage—were of special interest, and were intended to
achieve more insight into the origin of the remaining currents, especially observable for semi-active
systems. Our studies revealed that the centric u-PIIIA residues were responsible for the blockage events
on Ky1.1 and Ky1.6, which is compliant with studies of p-PIIIA on Nay channels. More specifically,
our results indicate that residues Lys9, Argl2, Argl4, and GIn15, located within the toxin center of
u-PIIIA, are responsible for blocking the Ky1.1 and Ky 1.6 channels. So far, these residues have also
been reported to be essential for the blockage of sodium channels in different binding modes [19,28,29].
We further observed that the remaining currents may arise from an insufficient pore coverage or from
(coincident) the increased dynamics of the toxin or specific toxin residues.

2. Methods

2.1. Homology Modelling

The YASARA molecular modeling program (Yasara structure, Vers. 18.3.23, Yasara Biosciences
GmbH, Vienna, Austria) [30,31] was used to create a homology model of the Kv1.6 potassium channel.
The modeling parameters used for the complete process were as follows.

On the basis of the complete Kv1.6 amino acid sequence, 89 possible templates were identified,
running three subsequent PSI-BLAST (NCBI—National Center for Biotechnology Information, U.S.
National Library of Medicine, Bethesda, MD, USA) iterations [32]. A position specific scoring matrix
(PSSM) from UniRef90 [33] was extracted, for which the Protein Data Bank (PDB) was then searched for
a match (hits with an E-value below the cutoff of 0.5) in a second step. Altogether, four hits (PDB-IDs
2R9R-B, 3LNM-B, 3LUT-B, and 2A79-B) were identified from the 89 structures available as suitable
modeling templates for Kv1.6. To aid in alignment correction and loop modeling, a secondary structure
prediction for the target sequence had to be obtained. This was achieved by, again, running PSI-BLAST
in order to create a target sequence profile, and then feeding it to the PSI-Pred secondary structure
prediction algorithm [34]. To help align the target and template sequences, a target sequence profile
was created from a multiple sequence alignment, which in turn was built from the related sequences
from the PSI-BLAST obtained the UniRef90 sequences in the first step.

For the four template PDBs, altogether, 29 models were generated based on the alternative
alignments of the target and the respective template protein sequence. Side chains were added using
YASARA'’s implementation of SCWRL3 [35], and were fine-tuned by considering the electrostatic,
knowledge-based packing iterations and solvation effects. The hydrogen bond network was
optimized [36], and each model was then subjected to an unrestrained energy minimization with
explicit water molecules by simulated annealing employing the YASARA2 force field [31].

The 29 models were ranked by their overall quality Z-scores. In addition, YASARA created a
hybrid model by combining the individual models’ best parts. As this hybrid model was ranked the
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best, it was used as the final channel model. A more detailed description of YASARA’s homology
modeling protocol can be found online (http://yasara.org/homologymodeling.htm).

Employing the Kv1.6 homology model, further model structures were generated for Kv1.1 and
Kv1.5, and for the chimera channels “Kv1.6-5P1” and “Kv1.6-5P2”, respectively. For the Kv1.6-5P1
homology model residues of the “p1”-loop of Kv1.6 were substitute by the residues of the “p1”-loop of
Kv1.5 (Figure 1) maintaining the backbone secondary structure.For the Kv1.6-5P2 homology model
the residues of the “p2” -loops of the Kv1.6 channel were substituted by the residues of the “p2”-loops
of Kv1.5 (Figure 1) while maintaining the backbone secondary structure. In order to yield the Kv1.5
and Kv1.1 homology model the sequence of the p1 and p2 loop of the original Kv1.6 homology model
(Figure 1) was changed accordingly, maintaining the secondary structure of the parent structure.
Finally, all additional models were energy-minimized for further use.

The voltage-sensor domains of the modeled Kv1 channels were omitted from any further steps,
as they are not involved in the p-conotoxin binding studied in this work.

2.2. Docking

The toxin channel binding was predicted by docking the NMR structures of u-PIIIA [37] (PDB ID:
1R9I), u-SIIIA (BMRB- Biological Magnetic Resonance Bank ID: 20023), and p-GIIIA (PDB ID: 1TGC)
on the potassium channel Kv1.1, Kv1.5, and Kv1.6, and the chimera homology models, using the
Easy Interface of the HADDOCK online platform [38—40] (https://haddock.science.uu.nl/services/
HADDOCK2.2 /haddockserver-easy.html), a web service known to be suitable for handling more
complex peptide ligand structures [39].

