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Abstract: The investigation of marine natural products (MNPs) as key resources for the discovery
of drugs to mitigate the COVID-19 pandemic is a developing field. In this work, computer-aided
drug design (CADD) approaches comprising ligand- and structure-based methods were explored
for predicting SARS-CoV-2 main protease (MP™) inhibitors. The CADD ligand-based method
used a quantitative structure—activity relationship (QSAR) classification model that was built using
5276 organic molecules extracted from the ChEMBL database with SARS-CoV-2 screening data.
The best model achieved an overall predictive accuracy of up to 67% for an external and internal
validation using test and training sets. Moreover, based on the best QSAR model, a virtual screening
campaign was carried out using 11,162 MNPs retrieved from the Reaxys® database, 7 in-house MNPs
obtained from marine-derived actinomycetes by the team, and 14 MNPs that are currently in the
clinical pipeline. All the MNPs from the virtual screening libraries that were predicted as belonging to
class A were selected for the CADD structure-based method. In the CADD structure-based approach,
the 494 MNPs selected by the QSAR approach were screened by molecular docking against MP™
enzyme. A list of virtual screening hits comprising fifteen MNPs was assented by establishing several
limits in this CADD approach, and five MNPs were proposed as the most promising marine drug-like
leads as SARS-CoV-2 MP™ inhibitors, a benzo[f]pyrano[4,3-b]Jchromene, notoamide I, emindole SB
beta-mannoside, and two bromoindole derivatives.

Keywords: marine natural products (MNDPs); drug discovery; actinomycetes; quantitative structure—activity
relationship (QSAR); machine learning (ML) techniques; molecular docking; virtual screening; severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2); main protease enzyme (MP*°)

1. Introduction

To date, over 68.2 million people worldwide have been infected by coronavirus disease 2019
(COVID-19), resulting in over 1.5 million deaths caused by severe acute respiratory syndrome
(SARS-CoV-2) and in addition, severe economic costs, national health systems crises, and massive
unemployment [1,2]. Despite the enormous human and financial efforts, there is still no appropriate
treatment or prevention for COVID-19 and the number of deaths keeps increasing, which makes the
discovery of drugs for infection treatment of foremost importance and an emergency. New and efficient
therapeutic agents will relieve social, economic, and management burdens, improving patients” quality
of life, and reducing hospitals pressure due to ineffective/long hospitalizations.
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The vital role played by the protease enzyme (MP) in polyprotein processing and virus maturation
makes MP™ a target for the design of antiviral drugs towards COVID-19 treatment [3-9]. The crystal
structure of MP™ at 2.16 A in complex with a covalent inhibitor was reported by Zihe Rao (Protein
Data Bank, PDB, ID 6LU?7, https://www.rcsb.org/3d-view/6LU7/1) [3], allowing the development of
structure-based computer-aided drug design (CADD) approaches, such as molecular docking [10,11].
Other approaches explore other targets such as the SARS-CoV-2 spike protein that binds to the human
angiotensin-converting enzyme 2 (ACE2) receptor [12,13].

Oceans have yielded sixteen approved drugs so far, and dozens of MNPs for clinical trials, the
great majority of which are intended for cancer treatment [14]. However, as far as discovering MNPs
are concerned to mitigate antiviral infections, it is mostly an unexplored field as it was highlighted by
Riccio et al. in a recent review [15]. Ara A® is the only marine approved antiviral drug for herpes
simplex. In clinical trials, there is Griffithsin™, a lectin extracted from a red algae and a macrolide
naturally produced by marine bacterial symbionts of the bryozoan Bugula neritina, the previously
approved anti-cancer Bryostatin®, both for human immunodeficiency virus (HIV) [15]. Recently,
PharmaMar publicly announced that the anti-tumor drug Aplidin® (plitidepsin) revealed higher effect
for coronavirus treatment than Ivermictin®, obtained from soil-derived actinomycete, and synthetic
Remdesivir®, beginning Phase II clinical trials for COVID-19 treatment.

In the quest to discover solutions for the COVID-19 pandemic from the marine environment,
researchers are redirecting their studies to this topic using structure-based CADD methodologies.
Gentile et al. suggested 17 lead-like inhibitors of the MP™, belonging to the compound class phlorotannins,
by screening a MNP library of 14,064 compounds isolated from Sargassum spp. brown alga, through
the hyphenated pharmacophore model and molecular docking approaches to predict inhibitors
of MP™ obtained from PDB (ID 6LU7) [5]. Khan et al. docked to the MP™ target from PDB (ID
6MO3), five MNPs from the PubChem database, two MNPs isolated from sponges of the species
Petrosia and the family Aplysinidae, and one MNP from the soft coral Pterogorgia citrina, among these,
the (11R)-11-epi-Fistularin-3 of the Aplysinidae sponge was predicted as lead-like inhibitor against
SARS-CoV-2 [6].

Several studies have been reported with the development of ligand-based CADD approaches for
the discovery of inhibitors against SARS-CoV-2 [16-18]. Ghosh et al. reported the development of
several Monte Carlo optimization-based, quantitative structure-activity relationship (QSAR) models
with a diverse dataset comprising 88 compounds with SARS-CoV-2 MP™ assay from the ChEMBL
database and the best model was used for virtual screening of 60 NPs from recent publications [16].
Using the virtual screening, the authors proposed thirteen NPs as the most potent virtual hits for MP™
inhibition including one lignan, eleven flavonoids, and one pentacyclic triterpenoid. The authors
also suggested that heterocyclic scaffolds such as diazole, furan, and pyridine have a positive
contribution, while thiophen, thiazole, and pyrimidine appear to have a negative contribution to the
MPT inhibition [16]. Another study correlated the activity against SARS-CoV-2 MP™ with the presence
of a different N-heterocyclic scaffold, such as a pyridone ring [19].

