Amentadione from the Alga *Cystoseira usneoides* as a Novel Osteoarthritis Protective Agent in an *Ex Vivo* Co-Culture OA Model

Nuna Araújo ¹, Carla S. B. Viegas ^{1,2}, Eva Zubía ³, Joana Magalhães ^{4,5,6}, Acácio Ramos ⁷, Maria M. Carvalho ⁷, Henrique Cruz ⁷, João Paulo Sousa ⁷, Francisco J. Blanco ^{4,5}, Cees Vermeer ⁸ and Dina C. Simes ^{1,2,*}

- ¹ Centre of Marine Sciences (CCMAR), University of Algarve, Faro, 8005-139, Portugal; naraujo@ualg.pt (N.A.); caviegas@ualg.pt (C.S.B.V.)
- ² GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, 8005-139, Portugal; caviegas@ualg.pt (C.S.B.V.); dsimes@ualg.pt (D.C.S.)
- ³ Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz), 11510, Spain; eva.zubia@uca.es
- ⁴ Unidad de Medicina Regenerativa. Grupo de Investigación en Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complejo Hospitalario Universitario de A Coruña (CHUAC). Sergas, A Coruña, Spain; joana.cristina.silva.magalhaes@sergas.es (J.M.); fblagar@sergas.es (F.J.B.)
- ⁵ Universidade da Coruña (UDC), Agrupación Estratégica CICA-INIBIC. A Coruña, Spain
- ⁶ Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- ⁷ Department of Orthopedics and Traumatology, Hospital Particular do Algarve (HPA), Gambelas-Faro, 8005-226, Portugal; acacioramos@gmail.com (A.R.); mariamiguelfc@gmail.com (M.M.C.); cruzhenrique@hotmail.com (H.C.); jprsous@gmail.com (J.P.S.)
- ⁸ Cardiovascular Research Institute CARIM, Maastricht University, 6229 EV Maastricht, The Netherlands; cees.vermeer@outlook.com
- * Correspondence: dsimes@ualg.pt

Received: date; Accepted: date; Published: date

Figure S1: Chemical structure, NMR and HRMS data of amentadione (YP).

Figure S2: YP reduces the inflammatory response of THP-1 macrophages (THP-1 MOM) stimulated with LPS and hydroxyapatite (HAP).

Figure S3: Viability of THP-1 macrophage cells (THP-1 MOM) exposed to different concentrations of amentadione (YP) for 24 h and exposed to different concentrations of HAP for 72 h.

Figure S4: Viability of primary human chondrocytes and synoviocytes exposed to different amentadione (YP) concentrations for 24 h.

Figure S5: Viability of primary human chondrocytes and synoviocytes exposed to different hydroxyapatite (HAP) concentrations for 72 h.

Figure S6: Indication on the time point with increased pIkB α after IL-1 β stimulation.

Table S1: Modified Mankin score used for histological evaluation of human cartilage explants.

Table S2: Gene-specific primers used for gene expression analysis by qPCR.

Amentadione (YP): yellowish oil; ¹H NMR (CD₃OD, 500 MHz) δ 6.94 (1H, d, *J* = 15.8 Hz, H-14), 6.39 (2H, br s, H-3' and H-5'), 6.35 (1H, d, *J* = 15.8 Hz, H-13), 6.20 (1H, br s, H-6), 5.46 (1H, br t, *J* = 7.4 Hz, H-2), 3.31 (2H, d, overlapped with the solvent signal, H-1), 3.10 (2H, s, H-4), 2.85 (1H, m, H-11), 2.15 (3H, s, 6'-Me), 2.13 (2H, t, *J* = 7.2 Hz, H-8), 2.07 (3H, d, *J* = 1.2 Hz, Me-19), 1.69 (3H, br s, Me-20), 1.64 (1H, m, H-10a), 1.41 (2H, m, H-9), 1.32 (1H, m, H-10b), 1.32 (6H, s, Me-16 and Me-17), 1.06 (3H, d, *J* = 6.9 Hz, Me-18); ¹³C NMR (CD₃OD, 125 MHz) δ 206.7 (C, C-12), 202.2 (C, C-5), 160.8 (C, C-7), 155.2 (CH, C-14), 151.5 (C, C-4'), 146.5 (C, C-1'), 131.3 (C, C-3), 130.8 (C, C-2'), 129.3 (CH, C-2), 127.7 (C, C-6'), 125.6 (CH, C-13), 123.6 (CH, C-6), 115.9 (CH, C-5'), 114.6 (CH, C-3'), 71.3 (C, C-15), 56.2 (CH₂, C-4), 45.0 (CH, C-11), 42.0 (CH₂, C-8), 33.7 (CH₂, C-10), 29.9 (CH₂, C-1), 29.30 (CH₃, Me-16), 29.29 (CH₃, Me-17), 26.1 (CH₂, C-9), 19.4 (CH₃, Me-19), 17.1 (CH₃, Me-18), 16.9 (CH₃, 6'-Me), 16.6 (CH₃, Me-20); HRESIMS *m*/z 441.2643 [M-H]⁻ (calcd. for C₂₇H₃₇O₅ 441.2641).

