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Abstract: In an effort to discover new bioactive anti-tumor lead compounds, a specific tyrosine
phosphatase CDC25B and an Erb family receptor EGFR were selected as drug screening targets.
This work led to the investigation of the soft coral-derived fungus Talaromyces verruculosus and
identification of two new oligophenalenone dimers, verruculosins A–B (1–2), along with three
known analogues, bacillisporin F (3), duclauxin (4), and xenoclauxin (5). Compound 1 was the
first structure of the oligophenalenone dimer possessing a unique octacyclic skeleton. The detailed
structures and absolute configurations of the new compounds were elucidated on the basis of
spectroscopic data, X-ray crystallography, optical rotation, Electronic Circular Dichroism (ECD)
analysis, and nuclear magnetic resonance (NMR) calculations. Among which, compounds 1, 3, and
5 exhibited modest inhibitory activity against CDC25B with IC50 values of 0.38 ± 0.03, 0.40 ± 0.02,
and 0.26 ± 0.06 µM, respectively.

Keywords: Talaromyces verruculosus; oligophenalenone dimers; soft coral-derived fungus; secondary
metabolites

1. Introduction

Over the past 60 years, a large number of natural products have been discovered from marine fungi,
possessing new skeletons, unique structures, and unexpected substituents. Many marine-derived
natural products have been used as potential tools for biomedical research and development, such as
cephalosporins, griseofulrins, and ergosterols. In marine ecosystems, there are complex relationships
between marine fungi and marine organisms, including symbiosis, parasitism, and antibiotics.
The epiphytic and endophytic fungi from marine invertebrates participate in marine organic matter
decomposition and provide nutrition and protection for parasitic hosts, which increases the efficiency
of discovering novel bioactive substances compared to soil microbes [1]. It was estimated that the
proportion of bioactive constituents from marine microorganisms was 37.13%, which was much higher
than the average proportion of 28.39% [2]. The evolution of fungi-derived structures has come up with
satisfactory solutions for a variety of interesting biomedical problems and has attracted great interest
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among chemists [3]. Marine fungi have become a rich source of lead compounds with important
biomedical significance.

Oligophenalenone dimers are a kind of natural metabolite of fungi, with a unique
bis(oxaphenalenone) hetero-dimer structure, which have been shown to inhibit the proliferation
of several tumor cell lines. Duclauxin is the first reported oligophenalenone dimer discovered
from the Penicillium or Talaromyces species [4], which was highly active against murine leukemia
L-1210 cells and exhibited strong inhibitory effects on mitochondrial respiration [5]. Other analogues,
desacetylduclauxin and xenoclauxin, showed similar effects against leukemia cell proliferation via
the inhibition of adenosine triphosphate (ATP) synthesis in mitochondria [6]. Bascillosporins A-H
were isolated from the fungi Talaromyces bacillosporus [7] and Talaromyces stipitatus [8]. Among these
compounds, Bascillosporin A exhibited high cytotoxicity against human breast cancer (MCF-7) cells
and human non-small cell lung carcinoma (NCL-H460) cells [9]. Bascillosporins B, C, and H were
moderately active against the above two cell lines and human cervical cancer (Hela) cells [8,9].

The number of reported natural oligophenalenones dimers is no more than 20 and most of them
are characterized by a heptacyclic ring system. Duclauxamide A1 was obtained from Penicillium
manginii, containing a special N-2-hydroxyethyl moiety [10]. A soil fungus Talaromyces stipitatus yielded
two novel skelet on products, talaroketals A with a rare benzannulated 5,6-spiroketal ring system, and
talaroketals B with a fused bicyclic furano-pyran moiety within the bis(oxaphenalenone) hetero-dimer
structure [11]. Cleaved ring A has been shown in bacillisporin G, which originated from fungus
Talaromyces stipitatus [8]. To broaden our research in novel anti-tumor lead compounds, we selected
Cell Division Cycle 25B (CDC25B), a specific tyrosine phosphatase [12], and epidermal growth factor
receptor (EGFR), an Erb family receptor [13], as screening targets. This led to the systematic isolation
of soft coral-derived fungus Talaromyces verruculosus and the identification of a novel oligophenalenone
dimer verruculosin A (1) with an octacyclic skeleton, which had never been reported in previous
literature. A new analogue verruculosin B (2) along with the known natural products bacillisporin F
(3) [8], duclauxin (4) [4], and xenoclauxin (5) [14] were also obtained and elucidated.