Despite the fact that the interactions between marine viral and bacterial species are under
investigation, in the marine environment, the number of viruses is 10 to 25-fold higher than bacteria,
which suggests that marine bacteria have evolved to co-exist with numerous viruses producing MNPs with
a broad-range of antiviral activities to compete for survival [20-22]. Our group has extensive experience
in both marine-derived actinomycetes [23-25] and MNP modeling and virtual screening [26-29] being
compelled to provide marine drug-leads to feed the NHS clinical trials for COVID-19 infection treatment
and the pharmaceutical pipelines. Herein, we report a comprehensive computational modeling for
the prediction of SARS-CoV-2 MP™ inhibitors from three MNP libraries, by employing structure- and
ligand-based CADD methodologies. MNPs libraries comprised: (1) 11,162 MNP retrieved from the
Reaxys® database, (2) 7 in-house MNPs obtained by the team from marine-derived actinomycetes,
and (3) 14 MNPs from MNPs clinical pipeline (eight approved drugs and six MNPs in Phase II and III
of clinical trials). All the MNPs from the virtual screening libraries that were predicted as belonging
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to the class A, were selected to proceed to the CADD structure-based method. Where 494 MNPs
selected by QSAR approach were screened by molecular docking against MP™ enzyme. In this CADD
approach, a list of virtual screening hits comprising fifteen MNPs was assented on the basis of some
established limits, such as: confidence value (3), probability of being active against SARS-CoV-2 in
the best model, prediction of the affinity between the MP™ of the selected MNPs through molecular
docking. Five MNPs, a benzo[f]pyrano[4,3-b]chromene, notoamide I, emindole SB beta-mannoside,
and two bromoindole derivatives were proposed as the most promise marine drug-like leads as
SARS-CoV-2 MP™ inhibitors.

2. Results and Discussion

2.1. Chemical Space of the SARS-CoV-2 Model

The whole data set of 5272 organic molecules from the ChEMBL database with SARS-CoV-2
screening data (antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of
Caco-2 cells) was randomly divided into a training set of 3499 molecules (comprising 302 molecules
from class A with inhibition % >50%, 265 molecules from class B with 50% > inhibition % > 30%,
and 2932 molecules from class C with inhibition % < 30%), a test set of 1533 molecules (comprising
145 molecules from class A with inhibition % > 50%, 99 molecules from class B with 50% > inhibition %
> 30%, and 1288 molecules from class C with inhibition % < 30%), and an additional test set, test 2
set, of 241 molecules, which were used for the development and external validation of the QSAR
classification models, respectively. The whole data set was clustered into ten structural classes or
scaffold types (I-X) using the ward tool in JChem. The ten structural clusters are represented in Table 1
along with their average of molecular weight (MW), the octanol-water partition coefficient estimation
(AlogP), and activity class counts.

The percentage of molecules belonging to class A, i.e., active against SARS-CoV-2, in the training
set is relatively low, 9%, and these molecules are distributed within the ten structural groups (I-X),
with percentages ranging from 3-13%. There are three structural clusters (III, VII, and VIII) in which
class A is less represented compared to its representation in the training set, with percentages between
3-5%. Moreover, in the other seven structural clusters, class A has a representation equal to or higher
than that obtained for class A in the training set, with percentages between 9-13%. The well-known,
Lipinski rule, informs mainly if a molecule is more likely to be an orally administrated active drug
and if it is easily absorbed by the body. One of the most important parameters is the LogP, which is
highly correlated with lipophilicity, thus, highly lipophilic molecules are often discontinued from drug
development and are frequently related to toxicity issues [30]. To explore the chemical and biological
diversity of the training set, the active, intermediate, and inactive molecules against SARS-CoV-2 in the
training set were analyzed, according to the ten structural clusters, using MW and ALogP. The analysis
of these data indicates that the active, intermediate, and inactive molecules against SARS-CoV-2 in the
training set are distributed over a wide range of MW (i.e., 844187 Da) and ALogpP (i.e., —8.9-17.85).
Interestingly, approximately 84% of the molecules present in the training set have a MW bellow
500 Da. This MW interval contains approximately 78%, 82%, and 85% of all active, intermediate,
and inactive molecules against SARS-CoV-2 in the training set, respectively. In spite of this, using this
rule (MW < 500 Da), it is possible to discriminate actives molecules in relation to intermediate and
inactive molecules in three structural clusters, namely in the clusters III, IV, and X, which comprises
80%, 82%, and 86% of inactive molecules, respectively, when compared to 78% of active molecules
in the overall training set. In addition, more than 68%, 82%, and 86% of the active, intermediate,
and inactive molecules against SARS-CoV-2 in the training set have an ALogP that is lower than 5,
respectively. In the same way, using the ALogP < 5 rule, it is possible to prioritize active molecules
in relation to the other molecules in three clusters, namely in the clusters: VII, VIII and IX, which
comprises 85%, 81%, and 79% of active molecules when compared to 68% of active molecules in the
overall training set, respectively.
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Table 1. Structural clusters and SARS-CoV-2 activity class counts within the ten structural clusters.

#2 (A class) 3 Average MW 4 Average ALogP °
Tr Set Te Set Tr Set Te Set Tr Set Te Set

Clusters !