For the docking process, residue regions, which are part of the channel’s upper surface, as well as
all of the toxin residues, were defined as “active”, as they were assumed to be able to form contacts
with the toxin (Figure 1). For “passive” channel residues, we defined all of the residues that were
either on the “active” ones’ surface, or that surrounded them within a radius of a maximum 6.5 A
within the system.

From the docking results, the best scoring structure from the highest scoring complex cluster was
selected for further analysis (Table 1).

Additionally, each structure was rescored using AutoDock Vina (Oleg Trott, Molecular Graphics
Lab, La Jolla, CA, USA) with default parameters (Table 1) [41]. The setup was done with YASARA [30].

Table 1. Summary of the scoring values for the best scoring p-conotoxin-channel systems obtained
from docking and re-scoring.

HADDOCK Z-Score HADDOCK Score Vina Score (kcal/mol)

p-PIIIA Kv1.6 active -1.0 1743 £ 8.7 10.5
pu-PIIA Kv1.1 active -14 202.1+59 9.5
p-PIITA Kv1.6-5P1  semi-active -14 178.2 + 14.0 9.7
p-PIIIA Kv1.6-5P2  semi-active -0.9 196.0 £ 12.7 10.0
u-SIIA Kv1.6 semi-active -1.3 231.1 £ 14.7 10.2
p-PIIIA Kv1.5 inactive -1.6 202.6 = 10.5 8.5
u-GIITA Kv1.6 inactive -1.7 187.1 +14.0 8.0

2.3. Molecular Dynamics Simulations and Energy Minimizations

The MD simulations were performed using the YASARA molecular modeling software (Yasara
structure, Vers. 18.3.23, Yasara Biosciences GmbH, Vienna, Austria) [42].

As the HADDOCK web interface cannot handle y-pyroglutamic acid, glutamic acid was used
for the docking routine, and prior to the MD simulations, was re-converted to y-pyroglutamic acid,
followed by a subsequent energy minimization step.

The simulations were performed within a cuboid simulation cell employing YASARA's
implemented simulation routine for the simulation of membrane proteins in a lipid membrane
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environment. Phosphatidyl-ethanolamine (PEA) was used to mimic the native lipid membrane
environment during our simulations.

The energy minimizations and refinement simulations of the toxin channel complex were
performed as an unrestrained all-atom molecular dynamics simulation for 0.5 to 1 ps in explicit
water (TIP3P) using the PME method [43], in order to describe long-range electrostatics at a cut-off
distance of 8 A in physiological conditions (0.9% NaCl, pH 7.4 [44]), at a constant temperature (298 K)
using a Berendsen thermostat, and with constant pressure (1 bar). The charged amino acids were
assigned according to the predicted pKa of the amino acid side chains from the Ewald summation, and
were neutralized by adding counter ions (NaCl) [44]. In order to increase the simulation performance,
a multiple time step algorithm, together with a simulation time step interval of 5 fs [42], was chosen
using the AMBER14 force field [45,46] and by removing the high frequency bond and angle vibrations
of the hydrogen atoms, employing constraints through the LINCS [47] and SETTLE [48] approach.
The simulation snapshots were saved every 250,000 fs. The YASARA?2 [31] force field was used
for energy minimization by simulated annealing, including the optimization of the hydrogen bond
network [36] and the equilibration of the water shell, until system convergence was achieved.

The molecular graphics were created using YASARA (Yasara structure, Vers. 18.3.23, Yasara
Biosciences GmbH, Vienna, Austria, www.yasara.org) and POVRay (Persistence of Vision Raytracer
Pty. Ltd., www.povray.org).

3. Results and Discussion

According to the experimental results obtained by Leipold et al., a detailed in-silico analysis of
the binding mode and the dynamics of p-PIIIA, p-SIIIA, and p-GIIIA on the Ky1-channel members
Ky1.1,Kyl.5, and Ky1.6, and on the two Ky1.6/1.5 chimeras was performed.

