

Integrating molecular network and culture media variation to explore the production of bioactive metabolites by *Vibrio diabolicus* A1SM3

Natalia Conde-Martínez ¹, Anelize Bauermeister ^{2,3}, Alan Cesar Pilon ², Norberto Peporine Lopes ² and Edisson Tello ^{1,*}

- ¹ Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, 250001, Chía, Colombia; nataliacoma@unisabana.edu.co
- ² Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto/SP, Brazil; ane_qui@hotmail.com (A.B.); pilonac@gmail.com (A.C.P.); npelopes@fcfrp.usp.br (N.P.L.)
- ³ Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil
- * Correspondence: edisson.tello@unisabana.edu.co; Tel.: 57-(1)-8615555 (Ext: 25219)

Table S1. PCA coefficients for the variables in the 10 principal components.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
VIB_CAS_1	-5.7439	2.6141	-1.359	6.7812	-1.7709	1.1415	-2.6509	0.4078	-0.9579	0.0762
VIB_CAS_4	-7.4338	3.4806	-5.7088	7.6803	-2.6359	1.8873	-4.016	2.2199	-2.9821	0.0491
VIB_CAS_7	-2.1277	1.4339	4.2429	0.7956	-0.5252	-1.2179	0.1	-4.9625	2.2316	0.9228
VIB_GLU_CAS_1	-9.1492	4.9993	-15.4724	-0.3371	-0.5641	0.7097	-2.4206	2.3191	-9.0348	-5.2999
VIB_GLU_CAS_4	-16.3362	9.0604	-49.4769	-23.2261	3.2101	-2.7542	5.8603	-2.7288	6.4727	2.8525
VIB_GLU_CAS_7	-6.2318	2.6775	-3.9053	4.7924	-0.9516	1.1285	-1.6446	0.8653	-0.4835	0.074
VIB_GLU_PEP_1	-0.0482	-1.9648	7.4544	-6.5313	13.6193	3.9074	5.8826	3.5663	-4.702	-2.5689
VIB_GLU_PEP_4	-0.0967	-2.3693	8.3629	-7.4576	16.8054	4.2325	7.1721	4.6115	-6.7993	-3.7672
VIB_GLU_PEP_7	-2.4776	0.3828	4.1105	0.7916	4.7136	1.2269	2.2345	0.5311	1.3871	0.9845
VIB_GLU_YEAST_1	-4.1292	0.8673	2.4539	5.0455	0.079	0.8885	0.5926	-0.8054	4.7922	2.3944
VIB_GLU_YEAST_4	-4.5341	0.9934	1.9617	5.5787	0.0059	1.391	0.2028	-0.8117	3.9445	2.8791
VIB_GLU_YEAST_7	-6.5489	2.5228	-2.3945	7.7646	-1.6162	1.9219	-2.6529	0.8998	-0.8012	0.5174
VIB_M3_1	23.8515	3.4415	1.8441	-3.4679	-17.2023	-13.6931	17.8214	-1.0341	-14.4761	13.261
VIB_M3_4	-0.0204	0.9628	7.5389	-4.7089	-2.4039	-2.0916	3.4026	-26.9919	-4.0187	-14.1368
VIB_M3_7	-1.5938	0.5965	5.013	-0.9591	-0.6981	-0.7107	0.7526	-3.9618	1.4835	0.3603