I—Indole derivative

HO, /
m 410 (41) 186(17)  377.71 389.00 2.79 3.10

II—Benzoate derivative

Q /:oxﬁ 333(35) 149 (14) 40426 412.74 3.59 3.24
ﬁﬁ, L

III—y-Lactone derivative
e

o
o

Q/ 294 (10) 112 (7) 296.10 302.50 3.05 3.14

i,
d
IV—Benzimidazole
derivative

= 516 (57 224 (32 404.77 408.17 2.86 3.10
@_\% (57) (32)
—d [‘,Ij\o/

V—ax-Amino acid ester
derivativg
_ 270 (23) 110 (8) 464.60 44525 2.83 2.76

NH,
HO'

oH

VI—Quinoline derivative

o

no” NP 258 (28) 132 (9) 400.27 412.95 2.92 2.63
N

on  a

VII—Piperidine derivative

279 (13) 131 (13) 383.15 355.98 3.07 2.81
VIII—Acyclic derivative
HOM/ 588 (31) 254 (20) 329.16 336.52 1.89 1.63
27
IX—Oxazole derivative
JRyel
Y 285 (29) 136 (13) 42211 397.43 3.62 3.75

X—Piperidine derivative

\5 266 (35) 98 (12) 395.85 389.66 3.68 3.61

1 Cluster code and chemical structure of the cluster centroid. 2 Number of molecules in the training (Tr) and the
test (Te) sets. > Number of molecules belonging to the class A in the training (Tr) and the test (Te) sets.* Molecular
weight (MW) within the cluster for the training and test sets. > Octanol-water partition coefficient prediction within
the cluster for the training and test sets.

2.2. QSAR Classification Modeling

Two extensive sets of descriptors were explored, one with 6 different types of fingerprints (FPs)
with different sizes (166 MACCS, MACCS keys; 307 Substructure, presence and count Sub and SubC,
respectively; 881 PubChem fingerprints; 1024 CDK, circular fingerprints; and 1024 CDKEXxt, extended
circular fingerprints with additional bits describing ring features) and another with a total of 1442
1D&2D descriptors (including electronic, topological, and constitutional descriptors). The FPs and the
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molecular descriptors were calculated by PaDEL-Descriptor [31]. Random forests (RF) [32] machine
learning (ML) technique was used for building SARS-CoV-2 activity prediction classification models,
and the performance of the models was successfully evaluated by internal validation (out-of-bag, OOB,
estimation on the training set), Table 2.

Table 2. Evaluation of the predictive performance of FPs and 1D&2D molecular descriptors for modeling
the antiviral activity against SARS-CoV-2 of organic molecules using the RF algorithm for the training
set in an OOB estimation.

Model MACCS Sub SubC PubChem CDK CDKExt 1D&2D

TAL 156 185 193 164 132 131 164
TB 2 43 64 49 37 33 37 24
TC3 2017 1183 1574 1960 2170 2208 2100
FA_B* 57 94 76 58 53 51 55
FA_C?° 567 1029 827 568 508 494 646
FB_A® 29 38 37 34 17 19 14
FB_C”7 351 723 534 407 257 233 186
FC_AS8 117 79 72 104 153 152 124
FC_B? 165 107 140 170 179 177 186
SE 10 0.52 0.61 0.64 0.54 0.44 0.43 0.54
sp B 0.16 0.24 0.18 0.14 0.12 0.14 0.09
Sp C 12 0.69 0.40 0.54 0.67 0.74 0.75 0.72
Qs 0.63 0.41 0.52 0.62 0.67 0.68 0.65
MCC 14 0.27 0.20 0.25 0.25 0.26 0.27 0.26

! True A. 2 True B. 3 True C.  False A that was B.  False A that was C. ® False B that was A. 7 False B that was
C. 8 False C that was A. ? False C that was B. 10 Sensitivity, the ratio of true A to the sum of true A and false A.
11 Specificity B, the ratio of true B to the sum of true B and false B. !? Specificity C, the ratio of true C to the sum of
true C and false C. 13 Overall predictive accuracy, the ratio of the sum of true A, true B, and true C to the sum of true
A, true B, true C, false A, false B, and false C. 1* MCC, Matthews correlation coefficient.

In Table 2, were highlighted in bold the three selected models, MACCS model—best model
built with sets of fragment FPs (MACCS, Sub, SubC, and PubChem), ExtCDK model—best model
built with sets of circular FPs (CDK and ExtCDK), and 1D&2D descriptors in accordance with Q
and MCC parameters. For the two best models for the training set, ExtCDK, and 1D&2D (Table 2),
the descriptor selection was evaluated based on the importance assigned by the RF model with the R
program—Table 3. For the MACCS model, descriptors were not selected since these comprised only
166 FPs.

Table 3. Exploration of descriptor selection using the RF algorithm with ExtCDK FP and 1D&2D
descriptors for the training set.

Model SE! SP B2 SpcC? Q4 MCC 3

ExtCDK FP
506 0.41 0.19 0.65 0.59 0.21
100 ¢ 0.44 0.14 0.70 0.64 0.23
150 © 0.46 0.17 0.71 0.64 0.27
200 © 0.44 0.14 0.71 0.65 0.23

1D&2D descriptors

506 0.54 0.11 0.69 0.63 0.25
100 © 0.59 0.09 0.70 0.64 0.25
150 6 0.55 0.12 0.69 0.63 0.26
200 © 0.55 0.08 0.71 0.65 0.22

1 Sensitivity, the ratio of true A to the sum of true A and false A. ? Specificity B, the ratio of true B to the sum of
true B and false B. 3 Specificity C, the ratio of true C to the sum of true C and false C. # Overall predictive accuracy,
the ratio of the sum of true A, true B, and true C to the sum of true A, true B, true C, false A, false B, and false C.
5 MCC, Matthews correlation coefficient. ® The most important descriptors in accordance with the mean decrease
in accuracy.
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The best models for each set of ExtCDK FPs and 1D&2D descriptors were accomplished with
the RF algorithm using the 150 selected FPs and descriptors, respectively, (the best models were
highlighted in bold—Table 3) for the training set. Majority voting predictions (consensus) obtained by
ExtCDK, 1D&2D, and MACCS models (consensus model, CM) further improved the results with a Q
and MCC of 0.68 and 0.31 for the training set, respectively, Table 4. The results obtained by the CM for
the test set in accordance with the ten structural categories (I-X), which were set up using the ward
tool in JChem, are shown in Table 5.