Firstly, HADDOCK dockings were performed employing the NMR structure of the respective toxin
and a homology model of the channel target (for more details on the homology models see method
section). The best scoring HADDOCK result was used for further analysis, and was additionally rescored
using Vina AutoDock, revealing toxin binding energies with a remarkable correlation with respect to
the toxin’s activity rates (Table 1) [1]. In order to attain more accurate descriptions of the toxin binding
and toxin dynamics when bound to its target, all of the docked structures were equilibrated through
molecular dynamics simulations in a membrane environment. This might be of special importance, as the
docked toxin structures were all centred in the middle of the pore (Figure 1), which was hard to interpret
in terms of their bioactivity, as they did not only show a full pore block (named active thereafter), but also
suggested partly blocked ion-channel pores (named semi-active thereafter) [1].

At this point, it shall be noted, that in case of the non-pore blocking (named inactive thereafter),
the toxin-channel systems docking results and simulation data might be somewhat awkward and not
straight forward to interpret. Nevertheless, for reasons of comparison and completeness, these data
were also shown and analysed.

3.1. Toxin Dynamics and Cluster Analysis

In order to equilibrate the docked toxin-channel structures, we performed a molecular dynamics
simulation in a membrane environment until a nearly linear behaviour of the toxins root mean square
deviation (RMSD) (Cx-atoms) was observed, resulting in simulation times varying between 0.5 and
1.0 ps. During these simulations, we noticed a significant dynamic of the toxin on the channel surface
for some toxin-channel systems (see Supplementary Figure S1), according to the toxin’s RMSD.

These observations suggested a unique, stable mode of channel blockage, while pointing out a
more diverse behavior for semi- and in-active systems. More precisely, we identified two different
binding modes for the semi-active systems, which are represented by the more stable and less
fluctuating systems of p-PIIIA-Ky1.6-5P1 and p-SIIIA-Ky 1.6, and by the more dynamic and less stable
u-PIIIA-Ky1.6-5P2 (Supplementary Figure S1). Likewise, two different modes of toxin movement were
identified for the two inactive toxin-channel systems. For Ky1.5-bound p-PIIIA, the toxin displacement
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occurred more gradually, whereas for p-GIIIA, it was moving more rapidly on the channel surface
(Supplementary Figure S1).

Closer inspections of the toxin movements with respect to the four channel subunits elucidated
the stated differences within the semi- and in-active systems, clearly unveiling a toxin movement
towards a channel subunit for pu-PIIIA on Ky 1.6-5P2 (semi-active) and p-GIITA on Ky 1.6 (inactive)
(Supplementary Figure S2 and S3). More specifically, u-PIIIA moved towards the channel’s p1 outer
loop of subunit II (SII), and simultaneously away from the outer pl loop of the opposite channel
subunit I (SI) (Supplementary Figures S2 and S3), which is most likely triggered by the Y429R mutation
in the p2 loop near the selectivity filter, simultaneously reducing the pore blockage. In contrast,
the semi-active systems p-PIIIA-Ky1.6-5P1 and p-SIIIA-Ky1.6, as well as p-PIIIA-Ky 1.5 (inactive), did
not show a toxin movement towards any subunit, maintaining a more center-positioned state on the
pore (Supplementary Figures S2 and S3).

Assuming that the extent of the pore blockage is given by the different adopted toxin orientations
on the pore, we aimed at completing further investigations on the corresponding interactions arising
at such an equilibrium. It is obvious that such key interactions, depending on their stability, can hold
the toxin in a specific place on the channel, and can allow for the maintenance of a stable conformation.
The resulting individual toxin positioning on the pore and its overall stability will finally constitute a
stronger or weaker channel blockage.

For the detection of system-wise representative snapshots, we developed and applied a selection
protocol for the parsing of a periodically pre-filtered subset of 11 simulation snapshots (in the interval
from 0 ns up until 500 ns, spaced at 50 ns), based on a combination of two cluster search methods
(for more details, see Supplementary Materials).

So far, combined cluster analyses together with a final revising step have provided a refined
and computationally underpinned method for the systematised selection of representative simulation
states. Thus, arbitrary token decisions considering representative snapshot selections out of large
volume of data can be verified or even rejected. Figure 2 shows the individually chosen snapshots
as energy-minimized structures, and gives a preliminary indication of the correlation between the
channel blockage, structural features, and positioning of the toxin on the channel.

Apart from the RMSD analyses, it was obvious that the toxin-channel systems, where the toxin
moves away from a central starting position, intrinsically hold higher flexibilities as extracted from the
simulations per atom b-factors (Supplementary Figure S6).