VIB_PEP_1	1.1507	-1.2055	13.7931	-25.8704	-22.9004	18.9448	-6.4934	7.0166	2.7295	-3.148
VIB_PEP_4	-2.6642	0.2775	5.041	-0.4723	-1.2563	1.2514	1.2844	-2.5183	2.4502	2.8168
VIB_PEP_7	-1.4818	-0.0023	8.783	-8.8311	-4.8633	5.1803	0.0727	-1.5399	1.9107	1.1325
VIB_PYR_CAS_1	-5.2435	2.1632	-1.3923	4.6853	-0.9651	0.917	-1.1686	-0.2244	0.9491	0.5626
VIB_PYR_CAS_4	-2.6505	2.1356	1.8922	1.0914	-0.7912	-4.1273	-4.7348	-1.0861	0.5952	-0.6383
VIB_PYR_CAS_7	-8.7068	4.7577	-10.9204	6.517	-4.0523	1.667	-7.2537	4.4256	-15.4672	-7.4771
VIB_PYR_PEP_1	-3.9401	1.1186	2.6773	4.3703	0.2793	0.2796	0.9265	-1.8585	4.664	2.7019
VIB_PYR_PEP_4	-2.4355	0.5724	4.9539	-0.121	1.8569	0.6015	1.7456	-2.767	2.0944	1.1442
VIB_PYR_PEP_7	-6.8106	2.8891	-3.4867	7.5333	-2.1013	1.6304	-3.2254	1.4319	-1.5971	0.4501
VIB_PYR_YEAST_1	-4.2034	1.1283	2.4188	5.1892	-0.4351	0.9546	0.3254	-1.2439	4.7406	2.8567
VIB_PYR_YEAST_4	-6.8943	2.9436	-2.9082	9.2583	-2.9674	2.3029	-4.0843	1.9878	-1.8597	0.9968
VIB_PYR_YEAST_7	-7.6281	3.2204	-4.8226	9.2368	-3.2592	2.5801	-4.3932	2.8474	-3.4651	0.0987
VIB_STAR_CAS_1	71.6993	16.9427	-13.7742	3.395	6.9206	11.1208	-9.005	-2.8848	1.6183	0.8458
VIB_STAR_CAS_4	18.4288	4.4041	0.2312	1.9052	-5.6719	-17.2395	10.0685	13.9373	8.4546	-18.0979
VIB_STAR_CAS_7	2.7474	0.4688	10.6052	-15.3313	4.586	-25.7735	-25.3736	0.3303	-0.427	3.7919
VIB_STAR_PEP_1	-0.9789	-0.5348	7.2167	-5.2065	7.5776	1.9502	3.7497	1.4927	-1.6606	1.0593
VIB_STAR_PEP_4	-1.1381	-1.4219	7.1503	-4.6828	10.8054	2.617	4.2909	3.4583	-1.4746	1.0777
VIB_STAR_PEP_7	-0.7362	-2.4509	9.2728	-9.5224	10.6578	1.338	2.5567	4.5433	-3.9074	3.3517
VIB_STAR_YEAST_1	-3.1458	0.0928	3.1313	3.222	2.2931	0.4976	1.289	-0.2513	3.0196	2.3933
VIB_STAR_YEAST_4	-3.9444	1.108	2.39	4.2505	0.4195	0.2902	0.6084	-1.5014	4.2583	2.303
VIB_STAR_YEAST_7	13.3619	-71.8045	-12.7836	2.3279	-1.3605	0.2324	-2.0474	-0.5535	0.0018	-0.4538
VIB_YEAST_1	-0.8445	0.9684	2.3266	4.2955	-1.3992	-1.5087	3.4075	-0.3076	5.3416	1.9336
VIB_YEAST_4	-4.3529	1.3267	1.8368	5.0585	-0.0583	0.6105	0.2376	-0.9515	3.8299	2.0238
VIB_YEAST_7	3.0318	1.203	1.7027	5.1596	-3.3798	-4.2848	6.5802	2.0926	7.1449	-0.3238