Table 4. Performance of the CM predicting the antiviral activity against SARS-CoV-2 for the training
and test sets.

CcM SE! SP.B2 SP C3 Q4 MCC>
Training set © 0.51 0.14 0.74 0.68 0.31
Test Set 0.48 0.08 0.74 0.67 0.19

! Sensitivity, the ratio of true A to the sum of true A and false A. 2 Specificity B, the ratio of true B to the sum of
true B and false B. 3 Specificity C, the ratio of true C to the sum of true C and false C. * Overall predictive accuracy,
the ratio of the sum of true A, true B, and true C to the sum of true A, true B, true C, false A, false B, and false C.
5 MCC, Matthews correlation coefficient. © OOB estimation.

Table 5. The predictions of the best CM model by the ten structural clusters for the test set. The best
models are highlighted in bold.

Clusters # SE1 SP. B2 Sp.C? Q* MCC 5
I 186 0.71 — 0.73 0.68 0.32
II 149 0.36 0.13 0.75 0.68 0.29

11 112 — — 0.81 0.71 0.37
v 224 0.69 — 0.58 0.55 0.21
A 110 0.25 0.20 0.74 0.68 0.05
VI 132 0.67 0.29 0.70 0.67 0.38
VII 131 0.38 — 0.82 0.74 0.25
VIII 254 0.30 0.11 0.81 0.72 0.25
IX 136 0.38 — 0.79 0.66 0.13
X 98 0.50 0.40 0.64 0.61 0.21
All 1533 0.48 0.08 0.74 0.67 0.19

1 Sensitivity, the ratio of true A to the sum of true A and false A. 2 Specificity B, the ratio of true B to the sum of
true B and false B. 3 Specificity C, the ratio of true C to the sum of true C and false C. * Overall predictive accuracy,
the ratio of the sum of true A, true B, and true C to the sum of true A, true B, true C, false A, false B, and false C.
5 MCC, Matthews correlation coefficient.

In general, the predictions obtained for the structural clusters are better than those obtained for
the overall test set simultaneously taking into account the Q and MCC values, except for Clusters
IV-V and IX-X (bold highlighted in Table 5). An improvement in the CM model prediction accuracies
(Q =0.67-0.72 and MCC = 0.25-0.38) was achieved for the other clusters (Clusters I-III and VI-VIII) of
the test set, when compared with the prediction accuracy obtained for all the molecules of the test
set (Q = 0.67 and MCC = 0.19). For the clusters IV-V and IX-X inferior prediction accuracies were
obtained, Q = 0.58-0.68 and MCC = 0.05-0.21. Interestingly, the best achieved predictions for structural
clusters I and VI are related to the best performance obtained for the class A (active) prediction with SE
values of 0.71 and 0.67, respectively, compared to the SE value of 0.48 for all test sets. Furthermore,
an additional predicting criterion can be generated according to the vote count of each of the models
(i.e., MACCS, ExtCDK, and 1D&2D). Thus, if classes A, B, or C are predicted by the three models,
these have the maximum confidence value (3), by two models (2), and by only one model (1), in this
case, the CM prediction is obtained by the prediction of the best model, ExtCDK. An additional
parameter, probability of being of class A (Prob_A) or probability of being active, was assigned by
the RF algorithm and it can be used as a predicting criterion. For instance, the percentage of TA with
the maximum confidence value (3) was 57%, which compares with the percentages of 42% and 43%
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obtained for false A, FA_B (false A which was B) and FA_C (false A which was C), respectively. If the
criterion Prob_A > 0.5 was added for the percentage of TA, the percentage of 33% was obtained and it
compares with percentages of 13% and 15% obtained for FA_B and FA_C, respectively.

There are thirty-seven molecules from test set 2 that were predicted as being for class A, from those
fourteen, were predicted with the maximum confidence value (3) and only five were predicted with
Prob_A > 0.5. Chemical structures of the five molecules in test set 2 that were predicted as belonging
to class A with the confidence value (3) and Prob_A > 0.5 are described in Figure 1.

A

OO0

NGD-9%4-1

BIBU-1361 CHEMBL214796 Hich affinity D4 recentor Heand:
Potent inhibitor of epidermal growth Transient receptor potential cation wlecti g aﬂ Dly D2 ]e;:fp Od DgSa o tors
factor receptor (EGFR) tyrosine kinase channel subfamily V member | selective over ’CI ) A an receptors
Class A F Class A ?;)5
3 F ® Prob_A=0.53
Prob A=10.65 Prob A=0.56 - T
NIT
i
N
KRCA-0008 OXA-06
Potent Ackl and anaplastic Potent ROCK inhibitor; Suppresses
lymphoma kinase (ALK) dual mhlhlmr pMYPT1 and pCofilin levels
0 Class A 0 Class A
3y 3)
Prob A=0.53 Prob_A = 0.52

Figure 1. Chemical structures of the five molecules in test set 2 that were predicted as class A with the
confidence value (3) and Prob_A > 0.5.