Further examinations of the different simulation cluster representatives (Figure 2) equally confirm
this inference, pointing out a higher number of cluster representatives for the more flexible systems
and a lower number of cluster representatives for toxin-channel systems, which reside in the centre of
the pore (Figure 2, Supplementary Figure S6). Furthermore, in total, the inactive systems were found
to have more cluster representatives, that is, a higher fluctuation as active and semi-active systems
(Figure 2). In addition, our afore-stated suggestion of a unique binding mode (and related flexibility)
for active systems was endorsed by the equal amount of resulting cluster representatives for p-PIIIA
on Ky1.1 and Ky1.6 (Figure 2, Supplementary Figure S6). The systems’ different flexibilities were
equally reflected by our own clustering approaches, which were further used for the detection of
representative snapshots (Supplementary Table S2).

Contrarily, the semi-active toxin-channel systems (p-SIIIA-Kyl.6 and p-PIIIA-Ky1.6-5P1)
exhibited a similar low overall fluctuation, suggesting similar binding stabilities compared to the active
ones (u-PIIA-Ky1.6/Ky1.1), and accordingly, showed a similar number of cluster representatives
over the whole simulation (Figure 2, Supplementary Figure S6). Nevertheless, p-PIIA-Ky1.6/Ky1.1
had a better pore coverage with equally distributed contacts to all four of the channel subunits,
whereas p-SIIA-Ky1.6 and p-PIIIA-Ky1.6-5P1 clearly had a preference to one side of the channel
(Supplementary Figure S6). In the case of p-PIIIA-Ky1.6-5P1, this tendency must have been triggered
by the mutations in the outer loop. At the same time, when the P2 loop of Ky1.6 was mutated
towards the toxin insensitive Ky1.5 channel, an even more sideward orientation of the toxin was
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observed, which was presumably induced by the newly inserted positively charged Arg429. Altogether,
the experimental activities could be rationalized from the simulation data, even though one would
expect somehow higher flexibilities or dynamics for u-SIIIA-Ky1.6 and p-PIIIA-Ky1.6-5P1 in order
to understand the remaining currents for these semi-active systems. Most likely, the rather short
simulation times (up to 1 us) were insufficient to fully uncover all of the aspects of the pore blocking.
This was especially true for the binding of p-PIIIA at the toxin insensitive channel Ky1.5. Here, one
would expect no binding, or at least a relatively fast toxin unbinding, as observed for u-GIIIA on
Ky1.6. Despite the fact that unbinding was not observed during our 1 ps simulation, u-PIIIA was
only bound to the center of the pore, and only showed very little contact with the pore surface, being
clearly different from the situation of toxin binding at the active and semi-active systems, supposing
that u-PIIIA was about to dissociate from the pore soon.

(a) top view side view top view side view

ACTIVE

(b)

u-PIIIA Kv1.6-5P2 (15 cluster)

SEMI-ACTIVE

p-SIIIA Kv1.6 (5 cluster)

—
(2)
S

Slil

INACTIVE

Sl
u-PIIIA Kv1.5 (17 cluster) u-GIIIA KvA1.6 (55 cluster)
Figure 2. Secondary structure representation of the identified clusters, which were derived from
the molecular dynamics simulations showing one representative per main cluster (4 A toxin RMSD
threshold) for (a) active, (b) semi-active, and (c) inactive systems. The black traces with arrowhead in
the top view figures indicate the toxin movement on the channel surface throughout the simulation.
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The total numbers of identified clusters are given for each toxin-channel system in brackets. Colouring:
p-PIIIA—orange; p-SIHIA—turquois; p-GIIIA—green. Channel loops: Kv1.5—red; Kv1l.6—blue;
Kv1.1—grey. Channel subunits are indicated by Roman numerals (SI-SIV).

3.2. Analysis of Channel-Toxin Interactions

In the following, we will give a concise description of the toxin—ion channel key interactions
based on a final representative, which was selected from the cluster analysis.

p-PIIA-Kv1.1/1.6: As already mentioned earlier in the text, a very similar p-PIIA orientation on
Ky1.6 and on Ky1.1 was revealed. Primarily, this effective and stable pore block appeared to arise
from interactions of the centrally located toxin residues (Figure 3a), which were evenly distributed
towards at least three of the four subunits (SII-SIV). For p-PIIIA bound to Ky 1.6, the pore block was
even further stabilized by the interactions of Arg-2 with the inner P2 loop residues of subunit I (SI)
(Figure 4). Interestingly, for Ky1.6-bound u-PIIIA, the hydrogen bonds were primarily formed towards
the residues of the inner pore loops (P2), whereas for u-PIIIA bound to Ky1.1, more residues of the
outer loops (P1) were addressed (Figure 4).

