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Igor Jerković 3,*
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Abstract: Macroalgae produce a wide range of monoterpenes as secondary metabolites of mevalonate
(MVA) and/or methylerythritol phosphate (MEP) pathway (often including haloperoxidase action).
Great biodiversity of macroalgal monoterpenes was reported including acyclic, monocyclic, and
bicyclic structures. Halogenated monoterpenes exhibited significant biological activity (e.g., anticancer,
antiplasmodial, and insecticidal) that is influenced by the number of present halogens (higher
halogen content is preferable, especially bromine) and their position within the monoterpene
skeleton. In distinction from the existing reviews, the present review provides novelty with respect
to: (a) exclusively monoterpenes from red macroalgae are targeted; (b) biosynthesis, isolation,
and analysis, as well as bioactivity of monoterpenes are represented; (c) the methods of their
isolation, analysis, and structure elucidation are summarized; (d) the bioactivity of macroalgal
monoterpenes is systematically presented with emphasis on anticancer activity; (e) the literature
references were updated.
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1. Introduction

Natural organic compounds exhibited a significant role in the development of new drugs [1]
and often serve as a model for making new semi-synthetic and synthetic compounds with improved
biological activity [2]. The search for new drugs has led to the testing of naturally occurring compounds
from marine environment [3]. Marine macroalgae produce a number of structurally different
compounds that exhibit various pharmacological properties [4–6], including antiviral, antibacterial,
antifungal, cytotoxic [7], insecticidal, antihelmitic, antifeedant, antioxidant, anti-inflammatory [5,7],
and antitumor properties [8]. The algae are also source of nutrients [9], containing carbohydrates,
amino acids, fatty acids, fibers, vitamins (A, C, B1, B2, B6, and niacin), and minerals (iodine, potassium,
magnesium, and calcium). In addition to primary metabolites, algae also produce a large variety
of natural organic compounds, which do not play a prominent role in primary metabolism [10].
Such substances are called secondary (specialized) metabolites and are produced in specialized
cells. Terpenes (monoterpenes, sesquiterpenes, and diterpenes) are algal and plants specialized
metabolites [10,11]. They are a large and structurally diverse group of compounds (isoprenoids) of the
general formula (C5H8)n containing isoprene unit (2-methylbuta-1,3-diene) that are found in the volatile
oils from land plants and seaweeds [11]. Marine monoterpenes remained undiscovered until 1955
when seven monoterpenes of green alga Ulva pertusa Kjellman were reported [12]. The first unusual
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marine monoterpenes were not identified until 1973 when the isolation of polyhalogenated compounds
from Aplysia californica J.G. Cooper was done [13,14]. During the last decades, following these initial
discoveries, new marine monoterpenes have been reported including degraded monoterpenes and
monoterpenes of mixed biogenesis [15–18].

This review highlights the occurrence of monoterpenes in macroalgae with emphasis on the
cyclic and halogenated monoterpenes since they were the most active. Macroalgal monoterpenes
extraction techniques, methods for the analysis, and structure elucidation are presented, as well as
their bioactivity. Available literature, including reviews on biochemistry, biosynthesis, and bioactivity
have been focused mainly on monoterpenoids from terrestrial plants [19–26]. Several reviews on
marine volatile halogenated metabolites (including monoterpenes) exist [7,27–31]. Neither of these
reviews represented comprehensively all domains which are presented in this paper. Kladi et al. [27]
not only put an emphasis on monoterpenes, but also on other volatile metabolites present in red
algae with short description of their bioactivities. Cabrita et al. [28] reported only few halogenated
monoterpenes with antiplasmodial activity. Ibrahim et al. [30] in the review mentioned only the
insecticidal activity of few monoterpenes. El Gamal [7] covered all bioactive compounds present in the
algae and, among them, emphasized monoterpenes as anticancer agents. Monoterpenes were also
reviewed with other nutrients and secondary metabolites of the macroalgae [29]. Zatelli et al. [31]
represented that brown algae of the genus Dictyopteris also contained some monoterpenes but in much
lower concentration when compared to red algae. In distinction to the published reviews, the present
review presents several novelties: (a) exclusively monoterpenes (acyclic, monocyclic, and bicyclic) from
red macroalgae, as the main source of monoterpenes, were targeted; (b) the methods of their isolation,
analysis, and structure elucidation were systematically summarized in the tables; (c) the bioactivity
(anticancer, antiplasmodial, and insecticidal) of macroalgal monoterpenes was systematically presented;
(d) the literature references were updated.