2. Results and Discussion

2.1. Structure Elucidation of the New Compounds

Verruculosin A (1) was obtained as a yellowish crystal. The high-resolution electrospray
ionization-mass spectrometry (HR-ESI-MS) data recorded at m/z 605.1668 along with the analysis of the
NMR data established the molecular formula of 1 as C32H28O12, indicating 19 degrees of unsaturation
(DOU). The 13C and distortionless enhancement by polarization transfer (DEPT) NMR spectroscopic
data (Table 1) exhibited the presence of 32 carbons, including five methyls, two methylenes, six methines,
and 19 quaternary carbons. The heteronuclear multiple bond correlation (HMBC) correlations from
H2-1′ to C-3′ (δC 168.0) and C-3′b (δC 143.5) proved the presence of a lactone ring F as shown
(Figures 1 and 2). Additionally, a six-membered ring E was elucidated by the 1H-1H homonuclear
chemical shift correlation spectroscopy (COSY) relationship H-9′ (δH 5.17) with H-8′ (δH 4.16), and
the HMBC correlations (Figure 2) from H-9′ to C-7′ (δC 190.9), C-8′ (δC 67.9), and C-3′b, from H-8′

to C-7′, C-6′a (δC 121.1), and C-9′a (δC 51.4). Observation of the correlations from H-5′ (δH 6.63) to
C-3′a (δC 104.3) and C-6′a (δC 121.1) from H-10′ (δH 2.06) to C-5′, C-6′a, and C-6′ (δC 151.8) established
a benzene ring D, which was fused to rings F and E via C-3′a, C-3′b, and C-6′a. Comparison of the
abovementioned data with those of the duclauxin family [7] indicated that compound 1 was probably
a dimer possessing two tricyclic moieties. Thus, the presence of another tricyclic moiety was further
confirmed by the key HMBC correlations (Figure 2). Finally, the two tricyclic moieties were hinged
by a five-membered ring G, which was strongly supported based on the key HMBC correlations
(Figure 2) from H-8′, H-9′ to C-7, from H2-1′, H-9′, H-8′ to C-8 (δC 56.9), from H-8 to C-3′b (δC 143.5)
and C-9′a. The established heptacyclic ring system (rings A–G), accounting for 17 of 19 DOU, and the
remaining carbonyl group (δC 169.6) implied that one more ring should be present in the molecule.
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The deduction was supported by the 1H-1H COSY correlation between H2-11 and H-1 as well as the
HMBC correlations from H3-13 (δH 1.74) to C-12 (δC 99.9), C-11 (δC 36.3), and C-1 (δC 69.1), from H2-11
(δH α 2.46, β 1.63) to C-12 and C-9a. Thus, the basic planar structure of 1 was determined.

Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 1–2 in CDCl3.

No.
1 2

δH (J in Hz) δC δH (J in Hz) δC

1 5.06, ddd (10.2, 6.0, 2.4) 69.1, CH 5.56, dd (3.6, 10.2) 70.6, CH
3 169.5, C 167.9, C

3a 101.2, C 100.0, C
3b 134.6, C 134.1, C
4 161.9, C 161.7, C
5 6.55, s 117.9, CH 6.55, s 118.0, CH
6 149.0, C 149.5, C

6a 117.5, C 118.4, C
7 87.0, C 86.4, C
8 3.59, d (2.4) 56.9, CH 3.73, s 57.8, CH
9 147.5, C 150.9, C

9a 101.3, C 103.9, C
10 2.59, s 21.2, CH3 2.59, s 21.4, CH3

11 α 2.46, q (6.0)
β 1.63, t (12.0) 36.3, CH2

α 2.70, m
β 2.93, m 39.7, CH2

12 99.9, C 173.0, C
13 1.74, s 28.3, CH3 3.65, s 52.9, CH3
14 2.93, s 51.1, CH3 2.91, s 50.8, CH3