(a)

H-GIIIA RDCCTOO KKCKDRQCKOQ - RCCA*
M-SIIA ZNCCN - - GGCSSKWCRDHARCC*

M-PIIA ZRL CCGF|O KSCRSRQ CKOJH - RCC*
u-PIHIA “symmétric” toxin center

Kv1.6 and Kv1.1 interacting core residues

(b)

i/ \

~L ¢
p-PlIA p-SIIA p-GIlIA

Figure 3. (a) Alignment of the p-conotoxins p-GIIIA, pu-SIIIA, and p-PIITA. Residues are coloured
by their physicochemical properties (purple—acidic; cyan—basic; orange—nonpolar/hydrophobic;
green—polar/neutral). The “symmetric” u-PIIIA centre is given below the alignment, highlighting
the central interacting motif of p-PIIIA in yellow. (b) Structures of u-PIIIA (superposition of all of the
docked structures), p-SIIIA, and u-GIIIA when bound at the Ky channel after HADDOCK docking.
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Figure 4. Representative binding poses of p-PIIIA and p-SIIIA at different Ky channels indicating

hydrogen bond interactions (yellow dotted lines) for (a) active, (b) semi-active, and (c) inactive systems.
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H-bond interactions are listed the correspondingly. Because of its high dynamics, the individual
interactions of u-GIIIA on Kv1.6 are not shown. Colouring: p-PIIIA—orange; p-SIITA—turquois.
Channel loops: Kv1.5—red; Kv1.6—blue; Kvl.1—no grey. Channel subunits are designated by Roman
numerals (SI-SIV).

According to our simulation data, a major role of the blockage of Ky1.1 and Ky1.6 seems to be
attributed to Argl2 and Argl4, forming hydrogen bonds towards the glutamic (Glu353/SI in Kv1.1)
or aspartic acid (Asp401/SIV in Ky1.6) of the outer P1 loops of the channels, or with Asp427/SII
(Ky1.6) of the inner loop of Ky1.6 (Figure 4), which led us to conclude that the switch from Asp in
Ky1.6 to Glu in Ky1.1 did not affect the structure and physicochemical composition of the outer P1
loop of the channel, resulting in similar toxin binding modes for u-PIIIA. The further centrally located
neutral serine Ser13 was interacting with the equally neutral glycine or larger tyrosine residues near the
selectivity filter (Gly426/SIV and Tyr429/SIV of Ky 1.6 and Tyr379/6I of Ky1.1, Figure 4). In addition,
Ser10 was further able to form an additional hydrogen bond towards His355/SIII of the outer P1 loop
in Ky 1.1, which was Leu in Ky1.6. Another key role of the specific blockage of Ky1.6 can be attributed
to GIn15 forming interactions primarily with the outer glycines of the selectivity filter and Tyr429/SII,
which were located on the pore surface (Figure 4). This interaction was also present in Ky1.1-bound
u-PIIIA (Figure 4).

In summary, the p-PIIIA key hydrogen bond interactions with Ky1.6 were primarily formed
towards the residues near the selectivity filter (Gly and Tyr) of the inner P2 loops, and Asp residues
in the outer P1 loops. In case of Kv1.1, the P1 loops contained Glu353 instead of Asp401, which led
to an increased number of contacts of pPIIIA with the P1 loops. The pu-PIIIA H-bond donor residues
were comprised of Arg12, Serl3, Argl4, and GIn15 for binding at Ky1.6 and Ky1.1, and additionally,
by Lys9 and Ser10 for Ky1.1 (Figure 4).

Interestingly, these key residues were all localized within the x-helical centre of p-PIIIA, containing
basic and neutral amino acids in an alternating symmetric pattern (Figure 3a). According to the
physicochemical properties of the amino acids of the u-PIIIA sequence, this symmetric toxin centre
consists of 11 amino acids, reaching from Hyp-8 to Hyp-18, comprising a K-R-R-K-like motif. In this
context, it was noticed that pu-SIIIA lacks such a motif or a similar symmetric motif in the corresponding
region (Figure 3a), whereas puGIIIA unveiled a remotely similar motif (KK-K-R—K). Apparently,
the a-helical conformation of this region in p-PIIIA ensures that the positively charged residues are
pointing towards the channel surface, rather than being buried or hidden by the fold of the toxin, while
the corresponding regions of pu-SIIIA and p-GIIIA lacked such a helical structure (Figure 3b), assuming
that this feature further strengthens the stability of the interacting residues in the bound state.