2. Biosynthesis of Monoterpenes in Macroalgae

Available literature for the biosynthesis of monoterpenes focus mostly on the algae belonging to
the class Rhodophyta (red algae). The halogenated monoterpenes were found in the marine algae and
they were synthesized mostly for chemical defense from herbivores [32]. Bromine and chlorine ions
are abundant in seawater and involved in the formation of halogenated monoterpenes promoted by
bromoperoxidase which is present in many red algae species [33]. A wide variety of these compounds
was found in three genera of red algae including Ochtodes, Plocamium, and Portieria [34,35].

2.1. Mevalonate (MVA) Pathway and Methylerithritol Phosphate (MEP) Pathway

Two pathways are known for the biosynthesis of monoterpenes, and the first step includes
the formation of the central building blocks of all isoprenoids (known as active isoprenes)
isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). They can be formed by
mevalonate (MVA) pathway and methylerythritol phosphate (MEP) pathway which is also known as
deoxyxylulose-5-phosphate (DXP) pathway (Figure 1). Each of these pathways can occur in the algae
cells. For instance, green algae possess only MEP pathway, while several red algae contain both or
only one of the mentioned pathways. Lohr et al. [36] also suggested that further genomic sequencing
of species is expected to provide more evidence for distribution of these two pathways. The MVA
pathway occurred in the cytosol, while the MEP pathway is localized in the plastids, but both have the
same task-to form IPP and DMAPP for the synthesis of the key intermediate geranyl pyrophosphate
(GPP) [37].
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Figure 1. Mevalonate (MVA) and methylerythritol phosphate (MEP) pathway.

Even though the MVA pathway was discovered in 1950s in yeasts and animals, it is still considered
to be the main route of IPP and DMAPP synthesis. It begins with condensation of three molecules of
acetyl-CoA followed by the enzymatically assisted conversions for the formation of IPP, all occurring
in the cytosol. Six different enzymes are involved in the formation of IPP with the phosphorylation of
mevalonate by mevalonate kinase as the main reaction, while the seventh enzyme is responsible for
the generation of DMAPP from IPP [36,38].

In contrast to the MVA pathway, the MEP pathway was discovered in 1990s in bacteria and
plants. It begins with the reactions between glyceraldehyde-3-phosphate (G3P) and pyruvate and it
is capable of producing both IPP and DMAPP as final products due to the presence of the enzyme
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) [36,39]. IPP is isomerized to DMAPP,
which than reacts with IPP within the precursor pool and forms geranyl pyrophosphate (GPP),
known as the common precursor for all monoterpenes [40].

2.2. Biosynthesis of Cyclic Monoterpenes in Macroalgae

Although GPP is considered as the universal precursor for monoterpene biosynthesis, it has limited
flexibility for the formation of mono- and bicyclic carbon skeletons. Namely, GPP trans-2,3-double bond
prevents direct cyclization. Consequently, the enzyme-catalyzed cyclization of GPP and its conversion
into tertiary allylic isomer, linalyl pyrophosphate (LPP), occurs in formation of cyclic monoterpenes.
The most important step of this mechanism in the algae is the initiation of divalent cation-assisted
ionization of the pyrophosphate group which will allow rotation around new single bond and new
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highly reactive carbocation intermediate is formed, cyclic α-terpinyl cation (Figure 2). α-Terpinyl
cation intermediate will undergo several mechanisms such as oxidation, reduction, isomerization,
or conjugation, and it will generate a variety of monoterpene cyclic and bicyclic carbon skeletons [41,42].
Figure 2 shows the mechanism of formation of various monoterpene structures from left-handed
helical conformer of GPP, but a similar pathway would occur from GPP right-handed helix which
would result in the stereochemical antipodes of formed structures.
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2.3. Biosynthesis of Halogenated Monoterpenes in Macroalgae 

Figure 2. The pathway of monoterpene cyclization through divalent cation-assisted ionization of
pyrophosphate group and formation of α-terpinyl cation intermediate (I—limonene; II—δ-terpinene;
III—γ-terpinene; IV—α-terpinene; V—α-pinene; VI—β-pinene; VII—car-3-ene; VIII—sabinene;
IX—borneol; X—camphene; XI—1,8-cineol).