NCATS released, via OpenData Portal (https://opendata.ncats.nih.gov/covid19/assays) the quantitative
HTS data on drugs approved for clinical use tested in the SARS-CoV-2 cytopathic effect (CPE) assay.
We used the chemical structures and data of 3957 molecules in SMILES format of this SARS-CoV-2
CPE evaluation from the work of Alves et al. [17]. From those 3957 molecules, there are 1401 molecules
that were used to build (910 molecules in the training set) and validate (409 and 82 molecules in the
test and test 2 sets, respectively) the SARS-CoV-2 QSAR model. Only the KRCA-0008 molecule in
Figure 1, which was proposed as the most promising active molecules against SARS-CoV-2 for test
set 2, was tested by NCATS and had no activity. However, there is a proposed hit of the test 2 set,
quizartinib (Figure 2), predicted with the maximum confidence value (3) but with Prob_A < 0.5 by the
QSAR model that was experimentally validated by the SARS-CoV-2 CPE assay as active with ACsg
of 2.51 uM.

All six molecules predicted to be the most promising against SARS-CoV-2 from the test set 2 in
Figures 1 and 2 are N-heterocyclic molecules, four of which have a pyrimidine scaffold (BIBU-1361,
CHEMBL214796, NGD-94-1, KRCA-0008), one, OXA-06, has a pyrrolo[2°C3-b]pyridine scaffold, and
quizartinib has a benzo[d]imidazo[2,1-b]thiazole scaffold. Better predictions compared to those
obtained for the test set (Table 4) were obtained taking into account the results of the SARS-CoV-2 CPE
assay for the 82 molecules of the test set 2 and the values of 0.21, 0.94, and 0.74 for sensitivity, specificity
C, and general predictive precision, respectively. Likewise, the other 2556 molecules of the NCATS
data were predicted by the CM model, obtaining 0.01, 0.01, 0.98, and 0.91 for sensitivity, specificity B,
specificity C, and general predictive precision, respectively. Only one molecule, vorapaxar (Figure 3),
was predicted by the QSAR model as true A.
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Figure 2. Chemical structure of quizartinib from the test set 2 that was predicted as class A with the
confidence value (3) and Prob_A of 0.46, which is active in the SARS-CoV-2 CPE assay.
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Figure 3. Chemical structure of vorapaxar from the test set 2 that was predicted as class A with the
confidence value (1) and Prob_A of 0.17, which is active in the SARS-CoV-2 CPE assay.

2.3. Analysis of MACCS FPs and 1D&2D Descriptors Identified as Relevant for Modeling the Antiviral
Activity against SARS-CoV-2

A comparison of the best twenty FPs (i.e., MACCS keys) and descriptors (i.e., 1D_2D) selected by
descriptor importance of RF used to build the QSAR classification models is comprised in Table 2 and
these were analyzed and presented in Figure 4.

Of the twenty most important MACCS FPs for modeling the antiviral activity against SARS-CoV-2
in the set, there are more MACCS FPs (i.e., eighteen MACCS key) that are relevant in discriminating the
class C than the classes A or B. For example, only the 11th, which codifies the presence of N-heterocyclic
scaffold, and the 19th, which encodes the existence of a 4-membered ring, MACCS FPs out of the twenty
most important FPs of MACCs are more relevant in discriminating the A and B classes, respectively.
The importance of the N-heterocyclic scaffold in class A discrimination has already been highlighted in
the proposed list of the six most promising molecules as antiviral against SARS-CoV-2 for test set 2,
namely four molecules containing a pyrimidine scaffold, a molecule with a pyrrolo[2,3-b]pyridine
scaffold, and a benzo[d]imidazo[2,1-b]thiazole scaffold. In the same way, of the twenty most important
descriptors for modeling the antiviral activity against SARS-CoV-2, there are more 1D&2D descriptors
that are relevant in discriminating the class C than the classes A or B (i.e., eighteen descriptors) in the set.
There are two 1D&2D descriptors that are more relevant in discriminating the class A than the others
classes in the set of the twenty most important 1D&2D descriptors for modelling the antiviral activity
against SARS-CoV-2, Figure 4, both are topological descriptors, VR3_Dzp (logarithmic Randic-like
eigenvector-based index from Barysz matrix/weighted by polarizabilities) and piPC4 (conventional
bond order ID number of order 4, log scale). Despite the two most relevant 1D&2D descriptors for class
B, an autocorrelation (ATSCOe, centered Broto-Moreau autocorrelation—lag 0/weighted by Sanderson
electronegativities) and a topological (ETA_dEpsilon_A, a measure of contribution of unsaturation and
electronegative atom count) descriptors, these are more relevant in class C discrimination.
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MACCS FPs 1D&2D descriptors
Class A Class A
Ist— NAAAO! lst - ATS4¢3
2nd - NACH2A! 2nd - ATSC5v3
3rd — HETEROCYCLE? 3rd - MATS3#
4th - OC(N)C! 4th - Sp)MAD D*
5th - QHAAACH2A? 5th - GATS7¢?
6th - CN(C)C! 6th - ETA BetaP ns d*
7th - NAO! 7th - VE3 Dzv*
8th - ACH2N' 8th - VR3 Dzp*
9th - CH2QCH2? 9th - piPC4*
10th — NCO!

11th - N HETEROCYCLE'
12th - C$=C($A)$A>
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Figure 4. The twenty most important MACCS FPs and 1D&2D descriptors selected in RF classification
models. Where: ! FPs with a nitrogen atom; 2 FPs that can have at least one nitrogen atom as A (any
atom) or as Q (any non-C or non-H atom); 3 Autocorrelation descriptors; * Topological descriptors;
5 Atom-type descriptors.