We also noticed that the symmetric p-PIIIA centre was almost parallel to the channel surface
when bound to Ky 1.1 and Ky1.6 (Figure 5). In contrast, a “kinked” conformation of the overall central
segment in the semi- and in-active systems (including Kv1.6-bound u-SIIIA) was observed, suggesting
a reduced pore coverage (Figures 4 and 5). Again, this supports the uniqueness of p-PIIIA’s blocking
mode towards Ky1.1 and Ky1.6. Lastly, the stability of the p-PIIIA-Ky1.1 and -Ky1.6 interactions was
also mirrored by the overall per residue RMSFs of the concerning p-PIIIA residues displaying the
lowest value for the symmetric toxin centre (Supplementary Figure S5).

Interestingly, similar observations regarding the significance of the symmetric toxin centre for
channel blockage by u-PIIIA were also reported for p-PIIIA binding to Nay1.4, suggesting Argl4,
Argl2, Lysl17, and Arg20 as the key interacting residues [18,28]. Another study revealed multiple
binding modes for p-PIIIA binding to Nay1.4, suggesting that Lys9 or Argl4 protrud into the channel
pore [29], of which the later binding mode was strikingly similar to the Ky1.6-bound p-PIIIA (see
Supplementary Figure S7a,b), thus strongly supporting the functional importance of the central
toxin segment.
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(a) top view side view top view side view

ACTIVE

p-PIIA Kv1.6 p-PIIA Kv1.1
snapshot at 200ns snapshot at 400ns

(b)

sl i sli
H-PlIIA Kv1.6-5P1 p-PlIIA Kv1.6-5P2
snapshot at 250ns snapshot at 450ns

SEMI-ACTIVE

p-SllIA Kv1.6
snapshot at 250ns

(C) ‘ Sl

INACTIVE

p-PlIA Kv1.5 p-GllIA Kv1.6
snapshot at 150ns snapshot at 400ns

Figure 5. Overview of the channel bound toxin state regarding the orientation of the symmetric
toxin centre for (a) active, (b) semi-active, and (c) inactive systems. Structures of the representative
snapshots are shown in secondary structure representation (channels are coloured grey, residues which
account for the p-PIIIA core motif Arg-12-GIn-15 are shown as yellow sticks, together with their
molecular surface (transparent light green). Dashed lines indicate the overall channel coverage by the
(binding) motif-corresponding core. The motif’s surrounding area, corresponding to the symmetric
u-PIIIA central segment Hyp-8-Hyp-18, is coloured dark blue, and the remaining toxin endings are
coloured individually to the systems (u-PIIIA on Kv1.6—red; u-PIIIA on Kvl.1—violet; u-PIIIA on
Kv1.6-5P1—dark orange; u-PIIIA on Kv1.6-5P2—light green; p-SIIIA on Kv1.6—sun-yellow; p-PIIIA
on Kv1.5—green; u-GIIIA on Kv1.6—cyan). Delineated arrows, equally coloured to the toxin endings,
indicate the overall orientation of the core-motif regions with respect to the channel surface. Channel
subunits are indicated by Roman numerals (SI—SIV).

p-PIITA Ky1.6-5P1: Even though the selected snapshot showed a blocked pore when p-PIIIA
was bound to Ky1.6-5P1, it was completely lacking the necessary and stabilizing interactions of
the p-PIIIA residues with the P1 loops, as they were exchanged with P1 loops of Ky1.5 (Figure 5).
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Additionally, the toxin orientation was found to be similar to the low affinity pose when bound to
the toxin-insensitive Ky 1.5 channel. Thus, the outer loop modification into a mainly polar/neutral
environment triggered a toxin displacement, and a coincident increase of interactions to the central
pore, resulting in a different toxin binding pose compared with Ky1.1 and Ky1.6 (Figures 4 and 5).
Furthermore, the symmetric toxin centre was tilted by ~ 90° with respect to the channel plane (Figure 5),
now facing towards a single channel subunit and lacking any H-bond interactions to Q15 and S13
(Figures 4 and 5). However, sole contacts to the inner P2 loops and the lack of H-bonds to the P1 loops
might lead to a reduction in the binding affinity, thus resulting in an incomplete pore block as observed
by Leipold and co-workers [1].