Wise et al. [41] tested neryl pyrophosphate (NPP), cis-isomer of GPP, and LPP as alternate substrates
for monoterpene synthesis. The results showed that myrcene synthase exhibited the ability to form
cyclic structures from NPP and LPP resulting in different product profiles. Limonene was produced
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from NPP, while the mix of products was utilized from LPP, such as myrcene, cis-ocimene, terpinene,
and limonene. Although the enzyme is capable for cyclization of NPP and LPP, it does not catalyze the
isomerization of GPP to an intermediate that is able to cyclize. Moreover, they demonstrated for the
first time in vitro activity of monoterpene synthase from marine source, which provided the basis for
understanding and further exploration of biosynthesis of halogenated monoterpenes.

2.3. Biosynthesis of Halogenated Monoterpenes in Macroalgae

Acyclic monoterpenes from macroalgae with bromine or chlorine atoms or both are likely the result
of haloperoxidase action on either myrcene or ocimene [33,43]. Bromonium ion-initiated cyclization
was proposed to explain the formation of ochtodane ring (l-ethylidene-3,3-dimethylcyclohexane)
found in marine monoterpenes [44] from myrcene. Thus, the ring closure is initiated by bromonium
attack on C6–C7 olefin followed by internal addition to the resulting cationic center (Figure 3). Similar
reasoning invokes ocimene as the immediate precursor of 1,3-dimethyl-l-vinylcyclohexane ring and
2,4-dimethyl-1-vinylcyclohexane ring [35]. The biogenetic schemes presented in Figure 3 are based on
relevant chemical models [45–47] and successfully predict halogenation patterns and ring structures
observed in the algae.
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As mentioned previously, red algae are known for their content of halogenated monoterpenes
which are characterized by multiple halogen substitutions [35]. They can be produced as the
consequence of conversion of GPP to myrcene with myrcene synthase followed by myrcene
halogenation, with the help of haloperoxidases, to mono- or dihalogenated myrcene derivatives [48].
Myrcene and ocimene are immediate precursors for the formation of halogenated cyclic compounds.
According to Naylor et al. [35], macroalgae belonging to the genus Plocamium, contain ocimene
as the common precursor of halogenated monoterpenes, while species from Portieria and Ochtodes
contain myrcene as the precursor of halogenated monoterpenes. However, myrcene is not the
only one responsible for the biosynthesis of halogenated monoterpenes since the enzyme co-factors
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exhibit the key role in their synthesis. Without certain enzyme co-factors, halogenated monoterpenes
could not be synthesized. Polzin et al. [49] demonstrated that Ochtodes secundiramea (Montagne) M.
Howe was not able to synthesize halogenated monoterpenes without the presence of bromide and
vanadate which are bromoperoxidase co-factors. This was also confirmed by Polzin and Rorrer [40]
when they removed bromide and vanadate from the medium of O. secundiramea and consequently
bromoperoxidase-catalyzed halogenation did not occur which indicated that bromide and vanadate are
required for the biosynthesis of brominated and bromochlorinated monoterpenes in O. secundiramea.
Furthermore, it was found that Portieria hornemannii (Lyngbye) P.C. Silva contains only chlorinated
monoterpenes, while Ochtodes secundiramea does not, which indicates the variations in halogenation
enzyme activity [34]. Moreover, it could not be said for certain that the cyclization of myrcene to
ochtodane and other related structures is catalyzed by the enzymes. Fenical [50] showed that the
cyclization can occur without the enzyme catalysis in the presence of bromonium ion, while Barahona
and Rorrer [34] showed that P. hornemannii possess chlorination enzyme which does not require
bromonium ion intermediate. Barahona and Rorrer [34] proposed that halogenation of monoterpenes
is the consequence of Markovnikov addition of the halogen to the olefinic bond of myrcene which is
attacked by the halonium ions.

3. Isolation and Biodiversity of Monoterpenes from Macroalgae

Isolation of monoterpenes from macroalgae belonging to the genus Plocamium has been of
most interest to various researchers due to the presence of halogenated monoterpenes. The most
monoterpenes were isolated from Plocamium cartilagineum (Linnaeus) P.S. Dixon collected from different
parts of the world (Table 1).