1′ α 4.94, d (12.0)
β 4.85, d (12.0) 71.1, CH2

α 5.00, d (12.0)
β 4.84, d (12.0) 71.2, CH2

3′ 168.0, C 167.7, C
3′a 104.3, C 104.5, C
3′b 143.5, C 143.5, C
4′ 164.4, C 164.4, C
5′ 6.63, br.d 120.8, CH 6.62, s 120.8, CH
6′ 151.8, C 151.4, C

6′a 121.1, C 121.1, C
7′ 190.9, C 191.0, C
8′ 4.16, s 67.9, CH 4.15, s 68.2, CH
9′ 5.17, s 76.8, CH 5.16, s 76.7, CH

9′a 51.4, C 52.0, C
10′ 2.06, s 22.2, CH3 2.07, s 22.1, CH3

4-OH 10.82, s 10.85, s
4′-OH 11.71, s 11.63, s
9-OH
OAc 169.6, C 169.7, C

2.20, s 21.0, CH3 2.21, s 21.0, CH3

Since compound 1 was a novel oligophenalenone dimer possessing an octacyclic ring system,
X-ray diffraction was necessary to confirm its structure and absolute configuration. To our delight,
a high-quality crystal of 1 (Figure 3) was successfully obtained from CHCl3 and X-ray crystallographic
analysis was carried out by applying the anomalous dispersion of Cu Kα diffraction. Therefore,
the absolute configurations of 1 were unambiguously assigned as 1R, 7S, 8S, 8′S, 9′S, 9′aR, and 12S
by the refinement of the Flack parameter [0.13(11)]. The structure of 1 was thus elucidated as shown
(Figure 1).
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Figure 1. Structures of compounds 1–5. 
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Verruculosin B (2) was obtained as a yellowish oil. Its molecular formula C32H28O13 was
determined by HR-ESI-MS, with three carbon atoms, six proton atoms, and two oxygen atoms more
than duclauxin (4). The 1H and 13C NMR data of 2 were similar to those of duclauxin (4) (Table 1),
suggesting the same carbon skeleton for both compounds. The major difference was found by the
presence of an additional moiety in 2, which was assigned to a methoxycarbonylmethyl moiety based
on the key HMBC correlations (Figure 2) from H3-13 (δH 3.65), H2-11 (δH α 2.70, β 2.93) to the ester
carbonyl C-12 (δC 173.0). Moreover, the linkage of the methoxycarbonyl–methyl moiety to C-1 (δC 70.6)
was confirmed by the HMBC correlations (Figure 2) from H2-11 to C-9a (δC 103.9) and from H-1
(δH 5.56) to C-12, along with the 1H-1H COSY relationship between H2-11 and H-1. Additionally,
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the resonance at δC 191.0 for a ketone group at the C-9 position in 4 was not present in the 13C NMR
spectrum of 2 (Table 1). Rather, the signal indicative of a nonprotonated olefinic carbon at δC 150.9
(C-9) was observed in the 13C NMR spectrum of 2 (Table 1). These data indicated the replacement
of the ketone group (C-9) in 4 by a hydroxylated olefinic carbon in 2, which was consistent with the
difference in the molecular formula.

The relative configurations of 2 were assigned the same as those of 1 on the basis of the nuclear
overhauser effect spectroscopy (NOESY) correlations (Figure 4). Meanwhile, the ECD spectra (Figure 5)
and optical rotation of 2 matched those of 1 and 4 [14,15]. Therefore, we concluded that compound 2
possessed the same absolute configuration as verruculosin A (1) and duclauxin (4) [10]. In order to
complement the above deduction for the configuration of C-1, we utilized NMR calculations [10,16,17].
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The first step in making stereochemistry assignment was to do a conformational search, geometry
optimization, and calculate NMR shielding constant, 1H, and 13C shifts for each candidate structure as
described in computational methods (Supporting Information, S1). The next step was to match the
experimental shifts with those of the calculated results, and values of mean absolute error (MAE),
corrected mean absolute error (CMAE), maximum error (MaxErr), corrected maximum error (CMaxErr),
the correlation coefficient, and DP4 probability were then calculated as described in the computational
method (Supporting Information, S1). The results (Table 2) showed that it was not obvious regarding the
correlation coefficient (r2 > 0.99 in all cases), while the MAE, CMAE, MaxErr, and CMaxErr parameters
of diastereomer 1R were better than those of diastereomer 1S. Moreover, the DP4 probability of
diastereomer 1R, combining 1H and 13C values, was assigned as 100%, while those of the diastereomer
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1S was assigned as 0%, suggesting R- configuration for C-1. Therefore, the absolute configuration of 2
was assigned as depicted (1R, 7S, 8S, 8′S, 9′S, 9′aR).