u-PIITA Kv1.6-5P2: In contrast, when the polar/neutral Tyr429 in Ky1.6 was mutated into a
positively charged Arg in Kv1.6-5P2, the crucial interactions of p-PIIIA residues S13 and Q15 with the
centre of the pore, as observed for p-PIIIA binding at Ky1.6 and Ky1.1, were eliminated (Figure 4).
As already hypothesized above, the positive charge of R429 enforced a toxin binding pose, which
was again different from what was observed before. Consequently, S13 and Q15 moved towards
the unaltered P1 loops, forming H-bonds with the Asp (D427 /SII) residues in this region (Figures 4
and 5). Furthermore, the tendency of p-PIIIA to contact the more acidic residues of the P1 outer loops
was reflected by the interactions of R12, K9, and O8 with D401/SII, D403/SII, and 5404 /SII, thus
resulting in a partial pore covering. This interpretation was further supported by the high degree of
conformational flexibility on the pore surface (Figure 2, Supplementary Figure S6).

u-PIIIA Kv1.5: With respect to the identified interactions of p-PIIIA with Ky1.6 and how they
were altered when Ky 1.6 was stepwise modified towards the toxin-insensitive Ky 1.5 channel, p-PIIIA
was found in a different orientation, and lacking most of these interactions when bound to Ky1.5.
The resulting upright binding position of the core segment (Argl2-Ser13-Argl4) of u-PIIIA was
similar to the toxin orientation at Ky1.6-5P1 (Figures 4 and 5). The plethora of H-bonds of the
symmetric toxin centre were formed only with the residues next to the selectivity filter motif (Figure 4),
covering a much smaller portion of the channel surface compared with the other toxin-channel systems,
suggesting a low-affinity binding pose. This interpretation is further supported by the lowest Vina
AutoDock-derived binding energy (Table 1) of all of the toxin-channel systems analysed in this work,
and by the high degree of local per residue flexibility outside the pu-PIIIA’s core region (Supplementary
Figure S6).

Altogether, it seems that the p-PIIIA binding at the Ky-channels is mainly defined by the residues
of the inner P2 loop, which strongly influences the overall orientation of the toxin on the channel
surface, enabling the necessary stabilizing interactions with the outer P1 pore loops.

p-SIITA Kv1.6: As p-SIIIA is similarly active (semi-active) to u-PIIIA on the Kv1.6-1.5 chimeras,
we also analysed the p-SIIIA binding at Ky1.6 (Figure 1). In contrast to p-PIIIA, p-SIIIA had a
somewhat different sequence, which lacked a symmetric toxin centre of p-PIIIA (Figure 3). Interestingly,
our analysis unveiled that the central region of p-SIIIA (Ser9 to Trp12), which corresponds to the
symmetric centre of p-PIIIA, was mainly forming H-bonds with the central pore region, as it was
observed for p-PIIIA binding at Ky1.65P2 (Figure 5). Similar to the GInl5 of p-PIIIA, Ser9 and
Ser10 now addressed Tyr429/SIII and Gly426/SI of the inner P2 loops (Figure 4). Furthermore,
the H-bonds between Lys11, Trp12, and Argl8 with Asp401/SI and Asp403/SI of the outer P1 loops,
were proposed to stabilize a more sideward oriented p-SIIIA binding pose, whereas GInl and Asn2
were forming H-bonds with Gly426/SII and Tyr425/SIII, with the centre of the pore rationalizing
an incomplete channel block (Figures 4 and 5). Interestingly, Asp401 was equally addressed by the
centrally located Argl2 of u-PIIIA, further supporting a similar binding pose of Ky 1.6-bound p-SIIIA
with Ky1.6-5P2-bound p-PIIIA (Figures 4 and 5). The experimentally observed incomplete block of
Ky1.6 by u-SIIIA was further rationalized by the conformational and local flexibilities of the outer P1
loops, leading to a reduced stability of the binding pose (Supplementary Figure S6), as observed for
other cases discussed in this work [1].
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p-GIIIA Kv1.6: Lastly, unlike p-PIIIA at Ky1.5, our equilibration simulation revealed a very high
motion and dynamic of u-GIIIA on the channel surface, which clearly reflects its low binding affinity
and inability to bind to Ky1.6, as revealed by Leipold et al. [1].