3.1. Comparison of Different Extraction Methods for the Isolation of Monoterpenes

Monoterpenes have been mostly extracted with different solvents, which are presented in Table 1.
These methods belong to the group of conventional extraction methods, but Gao and Okuda [51] used
supercritical fluid extraction with CO2 (SC-CO2) for the extraction of monoterpenes (1–8, Figure 4)
from P. cartilagineum collected from two different locations, Santa Cruz and San Diego. They used two
reference compounds, (6) and (7), for determination of the extraction efficiency of SC-CO2. SC-CO2

with pure CO2 and with the addition of co-solvent methanol was investigated as well as the influence
of time and pressure on the extraction yield of monoterpenes. The extraction with pure CO2 gave
lower yields, as well as the incomplete profile of monoterpenes when compared with the extraction
with methanol as co-solvent. For obtaining the main monoterpenes from P. cartilagineum, additional
methanol extraction with a reused algae sample was applied and several monoterpenes were detected
in the residual material which remained after SC-CO2 with methanol as co-solvent. The yield of
the compounds (6) and (7) was much lower compared to the conventional extraction which can be
the consequence of applied process conditions when many unwanted compounds were extracted
and interfered with monoterpenes during gas chromatography and mass spectrometry (GC-MS)
analysis. Another observation was that the compound (6) was unstable and it decomposed during
the conventional extraction from P. cartilagineum probably due to the presence of an aldehyde group
which is sensitive to air oxidation. When comparing conventional and supercritical extraction of
monoterpenes, it can be concluded that with supercritical extraction monoterpenes could not be
oxidized (their original structure is maintained), while during the conventional extraction these
compounds can be oxidized. Namely, the conditions during supercritical extraction are almost oxygen
free so the potential of oxidation of the compound (6) was reduced. However, the oxidation can
also occur during the analysis such as GC [52]. To determine the losses and degradation of certain
compounds, external standards with similar or the same chemical structures as the target compound
could be used [51,52]. In addition, Gao and Okuda [51] observed that the collection location of the algae
showed significant influence on monoterpene profile. The supercritical extraction could selectively
extract halogenated monoterpenes from Santa Cruz P. cartilagineum when the pressure and time of the



Mar. Drugs 2019, 17, 537 7 of 20

extraction were combined. On the other hand, when San Diego P. cartilagineum was extracted with
supercritical fluid extraction, the selectivity of halogenated monoterpenes was not found.
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3.2. Monoterpenes Isolated from Different Macroalgae Species

Monoterpenes are divided into cyclic and acyclic groups, with cyclic monoterpenes being mono-
or bicyclic. Regular acyclic monoterpenes are head-tail linked (the branched end of one isoprene unit
binds to the unbranched end of another isoprene unit).

Figure 5 shows the most significant representatives of acyclic monoterpenes found in the algae:
Myrcene (9), ocimene (10), geranial (11), neral (12), citronellol (13), and geraniol (14). The most pleasant
odorous compounds found in the algae [53] are included in acyclic group of monoterpenes.
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Monocyclic monoterpenes are usually derived from methyl-isopropyl cyclohexane by its
dehydrogenation [54]. 1,8-Cineole (15) is the most common monocyclic monoterpene found in
the algae [53,55], while α-pinene (16) and β-pinene (17) are the most common representatives of the
bicyclic monoterpenes (Figure 6) [53,56].
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Even though monoterpenes isolated from macroalgae have been known for centuries,
new emerging methods of their isolation and analysis allowed further research of these compounds
with the discovery of many new monoterpenes produced by macroalgae (Figure 7, Table 1). Four new
monoterpenes based on 1-(2-chlorovinyl)-2,4,5-trichloro-1,5-dimethylcyclohexane skeleton, (18–21),
and four known cyclic monoterpenes, (22–25), were isolated and characterized from P. cartilagineum
collected along the central coast of Chile [57]. Darias et al. [58] collected this alga also from Chilean coast
and found that isolated tetrahydrofuran monoterpenes, furoplocamioids A–C (26–31), contained a
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chlorobromo vinyl functional group which is unusual among the macroalgae monoterpenes. It is known
that monoterpenes isolated from the algae of Plocamium genus possess terminal bromovinylic or
chlorovinylic system, but the findings of dihalovinyl system enabled the discovery of regiochemistry
of new polyhalogenated monoterpenes. Hence, P. cartilagineum collected at the same location was
investigated for its minor constituents to better understand the formation of oxane ring-containing
monoterpenes. Diaz-Marrero et al. [59] described two new tetrahydrofuran halogenated monoterpenes
(32, 33), as well as new acyclic polyhalogenated monoterpene (34). P. cartilagineum collected from
the Spanish coast contained two new polyhalogenated acyclic monoterpenes, (35) and (36) [60].
König, Wright, and Sticher [61] confirmed that the location influenced the secondary metabolites of
P. cartilagineum, while in 1999, König, Wright, and Linden [16] observed this pattern in Plocamium
hamatum J. Agardh collected from different regions in Australia and reported the compounds (37–47).