Table 2. MAE, CMAE, MaxErr, CMaxErr, the correlation coefficient, and DP4 probability for 2.

δcalc. (1R) δcalc. (1S)
1H 13C 1H 13C

MAE 0.2396 3.1123 0.2565 3.2633
CMAE 0.2225 1.9137 0.2559 2.1154
MaxErr 0.594 7.678 0.861 9.162

CMaxErr 1.100 5.337 1.132 4.394
r2 0.9937 0.9989 0.992 0.9987

DP4 99.90% 98.10% 0.10% 1.90%
DP4 * 100.00% 0.00%

The best agreements are highlighted in bold type; r2: correlation coefficient; MAE: mean average error; CMAE:
corrected mean average error; MaxErr: maximum error; CmaxErr: corrected maximum error; * The data include
carbon and proton data.

Bacillisporin F (3) was isolated as a yellowish crystal (from MeOH and CH2Cl2) with the molecular
formula C29H22O11 as determined by HR-ESI-MS ([M −H]– at m/z 545.1094). The structure of 3 was
elucidated from NMR data, which was in accordance with that reported [8]. The absolute configurations
of 3 were determined and confirmed by the single crystal X-ray diffraction analysis (Figure 6) for the
first time. The final refinement of the Cu Kα data resulted in a 0.05(14) Flack parameter, allowing an
unambiguous assignment of the absolute configurations as 1S, 8′R, 9′aS, and 9′S.
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In addition to compounds 1–3, two known compounds, including duclauxin (4) [14,15] and
xenoclauxin (5) [7] (Figure 1), were also isolated and elucidated by NMR and MS data comparison
with the above literature.

2.2. Biological Activities of the Isolated Compounds

The crude extracts and isolated compounds were assayed for their inhibitory effects on EGFR [18]
and CDC25B [12]. Despite their structural similarity, compounds 1–5 displayed remarkable differences
in their activity spectra (Table 3). The EGFR tyrosine kinase assay showed that compounds 1–5 showed
a weak inhibitory effect on EGFR. Besides, compounds 1, 3, and 5 displayed potent CDC25B inhibitory
activities with IC50 values of 0.38 ± 0.03, 0.40 ± 0.02, and 0.26 ± 0.06 µM, respectively (Na3VO4, positive
control, IC50 0.52 ± 0.02 µM). The results indicated that oligophenalenone dimers might be used for
screening as the new natural CDC25B inhibitor candidates.
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Table 3. The biological activities of compounds 1–5.

Comp. Anti-EGFRIC
50 (µM) ± SD

Anti-CDC25BIC
50 (µM) ± SD

1 0.92 ± 0.25 0.38 ± 0.03
2 1.22 ± 0.53 NT a

3 4.41 ± 2.32 0.40 ± 0.02
4 0.95 ± 0.64 0.75 ± 0.18
5 0.24 ± 0.17 0.26 ± 0.06

Afatinib 0.0005 ± 0.00002 NT a

Na3VO4 NT a 0.52 ± 0.02
a No test.

3. Experimental Section

3.1. General

UV spectra were measured in methanol on a TU-1810 spectrophotometer (Beijing Purkinje
General Instrument Company Limited, Beijing, China). X-ray crystallographic data were measured
on a D/MAX-RC X-ray diffractometer (Rigaku Corporation, Krakow, Poland). Optical rotations
were recorded in CHCl3 using a Rudolph Autopol III polarimeter (Rudolph Research Analytical,
Hackettstown, NJ, USA) at 25 ◦C. Melting points were measured on a BUCHI M-560 melting point
apparatus. NMR Spectra were recorded on a Bruker AVANCE III-600 MHz spectrometer (Bruker
Corporation, Fällanden, Switzerland), and tetramethylsilane (TMS) was used as the internal standard.
ECD spectra were measured on a JASCO J-810 circular dichroism spectrometer (JASCO Corporation,
Tokyo, Japan) using MeOH as a solvent at 25 ◦C. HR-ESI-MS spectra were performed on a Xevo
G2-QTOF spectrometer (Waters Corporation, Milford, MA, USA). Precoated silica gel plates (Qingdao
Haiyang Chemical Group Co., Qingdao, China; GF254) were used for thin layer chromatography. Silica
gel (Qingdao Haiyang Chemical Group Co., Qingdao, China; 100–200 mesh, 200–300 mesh), RP-18
reverse-phase silica gel (Silicycle, Quebec, Canada; 50 µm), and Sephadex LH-20 (GE Healthcare
Bio-Sciences Corporation, Piscataway, NJ, USA) were used for column chromatography.