2.4. Application of the In Silico Anti-Viral Model Against SARS-CoV-2 in Virtual Screening

A virtual screening campaign was carried out to search for new lead-like inhibitors against
SARS-CoV-2. The best model, the CM, was selected for the virtual screening procedure using 11,162 MNPs
retrieved from the Reaxys® database, 7 in-house MNPs obtained by the team from marine-derived
actinomycetes, and 14 MNPs in the pharmaceutical pipeline (eight approved drugs and six MNPs in
Phase II and III of clinical trials). All the MNPs from the virtual screening libraries that were predicted
as belonging to the class A, were selected to the CADD structure-based approach. In the CADD
structure-based method, the 494 MNPs selected by QSAR classification approach were screened by
molecular docking against MP™ enzyme.

2.5. Molecular Docking Against MP"™ Enzyme

The 494 MNPs from the three MNPs libraries (491, 1, and 2 from MNPs from Reaxys® database,
in-house MNPs, MNPs pharmaceutical pipeline, respectively) selected by QSAR classification approach
were screened by molecular docking against MP™ enzyme (PDB ID: 6LU7?) [3]. The antiviral drugs
nelfinavir and lopinavir were used as positive controls and allicin was used as negative control
in molecular docking experiments [7]. A list of virtual screening hits comprising thirteen MNPs
was assented on the basis of some limits established in this CADD ligand- and structure-based
approach, such as: confidence value (3) and probability of being active against SARS-CoV-2 in the
best model and prediction of the affinity between the MP™ and the selected MNPs through molecular
docking (AGp < -8 kcal/mol). The Autodock Vina software [33] (http://vina.scripps.edu/) was used
to perform the flexible virtual screening of the 494 MNPs from the three MNPs libraries to find


http://vina.scripps.edu/

Mar. Drugs 2020, 18, 633 10 of 17

the most favorable binding interactions, and the calculated free binding energies by the two sets of
search space coordinates were reported in Table 6 for the 15 MNPs selected, one from in-house MNPs
(hydroxydebromomarinone), two from MNPs clinical trials (nelarabine and fludarabine), and the
positive (nelfinavir and lopinavir) and the negative (allicin) controls.

Table 6. Structures and calculated free binding energies (AGg, in kcal/mol) of the fifteen selected
MNPs, one from in-house MNPs (hydroxydebromomarinone), two from MNPs pharmaceutical pipeline
(nelarabine and fludarabine), and the positive (nelfinavir and lopinavir) and negative (allicin) controls,
using two sets of search space coordinates.

. AGg
Code Chemical Structure Structural Category ~ Natural Source ~ Prob_A (keal/mol)
22947654 1 carbazole marine derived 0.42 —9.96/-7.67
bacteria
22947655 1 carbazole marine derived 042 -9.96/-7.67
bacteria
22435742 1 anthraquinone marine derived 0.42 -9.46/-7.87
bacteria
22435744 1 anthraquinone marine derived 041 ~9.46/-7.87
bacteria
30380251 ! phenoxazinone marine derived 0.68 -9.16/-697
bacteria
19600610 1 quinoxaline marine derived 0.62 -896/-897
bacteria
22435741 1 anthraquinone marine derived 0.40 -8.86/-7.87
bacteria
benzolf]pyrano marine derived
1 _Q46/_¢97
7450892 [4,3-b]chromene fungus 041 8.45/-6.9
o\/u o ) . )
1 T o prenylated indole marine derived a6/ a7
19384758 ANy N, Y o fungus 0.40 8.46/-7.4
26845562 1 indoloditerpenes marine derived 041 -826/-697

fungus
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Table 6. Cont.

. AGB
Code Chemical Structure Structural Category ~ Natural Source ~ Prob_A (keal/mol)
D
19384759 1 g - N prenylated' indole marine derived 039 —816/-737
N [ ) alkaloids fungus
22435737 1 anthraquinone marine derived 0.41 -806/-7.07
o bacteria
30380253 1 phenoxazinone marll’“e derived 0.59 -8.06/-857
acteria
1 B wo bromo 6 aa7
10714788 : [ p i deoxytopsentin sponge 0.38 7.6°/-8.3
10720065 * " 3 L dibromodeoxytopsentin sponge 0.38 -7.6%/-857
HN / " ¢
PTM346F6F45 2 marinone marine derived - 5, ~7.06/-557
bacteria
nelarabine . 6 7
(Arranon®) 3 purine sponge 0.31 -5.4°/-5.5
o
fludarabine
phosphate purine sponge 0.31 -5.8°/-6.57
(Fludara®) 3
nelfinavir * A octahydro — — ~7.46/-6.77
i 1H-isoquinoline
lopinavir 4 Z-oxotetrahydro — — ~656/-6.07
pyrimidine
allicin ® diallyl thiosulfinate — — -3.36/-297