In 1979, Stierle and Sims [62] studied P. cartilagineum collected in Antarctica and found several
monoterpenes as minor constituents, while Shilling et al. [63] found that these monoterpenes were
present at higher concentrations in the same alga species collected also in Antarctica, but during different
seasons. The compounds (48–51) were discovered as new, undescribed halogenated monoterpenes
from P. cartilagineum, named anverenes B–E.

A recent study by Knott et al. [64] stated that red algae of the families Plocamiaceae and
Rhizophyllidaceae developed pathways to oxidize chloride and bromide ions from seawater and
incorporate them into monoterpene structures. This resulted in a wide variety of different
cyclic and acyclic monoterpenes with multiple halogen atoms, mostly chloride and bromine [27].
Although P. cartilagineum was the most studied algae of the genus Plocamium, the authors observed
that other algae from the same genus also produce halogenated monoterpenes. Knott et al. [17] first
reported -CHCl2 moiety at C-1 position of three new ocimene-type polyhalogented monoterpenes,
plocoralides A–C (52–54), as well as three known compounds (55–57) from Plocamium corallorhiza
(Turner) J.D. Hooker and Harvey collected from the coast of South Africa. Mann et al. [18] observed that
P. corallorhiza contained unusual moieties attached to monoterpene skeleton. They isolated four new
unstable halogenated monoterpene aldehydes (58–61) which were not detected in the algae collected
from the west coast of South Africa, but they were present in the macroalgae from the southeastern
coast. According to the similar structure to known compounds, such as plocoralide B, they suggested
that the compounds (58–61) were degradation products formed during the isolation. The aldehyde
group at C-1 is usually characteristic to terrestrial monoterpenes but they were first to report this
functional group in marine halogenated monoterpenes. Knott et al. [64] described the isolation and
characterization of two novel monoterpenes, halogenated cyclohexanone derivatives, plaxenone A
and plaxenone B (62, 63) from Plocamium maxillosum (Poiret) J.V. Lamouroux. A recent study on
Plocamium angustum (J. Agardh) J.D. Hooker and Harvey from New Zealand revealed the presence
of new polyhalogenated monoterpene with tetrahydropyran ring, costatone C (64), isolated from
this species for the first time [65], while costatone A (65) [66] and costatone B (66) [67] were isolated
earlier from different Plocamium costatum (C. Agardh) J.D. Hooker and Harvey samples collected in
South Australia.

Several monoterpenes are very unstable and during their isolation degradation can
occur. During the last few years, a new hyphenated technique, high-performance liquid
chromatography–nuclear magnetic resonance (HPLC-NMR), has been employed for obtaining the
chemical profile of the genus Plocamium. This technique is non-destructive and all of the isolated
compounds are fully recovered. Dias and Urban [68] successfully used this technique to obtain
phytochemical profile of Plocamium mertensii (Greville) Harvey which represents the first application of
this technique on marine algae. While they obtained the mixture of compounds and isolated other
compounds besides monoterpenes, Timmers et al. [69] used this technique to obtain and identify two
pure monoterpene compounds. First, they obtained an already known compound, plocamenone (67),
from Plocamium angustum and then they identified its unstable double bond isomer isoplocamenone
(68) and concluded that this is a very valuable method for the analysis of unstable compounds.
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On the other hand, Motti et al. [67] used the HPLC-UV-MS-SPE-NMR technique for determination
of halogenated monoterpenes from P. costatum and P. hamatum. This technique is relatively new and
it combines traditional and hyphenated chromatographic techniques which employs solid-phase
extraction (SPE) as an interface between traditional chromatography, ultraviolet spectroscopy (UV),
liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). It has the
advantage over HPLC-NMR technique because the analytes trapped on SPE cartridge are eluted with
minimal volumes of solvent directly into NMR flow-probe. The results indicated new halogenated
monoterpenes including the compounds (66, 69–75), and two known halogenated monoterpenes (76)
and (77). The compound (70) was isolated as the mixture with compound (71) at the ratio of 2:1. These
two compounds showed similar 1H NMR spectrum with only very slight differences in their chemical
shifts (∆δH 0.1), indicating that these two compounds are stereoisomers. However, their absolute
configuration was unassigned.