3.2. Fungal Material

The fungus was isolated from the soft coral Goniopora sp. collected from Sanya, Hainan island,
South China Sea, China. The fungus was identified as Talaromyces verruculosus by analysis of the internal
transcribed spacer (ITS) region sequence of its rDNA, as described previously [19]. The sequence data
obtained from the fungus was submitted to GeneBank with accession number KU 057944. A voucher
strain was deposited in the Technical Innovation Center for Utilization of Marine Biological Resources,
Third Institute of Oceanography, Ministry of Natural Resources.

3.3. Fermentation

The fungus Talaromyces verruculosus was inoculated into 500 mL Erlenmeyer flasks containing
300 mL liquid medium (glucose 1%, maltose 2%, corn steep liquor 0.1%, yeast extract 0.3%, monosodium
glutamate 1%, mannitol 2%, KH2PO4 0.05%, MgSO4·7H2O 0.03%, seawater, pH 7.5). Static fermentation
was then incubated at room temperature for 35 days.

3.4. Extraction and Isolation

The fermented whole broth (21 L) was filtrated to separate the supernatant from the mycelia.
The supernatant was stirred three times with ethyl acetate (EtOAc) and was then concentrated
under reduced pressure to obtain an EtOAc crude extract. The air-dried mycelia were immersed
in acetone-H2O (4:1) with ultrasonic processor for 30 min before evaporating to afford an aqueous
solution, which was extracted three times with EtOAc to yield a further EtOAc crude extract. Since
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both EtOAc extracts showed similar high performance liquid chromatography (HPLC) and thin layer
chromatography (TLC) profiles, they were combined to afford an extract (27 g) for further purification.
The extract was separated into seven fractions (Fr.1–Fr.7) on a silica gel column chromatography (CC)
using a step gradient elution with MeOH–CH2Cl2 (0–100%). Fr.2 was further subjected to CC on
Sephadex LH-20 (CH2Cl2–MeOH, 1:1) to obtain six subfractions (Fr.2.1–2.6). Furthermore, Fr.2.3 was
purified by semi-preparative HPLC (35% acetonitrile) to yield 1 (30.1 mg, tR 27.6 min), 3 (38.4 mg, tR

29.8 min), and 4 (28.7 mg, tR 28.0 min); Fr.2.4 was further purified by CC on Sephadex LH-20 (100%
MeOH) and preparative TLC to obtain 5 (10.2 mg, tR 32.3 min). Meanwhile, Fr.3 was subjected to CC
on silica gel eluted with acetone–CH2Cl2 (2.5%–20%) and was then purified by Sephadex LH-20 CC
(CH2Cl2–MeOH, 1:1) to get 2 (38.4 mg, tR 31.3 min).

Verruculosin A (1): yellowish crystal (from CHCl3); m.p. 241–242 ◦C; [α]25
D + 66 (c 0.37, CHCl3);

UV (MeOH) λmax (log ε) 240 (4.53), 355 (3.62) nm; CD λmax 248 nm (∆ε +38.3), 303 nm (∆ε –15.5),
328 nm (∆ε –1.3); 1H and 13C NMR data, see Table 1; HR-ESI-MS m/z 603.1519 [M – H]– (calcd
for C32H27O12, 603.1503), 627.1479 [M + Na]+ (calcd for C32H28O12Na, 627.1478). Crystal data (Cu
Kα radiation): C32H28O12, M = 604.54, monoclinic, a = 8.5126(2) Å, b = 17.3952(4) Å, c = 9.8690(3)
Å, α = 90.00◦, β = 113.780(4)◦, γ = 90.00◦, V = 1337.32(6) Å, T = 180.00(3) K, space group P1211,
Z = 2, µ (Cu Kα) = 0.979 mm−1, F (000) = 632. Crystal dimensions: 0.30 mm × 0.20 mm × 0.10 mm.
λ (Cu Kα) = 1.54184 Å. Further, 17,474 reflections were measured, with 3983 independent reflections
(Rint = 0.0376). The final R1 values were 0.0268 (I > 2σ(I)). The final wR(F2) values were 0.0666 (I > 2σ(I)).
The final R1 values were 0.0281 (all data). The final wR(F2) values were 0.0681 (all data). The goodness
of fit on F2 was 1.075. Flack parameter = 0.13(11).