1 Reaxys ID from the fifteen selected MNPs. 2 In-house MNPs library. 3 MNPs clinical pipeline library.  Positive
controls. 3 Negative control. ® MP™ enzyme: center X: —36.149 Y: —3.796 Z: 45.045. 7 MP™ enzyme: center X: —12.806
Y: 18.646 Z: 65.607.
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To prioritize the best marine drug-like leads as SARS-CoV-2 MP™ inhibitors from the list of
fifteen selected MINPs by QSAR model against SARS-CoV-2 and molecular docking of MP™ enzyme,
the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were predicted
via in silico methods using the pKCSM software (http://biosig.unimelb.edu.au/pkesm/) [34]. Five MNPs,
a benzo[f]pyrano[4,3-b]chromene (Reaxys ID 7450892), notoamide I (Reaxys ID 19384758), emindole
SB beta-mannoside (Reaxys ID 26845562), and two bromoindole derivatives (Reaxys IDs 10714788 and
10720065) were proposed as marine drug-like leads as SARS-CoV-2 MP™ inhibitors. In accordance
with Lipinski rule of five, 3 molecules failure in only one rule (one from indoloditerpene and two
bromoindole derivatives). Regarding the desirable ADMET properties, no AMES toxicity, hERG
I inhibition, or skin sensitization was predicted by the first three hits, and no hERG I inhibition,
hepatotoxicity, or skin sensitization by the other two hits, Table 6. The prediction of ADMET properties
of the fifteen selected MNPs by QSAR model against SARS-CoV-2 and molecular docking of MP™
enzyme was presented in Table S1, in the Supplementary Materials. In Figure 5, the interaction profiles
of the best-docked poses for the five lead-like SARS-CoV-2 MP inhibitors were represented.

(a)

O Reaxys ID 26845562

Reaxys 1D 19384758
SOV N ;

b T f
W

T
{ o
fﬂ)—i\"( h
& |z\j\{v‘f

W

J AL

" Reaxys ID 7450892

Reaxys 1D 10714788

oy
™

HN—

Reaxys 1D 10720065

Figure 5. Interaction profiles of the best-docked poses for the five hits using the set search space
coordinates, in which a higher affinity was accomplished (a) X: —36.149 Y: —3.796 Z: 45.045; or (b) X:
—12.806 Y: 18.646 Z: 65.607.
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3. Materials and Methods

3.1. Data Sets and Selection of Training, Test, Test 2 Sets

In total, 5466 organic molecules were extracted from the ChEMBL (https://www.ebi.ac.uk/chembl/)
database [35], searching by antiviral activity determined as inhibition of SARS-CoV-2 induced
cytotoxicity of Caco-2 cells. Their chemical structures were saved in the simplified molecular input
line entry specification (SMILES) data format. The Caco-2 cell line is widely used with in vitro assays
to predict the absorption rate of lead drug molecules across the intestinal epithelial cell barrier and it
is extensively used to study infection by SARS-CoV and can be used for SARS-CoV-2 infection [36].
The antiviral activity was classified using three activity classes: (A)—inhibition % > 50%; (B)—50%
> inhibition % > 30%; (C)—inhibition % < 30%. After calculating the molecular descriptors and the
fingerprints, the final data set comprises 5273 organic molecules, the molecules that showed errors
in the calculation were removed. From these 447 molecules are recorded as active (class A), 364 as
intermediate active (class B), 4220 as inactive (class C), and 241 without defined recorded (label as
“Outside typical range”). The data set was randomly divided into a training set of 3499 molecules (class
A: 302 molecules, class B: 265 molecules, and class C: 2932 molecules), and a test set of 1533 molecules
(class A: 145 molecules, class B: 99 molecules, and class C: 1288 molecules), a partition of approximately
56:44 for the training and test sets. The test 2 set comprises the 241 molecules without activity recorded.
The SMILES strings of the data set, the corresponding experimental, and the predicted activities are
available as Supplementary Materials.

The virtual library comprises 11,162 MNPs set retrieved from the Reaxys® database (Elsevier
Information Systems GmbH)) in the MDL SDF data format, 7 in-house MNPs set obtained by the
team from marine-derived actinomycetes, and 14 MNPs from the pharmaceutical pipeline set (eight
approved drugs and six MNPs in Phase II and III of clinical trials). The SMILES strings of the
in-house MNPs and MNPs clinical trials sets, the corresponding predicted activities are available as
Supplementary Materials.

3.2. Calculation of Molecular Descriptors and Fingerprints

JChem Standardizer tool version 5.7.13.0 (ChemAxon Ltd., Budapest, Hungary) was used to
standardize the molecular structures of all data sets by normalizing tautomeric and mesomeric
groups and by removing small disconnected fragments. Empirical molecular fingerprints (FPs)
and 1D&2D molecular descriptors were calculated by PaDEL-Descriptor version 2.21 (http://www.
yapcwsoft.com/dd/padeldescriptor/) [31]. Different types of FPs, with different sizes, were calculated
and explored: 166 MACCS (MACCS keys), 307 Substructure (presence and count of SMARTS
patterns for Laggner functional group classification—Sub and SubC, respectively), 881 PubChem
FPs (ftp://ftp.ncbinlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt), 1024 CDK (circular
fingerprints), and 1024 CDK extended (Ext circular fingerprints with additional bits describing
ring features). The 1D&2D molecular descriptors comprise 1443 descriptors, including electronic,
topological, and constitutional descriptors.

3.3. Selection of Descriptors and Optimization of QSAR Models

In the quest for QSAR models with the minimum possible number of descriptors, descriptor
selection was performed based on the importance of descriptors assessed by random forest (RF)
(computeAttributelmportance) [32]. Selection of descriptors was accomplished using this procedure
with the importance of descriptors assessed by RF within an OOB methodology using the 50, 100,
150, and 200 most important descriptors and RF algorithm as ML technique employing the following
statistical metrics: true A (TA), true B (TB), true C (TC), false A that was B (FA_B), false A that was C
(FA_C), false B that was A (FB_A), false B that was C (FB_C), false C that was A (FC_A), false C that
was B (FC_B), sensitivity (SE, prediction accuracy for class A, active against SARS-CoV-2), specificity B
(SP_B, prediction accuracy for class B, intermediate activity against SARS-CoV-2), specificity C (SP_C,


https://www.ebi.ac.uk/chembl/
http://www.yapcwsoft.com/dd/padeldescriptor/
http://www.yapcwsoft.com/dd/padeldescriptor/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
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prediction accuracy for class C, inactive against SARS-CoV-2), overall predictive accuracy (Q), and
Matthews correlation coefficient (MCC).