Similar as genus Plocamium, genus Portieria showed differentiation of monoterpene content
depending on the collection location, as was shown by Wright et al. [70] during the isolation
of compounds (78–82) from Portieria hornemannii collected in Australia. Gunatilaka et al. [71]
isolated two new regioisomeric tetrahalogenated mnonoterpenes, named apakaochtodene A (83)
and apakaochtodene B (84), from P. hornemannii collected from different reef sites on Guam with
different ratios.

Even though most of the studies are reported on Plocamium and Portieria genera (as the most
promising producers of both cyclic and acyclic halogenated monoterpenes), genus Ochtodes also
contained halogenated monoterpenes [40,48]. Paul et al. [32] isolated 13 new cyclic monoterpenes
(85–97) from red alga Ochtodes crockeri Setchell and N.L. Gardner from the Galapagos Islands. In 1976,
Crews et al. [72] observed that halogenated monoterpenes found in Microcladia differ in the composition
between different collection locations. They compared Microcladia with Plocamium species [73] with
respect to the similarity of monoterpenes profile. Based on the results they concluded that the unique
pattern of monoterpene structures for differentiation of algae species cannot be applied because
the species belonging to Microcladia and Plocamium can produce similar or the same monoterpenes.
Even though they were collected from different locations, plocamene-B (98), plocamene-C (99),
violacene (100), and plocamene-D (101) were found in all species of the both genera Microcladia
and Plocamium. The compounds present in both genera were related to dechlorobromination and
dehydrobromination, while bromine appeared to be the most often incorporated into monoterpenes.
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Table 1. The methods of isolation of halogenated monoterpenes from different macroalgal species.

Macroalgae
Species

Isolated
Monoterpenes Extraction Solvent Analytical Method References

Genus Plocamium

Plocamium
cartilagineum 1–8

Conventional extraction
with MeOH and EtOAc;
SC–CO2 extraction (pure

CO2 and with 10 % MeOH
as co-solvent)

GC–MS, NMR [51]

Plocamium
cartilagineum 18–25 CHCl3 and EtOH NMR [57]

Plocamium
cartilagineum 26–31 EtOAc–CH2Cl2-hexane HPLC, NMR [58]

Plocamium
cartilagineum 32–34 hexane/EtOAc/CH2Cl2/MeOH HPLC, NMR [59]

Plocamium
cartilagineum 35, 36 Et2O NMR [60]

Plocamium
hamatum 37–47 CH2Cl2 NMR [16]

Plocamium
cartilagineum 48–51 CH2Cl2/H2O GC–MS, HPLC, NMR [63]

Plocamium
corallorhiza 52–57 MeOH and CH2Cl2 NMR [17]

Plocamium
corallorhiza 58–61 CH2Cl2–MeOH NMR [18]

Plocamium
maxillosum 62, 63 CH2Cl2–MeOH NMR [64]

Plocamium
angustum 64 MeOH NMR, HPLC [65]

Plocamium
costatum 65 Hexane NMR [66]

Plocamium
angustum 67, 68 CH2Cl2–MeOH HPLC–NMR [69]

Plocamium
hamatum,

Plocamium
costatum

66, 69–77 CH2Cl2–MeOH HPLC–UV–MS–SPE–NMR [67]

Genus Portieria

Portieria
hornemannii 78–82 MeOH:CH2Cl2 NMR [70]

Portieria
hornemannii 83, 84 CH2Cl2/MeOH HPLC, NMR [71]

Genera Ochtodes and Microcladia

Ochtodes crockeri 85–97 CHCl3:MeOH HPLC [32]

Microcladia
coulteri,

M. borealis,
M. californica

98–101
CHCI3,

CH2Cl2 and EtOH,
CHCl3 and EtOH

GC–MS, NMR [72]
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4. Bioactivity of Monoterpenes in Macroalgae

Scientists have shown interest for the bioactivity of monoterpenes isolated exclusively from red
algae, with genus Plocamium and Portieria as dominating. El Gamal [7] represented red algae as the
main source of monoterpenes with cytotoxic activity. As demonstrated in Table 2, anticancer activity of
monoterpenes against different tumor cell lines, including esophageal [74], brain, renal, colon [75],
and cervical cancer [76], was the main bioactivity of novel monoterpenes as well as those that were
known before.

Table 2. Isolated monoterpenes from different macroalgal species and their bioactivity.