Verruculosin B (2): yellowish oil; [α]25
D + 110 (c 0.24, CHCl3); UV (MeOH) λmax (log ε) 236 (4.26),

316 (3.51), 367 (3.24) nm; CD λmax 246 nm (∆ε +24.0), 300 nm (∆ε –0.5), 323 nm (∆ε +3.0); 1H and 13C
NMR data, see Table 1; HR-ESI-MS m/z 619.1396 [M − H]− (calcd for C32H27O13, 619.1452).

3.5. EGFR Activity Assay

The EGFR tyrosine kinase inhibitory activity was tested using enzyme-linked immunosorbent
assay (ELISA). The compounds were dissolved in dimethyl sulfoxide (DMSO) buffer solution and
were then distributed to a 96-well plate pre-coated with poly(Glu, Tyr)4:1 as a substrate. Each well was
treated with 50 µL of 10 µM ATP solution diluted with reaction buffer and the reaction was started by
the addition of EGFR tyrosine kinase. After 60 min of incubation at 37 ◦C, the plate was washed three
times with phosphate buffered saline containing 0.1% Tween 20 (PBST). Next, antiphosphotyrosine
(PY99) antibody 100 µL was added. After incubation for 30 min at 37 ◦C, the plate was washed three
times and goat anti-mouse IgG horseradish peroxidase was added. The plate was reincubated at 37 ◦C
for 30 min and washed as before. Lastly, 100 µL of color development solution was added and the
plate was incubated at room temperature until color emerged. The reaction was terminated by adding
50 µL of 2 M H2SO4, and the absorbance was measured on the Molecular Devices SpectraMax 190
microplatereader at 490 nm [20]. The known EGFR inhibitor, afatibib, was utilized as a positive control,
and 0.1% (v/v) DMSO was used as a negative control.

3.6. CDC25B Activity Assay

The enzymatic activity of the CDC25B was determined at 30 ◦C by monitoring the dephosphorylation
of 3-O-methylfluorescein phosphate (OMFP), which was used as a substrate for the CDC25B and can be
monitored at a 535 nm emission wavelength and 485 nm excitation wavelength in the EnVisionmultilabel
plate reader [21]. The assay was measured in a 100 µL mixture system containing 50 mM Tris-HCl,
pH 8.0, 50 mM NaCl, 10 µM OMFP, 100 nM CDC25B, 1 mM dithiothreitol (DTT), 1 mM ethylene diamine
tetraacetic acid (EDTA), 1% glycerin, and 2 mg/L compound. The initial rate of the dephosphorylation
was determined using the early linear region of the enzymatic reaction kinetic curve. DMSO and
Na3VO4 were used as negative and positive controls, respectively.
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4. Conclusions

Two new oligophenalenone dimers, verruculosins A–B (1–2), together with three known
compounds (3, 4, 5) were isolated and identified from the marine soft coral-derived fungus Talaromyces
verruculosus. Compound 1 was the first compound possessing a novel octacyclic ring system in the
oligophenalenone dimer family. The structures and absolute configurations of compounds 1 and
3 were confirmed by single-crystal X-ray diffraction analysis, while compound 2 was assigned on
the basis of the optical rotation, ECD analysis, and NMR calculations. In the bioassay, compounds
1, 3, and 5 exhibited potent inhibition against CDC25B with IC50 values of 0.38 ± 0.03, 0.40 ± 0.02,
and 0.26 ± 0.06 µM, respectively.

Supplementary Materials: The materials are available online at http://www.mdpi.com/1660-3397/17/9/516/s1.
Computational data, CIF files of 1 and 3, as well as NMR and MS spectra for compounds 1–2.
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