4. Conclusions

Our in-silico data provided insight into the dynamics and binding states for the binding of the
u-conotoxins PIIIA, SIIIA, and GIIIA at the voltage-gated potassium channels of the Ky1 family. So far,
their different activities can only adequately be understood when dynamic information about the
toxin-channel systems is available. For all of the channel bound toxins investigated herein, a certain
conformational flexibility was observed during the molecular dynamics simulation (Figure 2), which
most likely accounts for the remaining currents of these systems. Some of the semi-active and
inactive toxin-channel systems (u-PIIIA Ky1.6-5P2, and pu-GIIIA Ky1.6) showed significantly higher
conformational flexibilities rationalizing their incomplete pore block, together with a clearly visible
incomplete pore coverage or sideward orientation of the toxin. In contrast, the less flexible semi-active
toxin-channel system (p-PIIIA Ky1.6-5P1) cannot be fully rationalized by this criterion, but clearly
lacks the interactions identified at the more active toxin channel systems.

So far, our data suggest a unique and similar binding mode of pu-PIIIA at Ky1.6 and Ky1.1,
in which the plethora of hydrogen bonds are formed by the x-helical core region of p-PIIIA with the
central pore residues of the channel. Furthermore, the binding mode of p-PIIIA at Nay1.4 was found
to be similar to the p-PIIIA orientation, when bound to Ky 1.6 and Ky1.1, supporting the importance
of the centric p-PIIIA residues (Supplementary Figure S7a,b) [28,29]. Also, Argl2 and Argl4, which
were shown to stabilize the pore-blocking position of u-PIIIA on Ky1.6 and on Ky1.1, were also
considered to be important for u-PIIIA binding at Nay1.4, as revealed from earlier MD studies [29].
Moreover, the herein predicted orientation of p-PIIIA at Ky1.6 was found to be similar compared to
the experimentally determined orientation of the structurally related p-conotoxin KIIIA when bound
to Nay1.2 (pdb 6J8E), suggesting a unique pore blocking motif for p-conotoxins (Supplementary
Figure S7c) [11].

Interestingly, the insertion of the pore loop residues of the p-PIIIA-insensitive Ky 1.5 channel into
Ky1.6 resulted in a reorientation of the toxin and a clearly sideward oriented u-PIIIA core region.
A similar sideward orientation was also observed for the corresponding core region of p-SIIIA in the
channel bound state. Altogether, our data suggested that an effective pore block can only be achieved
if the toxin is capable of addressing the inner and the outer pore loops, whereas for u-PIIIA binding
at Ky1.6, Ky1.5 and the respective chimeras of the composition of the inner pore loop (P2) mainly
determine the orientation of the toxin, which is then further stabilized by the outer pore loops (P1).
This stabilizing interaction is mainly mediated through the hydrogen bonds of the toxin’s positively
charged Arg and Lys residues with the negatively charged Asp (Ky1.6) or Glu (Ky1.1) of the outer
pore loops, and, here, predominantly with the third Asp (D403) (Ky1.6) or the corresponding Glu353
(Ky1.1), which are located closer to the centre of the pore than the other D/E residues of the loop.

Concerning the subtype specificity of pu-PIIIA among the Ky1 family members, toxin binding
does not tolerate positively charged amino acids in either of the pore loops (Figure 1), as is the case for
Ky1.6, Ky1.3, and Ky1.1. Most likely, this enforces a strong reorientation and repulsion of the toxin,
as concluded from our data for pPIIIA binding at Ky1.6-5P2. As Ky1.3 lacks the important third Asp
residue in the outer P2 pore loop, pu-PIIIA can only properly bind to Ky1.6 and Ky1.1.

However, the D- and E-rich outer P1 pore loops of Ky1.6 and Ky1.1 are rather small, requiring a
compactly folded toxin (like u-PIIIA), for which R/K residues can orient towards the channel surface
and the outer P2 loops simultaneously, thus partly explaining the inactivity of pu-GIIIA (Figure 3).

Lastly, our in-silico toxin binding study strongly supports the importance of the dynamic
information about the toxin-channel systems and the conformational space the toxin can sample
in its channel-bound state, even though our molecular dynamic-based equilibration step is not suitable
to unveil the full conformational landscape of toxin binding.
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Furthermore, as most of the toxin binding poses in our study differ from their initial docked
state, we strongly recommend a combined approach of docking and molecular dynamics simulation
concerning the in-silico analyses of protein-ligand systems and their coincident evaluation.

Structural data can be provided upon reasonable request.
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binding Table S1: RMSD to the corresponding docked structure used as start for MD calculations, Table S2: Main
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