Macroalgae Species Isolated Monoterpenes References
Anticancer activity

Portieria hornemannii 102, 103 [75]

Plocamium corallorhiza,
Plocamium cornutum 54, 55, 58, 60, 104–109 [77]

Portieria hornemannii 110–112 [78]

Polcamium suhrii,
Plocamium cornutum 5, 113–118 [74]

Plocamium corallorhiza 52–57 [17]

Plocamium cartilagineum 119 [79]

Portieria hornemannii 102, 120–124 [80]

Plocamium cartilagineum 30, 125, 126, 127–132 [76]

Plocamium maxillosum 62, 63 [64]
Antiplasmodial (antimalarial) activity

Plocamium cornutum 53, 58, 133–139 [81]
Insecticidal activity

Plocamium cartilagineum,
Pantineura plocamioides 26, 27, 30, 31, 140, 141 [82]

Plocamium telfairiae 142, 143 [83]

Plocamium cartilagineum 18–25 [16]

Plocamium cartilagineum 144, 145 [84]

Among all of isolated monoterpenes, halomon is the best-studied halogenated monoterpene
isolated from Portieria hornemannii whose structure is presented in Figure 8. It was firstly isolated
and elucidated by Fuller et al. [75]. Halomon (102) was tested for cytotoxicity against human brain,
colon, and renal tumor cell lines and the results indicated high cytoxicity against mentioned cell
lines, while lower activity was observed against leukemia and melanoma cell lines. Interestingly,
P. hornemannii collected from different locations showed the absence of halomon, but new monocyclic
monoterpene (103) with lower cytotoxic activity was observed. Plocamium hamatum collected from six
different locations showed significant difference within the content of secondary metabolites which led
to different cytotoxic results [16].
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The structural diversity among halogenated monoterpenes (Figure 9) has been shown as the
important factor for bioactivity intensity. De la Mare et al. [77] isolated monoterpene compounds
(54, 55, 58, 60, 104–109) and observed that all of them contained from two to five halogen moieties,
specifically Cl and/or Br. They selected the molecules whose terpene backbone was identical, but the
halogen substitution varied between the compounds. The results indicated that a higher number of
halogen atoms resulted in higher anticancer activity against breast cancer cells. Five halogen atoms
were found among the most toxic compounds, while non-toxic compounds contained three and four
halogens. Hence, the most active against breast cancer cells was the compound which contained only
Cl atoms, without Br. When halomon-related halogenated monoterpenes (110–112) were isolated and
tested for cytotoxicity, the results showed that the halogen at position C-6 was essential for the certain
activity [78].

Due to relatively simple structures of the algal compounds, they can be used for novel
chemotherapeutics. Even though their activity is lower than commercially used chemotherapeutics,
their structures, along with their differential toxicity, promise novel mechanisms of action against cancer
cell lines. Further studies should be performed to develop further modifications for the enhancement
of their activity. However, Antunes et al. [74] observed that the cytotoxic activity of halogenated
monoterpenes (5, 113–118) from Plocamium suhrii Kützing and Plocamium cornutum (Turner) Harvey
was higher when compared to the known anticancer drug cis-platin. Knott et al. [17] showed that
plocoralides A–C (52–57), polyhalogenated monoterpenes from Plocamium corallorhiza, exhibited good
activity against human esophageal cancer cell lines when compared to the commonly used cis-platin.
It can be observed that the genus Plocamium produces a great variety of polyhalogenated monoterpenes
with various anticancer activities (Table 2). Sabry et al. [79] isolated one new halogenated monoterpene
(119) from P. cartilagineum collected from South Africa. It showed good cytotoxic activity against the
cells of human lung cancer and mouse neuro-2a cell lines. Halomon 102 along with the compounds
120–124 isolated from Portieria hornemannii were good inhibitors against DNA methytransferase-1
isoform, which represents the enzyme responsible for tumor growth [80]. De Ines et al. [76] showed
that halogenated monoterpenes could have selective activity against certain cancer cell lines. Among
isolated compounds (30, 125, 126, 127–132) from P. cartilagineum, the most potent activity exhibited
the compounds 30, 125, 126, and 128 with notably selective cytotoxicity against colon and cervical
adenocarcinoma cells. Halogenated monoterpenes 62 and 63 isolated from Plocamium maxillosum were
tested against MDA-MB-231 metastatic breast carcinoma cell line and showed moderate antiproliferative
activity [64]. This level of activity of both of the compounds 62 and 63 is comparable with the previously
reported activities of halogenated monoterpenes (54, 55, 58, 60, 104–109) against the same cancer cell
lines [77].