3.4. Class Balancer

In general, class imbalance introduces a bias in the performance of the ML algorithms due to
their preference towards the majority class [37]. Our SARS-CoV-2 activity training set is unbalanced,
and the imbalance ratio is 9:8:84 for the A: active/ B: intermediate/ C: inactive classes, respectively.
To address this issue, a base-classifier with RF in R program version 3.6.1 [38], was used using the
sampsize, which is a parameter in the RF with R specified for balancing the classes. This parameter
was set to be of the same size as the minority class (class B). With this parameter, some molecules
belonging to the minority class were used more than once.

3.5. Machine Learning (ML) Method

Random Forest (RF)

A RF [32,39] is implemented as an ensemble of unpruned classification trees which are created
using bootstrap samples of the training set. For each individual tree, the best split at each node is
defined using a randomly selected subset of descriptors. Each individual tree is created using a different
training and validation set. Prediction is made by a majority vote of the classification trees in the forest.
Performance is internally assessed with the prediction error for the objects left out in the bootstrap
procedure (OOB estimation). The method quantifies the importance of a descriptor by the increase
in misclassification occurring when the values of the descriptor are randomly permuted, correlated
with the mean decrease in accuracy parameter. RFs also assign a probability to every prediction based
on the number of votes obtained by the predicted class. RFs were grown with the R program [38],
version 3.6.1, using the random forest library [40]. As a result of the nature of three-class imbalance,
this problem was alleviated by setting the class weight ranges from 1-265, 1-265, and 1-265 for class A,
B, and C, respectively, using the sampsize parameter.

3.6. Molecular Docking

A list of 494 virtual screening hits were prioritized by the QSAR approach from the three MNPs
libraries (491, 1, and 2 from MNPs from Reaxys® database, in-house MNPs, MNPs clinical pipeline,
respectively). The software program OpenBabel (version 2.3.1) [41] was used to convert the mol2
files to PDBQT files. PDBQT files were used for docking to MP™ enzyme (PDB ID: 6LU7?) [3] with
AUTODOCK VINA (version 1.1) [33]. Water molecules and N3 ligand (https://www.tocris.com/
products/mpro-n3_7230) were removed from 6LU7 [3] prior to docking using the AutoDockTools
(http://mgltools.scripps.edu/). An experiment to evaluate the importance of water molecules in the
binding of ligands to the active site of the protease was carried out and it was concluded that water
molecules do not seem to have a relevant role, since a Pearson correlation of 0.885 between the
calculated free binding energies with and without water molecules was obtained. The AutoDockTools
is graphical front-end for setting up and running AutoDock—an automated docking software designed
to predict how small molecules bind to a receptor of known 3D structure. The coordinates of the
search space for MP™ enzyme were maximized to allow the entire macromolecule to be considered for
docking. The search space coordinates were: MP™ enzyme; Center X: -36.149 Y: -3.796 Z: 45.045, and
X:-12.806 Y: 18.646 Z: 65.607, Dimensions X: 40.000 Y: 40.000 Z: 40.000. Ligand tethering of the MP™
enzyme was performed by regulating the genetic algorithm (GA) parameters, using 10 runs of the GA
criteria. The docking binding poses were visualized with PyMOL Molecular Graphics System, Version
2.0 Schrodinger, LLC.
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4. Conclusions

The current results suggest that CADD approaches relying on ligand- and structure-based
methodologies could be used with success to predict new inhibitory MNPs against SARS-CoV-2 MP™.
Five MNPs, a benzo[f]pyrano[4,3-b]Jchromene (Reaxys ID 7450892), notoamide I (Reaxys ID 19384758),
emindole SB beta-mannoside (Reaxys ID 26845562), and two bromoindole derivatives (Reaxys IDs
10714788 and 10720065) were proposed as the most promise marine drug-like leads as SARS-CoV-2 MP™
inhibitors. To our knowledge, the CADD ligand-based using a QSAR classification model, that was
developed here, is the largest study ever performed with regard both to the number of molecules
involved and to the number of structural families involved in the modeling of the antiviral activity
against SARS-CoV-2 and the best model achieved an overall predictive accuracy of up to 67% for both
test and training sets. In future works, the proposed five marine drug-like leads against SARS-CoV-2
MP' can be validated experimentally. Based on these results, virtual libraries of marine-derived
drug-like leads can be built, which can be virtual screened using the best QSAR model and molecular
docking against SARS-CoV-2 MP™°,

Supplementary Materials: The following data are available online at http://www.mdpi.com/1660-3397/18/12/633/
s1, Tables S1-56. The following files are available free of charge. Predictions of ADMET properties with in silico
methods, using the pKCSM software for a list of fifteen selected MNPs by QSAR model against SARS-CoV-2 and
molecular docking of Mpro enzyme are available as Supplementary Materials, Table S1. SMILES strings of the
data set (training, test, and test 2 sets), the corresponding experimental and predicted activities are available as
Supplementary Materials, Tables S2, S3, and S4, respectively. Moreover, SMILES strings of the in-house MNPs and
MNPs clinical pipeline sets, for the virtual screening data set, the corresponding predicted activities are available
as Supplementary Materials, Tables S5 and S6, respectively (XLSX).
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