Table S2. Fractionation of crude extract and cytotoxic activity from the fractions of *Vibrio diabolicus* A1SM3 grown in M3 medium.

Fraction	Weight	Cytotoxic activity IC50 (µg/mL)					
FIACTION	(mg)	SiHa	A549	L929			
F1	12.4	>100	>100	>100			
F2	3.5	>100	>100	>100			
F3	27.0	>100	>100	>100			
F4	2.6	>100	>100	>100			
F5	3.7	28	>100	>100			
F6	3.3	80	>100	>100			
F7	1.7	NT*	NT*	NT*			
F8	1.4	NT*	NT*	NT*			
F9	9.0	>100	>100	>100			
F10	1.1	NT*	NT*	NT*			
F11	5.3	>100	>100	>100			
F12	4.2	>100	>100	>100			
F13	9.2	>100	>100	>100			
F14	5.2	>100	>100	>100			
F15	3.3	>100	>100	>100			

* NT. Not tested

Table S3. NMR data of isotrisindoline (2,2-di(3-indolyl)-3-indolone) measured in CD3CN-d3 (1H: 600 MHz; 13C: 150 MHz) compared with the NMR data reported in literature and the NMR data of trisindoline.

Position C- H	¹ H NMR and ¹³ C NMR for isotrisindoline in CD ₃ CN acquired in this work			¹ H and ¹³ C NMR for isotrisindoline in CDCl ₃ *		¹ H and ¹³ C NMR for isotrisindoline in CDCl ₃ **		¹ H and ¹³ C NMR for trisindoline in CD ₃ OD ***		
	δн, Mult	δc, HSQC	Mult	HMBC (бн to бс)	δн (ppm)	δc (ppm)	δн (ppm)	δc (ppm)	δн (ppm)	δc (ppm)
5	6.83 <i>,</i> t	119.7	CH	C7, C7a	6.89	119.4	6.87	118.7	6.97	124.5
5'	6.88, t	120.1	CH	C4', C3a'	7.19	119.9	6.93	118.7	6.81	120.3
4	7.57, d	125.9	CH	C3a	7.73	125.5	7.69	124.8	7.27	127.3
6'	7.08, t	122.9	CH	C7', C7a'	7.09	122.3	7.11	121.2	7.03	122.9
2'	7.15, d	124.7	CH	3', 3a', 7a'	6.94	124.1	7.13	124.0	6.90	126.4
7'	7.40, d	112.6	CH	C4', C5', C6'	7.62	111.4	7.37	111.2	7.32	113.1
4'	7.29, d	121.6	CH	C5', C3a'	7.36	120.4	7.40	119.9	7.27	123.2
6	7.54, t	138.4	CH	C7	7.51	137.6	7.52	137.5	7.25	129.8
7	6.99, d	113.4	CH	C2, C6	6.91	112.9	6.94	112.3	7.05	111.8
3'	-	115.0	С			115.1		113.7		116.5
3a	-	119.5	С			120.8		119.0		137.5
3a'	-	126.7	С			125.7		125.3		128.1
7a'	-	138.0	С			137.0		136.9		139.6
7a		161.3				160.3		160.5		143.1
2	-	-	С			68.2		68.2		183.4
3	-	-	C=O			201.5		201.8		55.7

* NMR data obtained from Takeshige, Y.; Egami, Y.; Wakimoto, T.; Abe, I. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes. Mol. BioSyst. 2015, 11, 1290–1294.

** NMR data obtained from Bell, R.; Carmeli, S.; Sar, N. Vibrindole A, a Metabolite of the Marine Bacterium, *Vibrio parahaemolyticus*, Isolated from the Toxic Mucus of the Boxfish Ostracion cubicus. J. Nat. Prod. 1994, 57, 1587–1590.

*** NMR data obtained from Yoo, M.; Choi, S.-U.; Choi, K.Y.; Yon, G.H.; Chae, J.-C.; Kim, D.; Zylstra, G.J.; Kim, E. Trisindoline synthesis and anticancer activity. Biochem. Biophys. Res. Commun. 2008, 376, 96–99.

Step	Parameter	Value		
	m/z bin width	1.0000		
Baseline corrector	Smoothing	2		
	Asymmetry	0.001		
Mass detection	Mass detector	Centroid		
Mass detection	Noise level	1.0E4		
	Min time span (min)	0.07		
Chromatogram builder	Min height	1.0E4		
	m/z tolerance	0.005		
	Algorithm	Baseline cut-off		
Chromatogram deconvolution	Min peak height	1.0E4		
Chromatogram deconvolution	Peak duration range (min)	0.04 - 3.00		
	Baseline level	1.1E4		
	m/z tolerance	0.005		
Deisstening	Retention time tolerance (min)	0.3		
Deisotoping	Maximum charge	1		
	Representative isotope	Most intense		
Normalization	Linoar normalizar	Total raw signal		
Normalization	Linear normalizer	peak area		
	algorithm	Join aligner		
	m/z tolerance	0.005		
Alignment	Weight for m/z	20		
	Retention time tolerance	0.5		
	Weight for RT	10		

 Table S4. MZmine 2.30 processing parameters.

Figure S1. Bacterial growth of Vibrio diabolicus A1SM3 in the modified growth media.

Figure S2. Chromatograms of the cytotoxic fractions of Vibrio diabolicus A1SM3 with IC50 values.

Figure S3. MS/MS spectrum for isotrisindoline in fraction F5.

Figure S4. (a) HSQC and (b) HMBC of F5 fraction measured in CD₃CN-d³ (¹H: 600 MHz; ¹³C: 150 MHz).