Geographical variation, except on anticancer activity, showed also an influence on antiplasmodial
activity of halogenated monoterpenes isolated from Plocamium cornutum [81]. Afolayan et al. [81]
also emphasized the importance of dichloromethyl moiety at position 7 when considering the higher
antiplasmodial activity of halogenated monoterpenes. They observed that two novel compounds
134 and 135 containing 7-dichloromethyl moiety showed significantly higher activity toward strains
of Plasmodium falciparum compared with already known compounds 53, 58, 133–135, 138, and 139.
Furthermore, two novel cyclohexane polyhalogenated monoterpenes 140 and 141 and furoplocamioid
C (30) reported earlier [58] were very efficient repellents and antifeedants, as well as selective insect
cell toxicants depending on the number of halogenated substituents, as well as halogen type. Strong
antifeedant activity was observed when five halogen substituents were present in monoterpene
skeleton, but when compared to six halogen substituents the activity was significantly decreased.
The substitution of Br atom showed higher activity of the molecule when compared with C-l atom [82].
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According to Watanabe et al. [83], red algae belonging to the genus Plocamium exhibit strong
insecticidal activities (Table 2). They studied two polyhalogented monoterpenes, aplysiaterpenoid
A (142) and telfairine (143), isolated from Plocamium telfairiae (W.J. Hooker and Harvey) Harvey
ex Kützing and tested their insecticidal activities against Blatella germanica and Anopheles gambiae.
Aplysiaterpenoid A (142) and telfairine (143) possess cyclodiene-type insecticidal mode of action due
to the orientations of the sterically bulky regions and electronegative centers in monoterpenes. In that
way, the geometrical requirement for the interaction of monoterpenes with picrotoxinin receptor in
tested insects was satisfied, while large volumes of both monoterpenes led to the loose fitting into
the receptor. Monoterpenes isolated from Plocamium cartilagineum also showed insecticidal activities.
Specifically, the compounds 18–25 were tested against several species of insects among which violacene
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(19) showed the highest activity against Macrosteles facifrons [57]. Rovirosa et al. [84] also isolated
monoterpenes from Plocamium cartilagineum collected from Antarctica. The compound 144 showed the
most potent activity against Heliothis virescens, while the compound 145 showed a mild activity against
Diabrotica undecimpunctata.

On the other hand, some authors tested the extracts obtained with different methods from
various macroalgae species. Machado et al. [85] showed that the obtained extracts with the highest
concentration of monoterpenes exhibited acetylcholinesterase inhibition (AChEI). According to the
presence of halogenated monoterpenes, Ochtodes secundiramea showed the most potential for AChEI
activity. Further studies are necessary for understanding the activity mechanism.

5. Conclusions

The structural diversity of macroalgal monoterpenes is influenced by the habitat of macroalgae
(different light exposure and water temperature), as well as the season of their collection. Among the
macroalgae belonging to the same genus, there are variations in terms of monoterpene profile and
in the ratios of present monoterpenes, while some of monoterpenes are even absent. Even though
some species (as those belonging to the genus Plocamium) were very well investigated in the past,
the diversity of monoterpenes and the application of new hyphenated techniques lead to the discovery
of new and yet unknown monoterpenes in the last few years. In this paper, the total of 136 different
structures of monoterpenes isolated from the genera Plocamium, Protieria, Ochtodes, and Microcladia
were shown along with nine structures of commercially known monoterpens which can be found in
other plants, as well as in the algae. According to the literature presented, red algae from the genus
Plocamium are the largest source of acyclic and cyclic monoterpenes. Moreover, with more than 100
isolated monoterpenes, Plocamium species are one of the most important macroalgal sources of these
compounds. Halogenation is characteristic for macroalgal monoterpenes due to the capability of algae
to synthesize diverse halogenated monoterpenes with the help of haloperoxidases present in their cells
and/or Markovnikov addition of the halogen on the precursor which is attacked by the halonium ions.
Macroalgal monoterpenes are mostly halogenated with one or more chlorine and/or bromine atoms in
their structure.

Numerous studies have shown that monoterpenes isolated from macroalgae exhibit anticancer,
insecticidal and antiplasmodial activity, while the extracts rich in monoterpenes exhibited
acetylcholinesterase inhibition, but further elucidation about the activity mechanisms should be
performed. It was shown that the structure of monoterpenes affects the bioactivity intensity. Higher
halogen substitution leads to the better cytotoxicity and five halogen atoms were found as optimal.
Hence, halogenated monoterpenes with only C-l atoms showed higher activity.

Due to the fact that the marine biodiversity is greater than terrestrial, the discovery of new
monoterpenes is expected to increase.
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