Figure S2. YP reduces the inflammatory response of THP-1 macrophages (THP-1 MOM) stimulated with LPS (a) and hydroxyapatite (HAP) (b). Levels of TNF α in cell culture media of THP-1 MOM pre-treated with different concentrations of YP for 24 h, followed by exposure to 100 ng/ml LPS for additional 24h (a) and to 750 µg/mL HAP for 72 h (b), determined by ELISA. Control (Ctr) corresponds to culture media of non-treated cells, and cells treated with 2 µM dexamethasone (DXM) were used as a positive anti-inflammatory control. Data are presented as means of at least three independent experiments. All graphs show mean ±SD. One-way Anova and multiple comparisons were achieved with the Dunnett's test. Statistical significance was defined as $p \le 0.05$ (*), $p \le 0.005$ (**) and $p \le 0.005$ (**).

Figure S3. Viability of THP-1 macrophage cells (THP-1 MOM) exposed to different concentrations of amentadione (YP) for 24 h (a) and HAP for 72 h (b). Control (Ctr) corresponds to cell culture media of non-treated cells. Graph shows mean \pm SD. One-way Anova and multiple comparisons were achieved with the Dunnett's test. Statistical significance was defined as p≤0.0005 (***).

Figure S4. Viability of human primary chondrocytes (a) and synoviocytes (b) exposed to different amentadione (YP) concentrations for 24 h. Control (Ctr) corresponds to culture media of non-treated cells.

Figure S5. Viability of human primary chondrocytes (a) and synoviocytes (b) exposed to different hydroxyapatite (HAP) concentrations for 72 h. Control (Ctr) corresponds to culture media of non-treated cells.

Figure S6. Indication on the time point with increased pIkB α after IL-1 β stimulation. 20 g of total protein extracts of chondrocytes cultured in control (Ctr) and treated with 10 ng/mL IL-1 β for different time points, were analysed by Western blot to detect pIkB α . Position of relevant molecular mass marker (kDa) is indicated on the right side.

Table S1. Modified Mankin score used for histological evaluation of human cartilage explants, using hematoxylin-eosin (HE), Safradin-O (SO) and Fast Green as staining

ID Sample	Mankin Score			Mankin Total Score
	Structure	Cellularity	Matrix Staining	
1	0	0	1	1
2	1	0	2	3
3	1	1	2	4
4	0	0	4	4
5	0	0	1	1
6	0	0	4	4
7	2	0	1	3
8	2	0	2	4

Table S2. Gene-specific primers used for gene expression analysis by qPCR.

Gene	Primer Designation	Sequence (5' to 3')	
GAPDH	GAPDH_F	AAGGTGAAGGTCGGAGTCAACGGA	
GAPDH_R	TCGCTCCTGGAAGATGGTGATGGG		
COX2	COX-2_F	TGGTCTGGTGCCTGGTCTGATGATGT	
COX-2_R	GCCTGCTTGTCTGGAACAACTGCTCA		
NF-kB	NF-kB_F	GCAATCATCCACCTTCATTCTCAACTT	
NF-kB_R	CCTC	CACCACATCTTCCTGCTTAG	
Col10	Col10_F	AGCTGCCAAGGCACCATCTCCA	
Col10_R	AGTG	GGCCTTTTATGCCTGTGGGC	
MMP3	MMP3_F	CGTGGCAGTTTGCTCAGCCTATCC	
MMP3_R	GCACTTCGGGATGCCAGGAAAGGT		
Runx2	Runx2_F	TCCGCAGGTCACTACCAGCCACC	
Runx2_R	GGTGTCACTGTGCTGAAGAGGCTGT		
IL6	IL6_F	AAGCAGCAAAGAGGCACTGGCAGAA	
IL6_R	CTGCACAGCTCTGGCTTGTTCCTCAC		