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Abstract: Side-chain derivatives of eurotiumide A, a dihydroisochroman-type natural product, have
been synthesized and their antimicrobial activities described. Sixteen derivatives were synthesized
from a key intermediate of the total synthesis of eurotiumide A, and their antimicrobial activities
against two Gram-positive bacteria, methicillin-susceptible and methicillin-resistant Staphylococcus
aureus (MSSA and MRSA), and a Gram-negative bacterium, Porphyromonas gingivalis, were evaluated.
The results showed that derivatives having an iodine atom on their aromatic ring instead of the prenyl
moiety displayed better antimicrobial activity than eurotiumide A against MSSA and P. gingivalis.
Moreover, we discovered that a derivative with an isopentyl side chain, which is a hydrogenated
product of eurotiumide A, is the strongest antimicrobial agent against all three strains, including MRSA.
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1. Introduction

Humans have always struggled against infectious diseases [1–5] and in relatively recent times
have developed various antimicrobial therapies [6–8]. Since the discovery of penicillin [9], various
natural products having antimicrobial activity have been discovered [10–16], and the majority of
clinically used antibiotics are either natural products, semisynthetic derivatives, or compounds
derived from them [17–19]. Despite the presence of many excellent antibiotics, multidrug-resistant
bacterial pathogens have emerged all over the world [20–22], and the development of novel and
effective antimicrobial agents against many kinds of pathogenic bacteria, including methicillin-resistant
Staphylococcus aureus (MRSA), should remain a continuous mission for medicinal chemists. In 2014,
Wang and co-workers discovered eurotiumides, which are novel dihydroisocoumarin-type natural
products, from a gorgonian-derived fungus, Eurotium sp. XS-200900E6 [23]. Among the series of
eurotiumides, eurotiumide A (1), having cis configurations at H3/H4, exhibited potent antimicrobial
activities against Staphylococcus epidermidis, Bacillus cereus, Vibrio anguillarum, and Escherichia coli. Based
on that report, although 1 seems to be an attractive seed compound for antibiotics, further antimicrobial
investigation and a structure–activity relationship study of 1 are needed. In particular, because there is
a chance that modification of the side chain of the aromatic ring could improve antimicrobial activity
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and the spectrum, a structure–activity relationship study of the substituent effect of the aromatic ring is
essential for discovering promising candidates for antimicrobial agents. Recently, we reported the first
asymmetric total syntheses of (−)-eurotiumide A (1) and (+)-eurotiumide B and revised their reported
structures [24]. In our synthetic route, the prenyl side chain of the aromatic ring was introduced in the
late stage by the Stille coupling reaction with the key intermediate 2. Based on our previous results, we
considered that a number of derivatives of 1, which have a variety of kinds of side-chain moiety, could
be obtained from the common intermediate 2 and non-substituted compound 3 in the late stage of
synthesis (Figure 1).
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Figure 1. Concept of construction of the chemical library of the side chain-derivatives of eurotiumide
A (1).

In this work, as part of our continuing research [24,25], we constructed a chemical library of
the side-chain derivatives of eurotiumide A (1) to elucidate the effects of the side chains of the
aromatic rings and to develop antimicrobial agents against methicillin-susceptible S. aureus (MSSA)
and methicillin-resistant S. aureus (both Gram-positive bacteria), as well as Porphyromonas gingivalis (a
Gram-negative bacterium).

2. Results and Discussion

2.1. Synthesis of the Side-Chain Derivatives of Eurotiumide A

Our synthetic plan is shown in Figure 2. We planned to introduce three types of functional
groups: a hydrocarbon group, including hydrogen, alkyl, and aromatic rings (Type A); a heteroatom
and heteroatom-containing alkyl group (Type B); and halogen atoms group (Type C). The derivatives
of groups A and B could be derived from 2 by the cross-coupling reaction and functional group
transformation. The halogenated derivatives (Type C) would be obtained from 3 by direct introduction
of the halogen atoms. Although Wang et al. isolated the natural eurotiumide A (1) as a racemic form,
they evaluated the antimicrobial activities of its enantiomers after separation by chiral HPLC and
revealed that there was no significant difference between the enantiomers [23]. From the viewpoint of
the efficiency of compound supply, we decided to make racemic compounds.
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Figure 2. Synthetic plan of the side-chain derivatives of eurotiumide A (1).

First, we initiated the syntheses of the derivatives of group A (Scheme 1). The non-substituted
derivative 4 was obtained from 3 by deprotection of the diMOM group with aqueous 6 M HCl in
methanol at 40 ◦C in 79% yield. Catalytic hydrogenation of eurotiumide A (1) gave the isopentyl
derivative 6 in quantitative yield. Methyl and vinyl groups were introduced by the Stille coupling
reaction with 2 to afford methyl derivative 5a and styrene derivative 7a in 83% and quantitative
yields, respectively. Phenyl derivative 9a and biphenyl derivative 10a were obtained from 2 by the
Suzuki–Miyaura cross coupling reaction with the corresponding boronic acids in 75% and 77% yields,
respectively. Deprotection of the diMOM group of derivatives 5a, 7a, 9a, and 10a then gave the
corresponding desired products (5, 7, 9, and 10). We tried to introduce the alkyne group by the
Sonogashira coupling reaction; however, the desired alkyne product was obtained in only 12% yield.
To improve the reaction yield, the Seyferth–Gilbert homologation using the Ohira–Bestmann reagent
21 was applied to the aldehyde derivative 12a (vide infra) and afforded the desired alkyne 8a in
quantitative yield. After acidic treatment of 8a, the alkyne derivative 8 was obtained in 68% yield.

With type A derivatives in hand, we turned our attention to preparing type B derivatives having
heteroatom-containing side chains (Scheme 2). For the introduction of an alkyl group containing
heteroatoms, we chose the styrene derivative 7a as a starting point. Ozonolysis of the alkene moiety of
7a afforded the diMOM-protected benzaldehyde 12a in excellent yield. Acidic treatment of 12a gave the
desired deprotected benzaldehyde derivative 12 in 77%. On the other hand, reduction of the aldehyde
moiety of 12a with sodium borohydride to give the benzyl alcohol 11a and the deprotection furnished
the hydroxymethyl derivative 11 in moderate yield. To introduce a nitrogen group at the benzyl
position of 11a, the primary alcohol moiety was converted to a mesyl group (22) and a nucleophilic
substitution reaction with sodium azide afforded diMOM-protected azide 13a in good yield. Derivative
13a was treated with aqueous 6 M HCl in MeOH to furnish the desired dihydroxy azide derivative 13.
We then tried to convert the azide into an amine functionality. After several attempts, we found that
addition of triethylamine was crucial to keep the reaction clean and we succeeded to get 14a. Then,
deprotection of the diMOM group gave the desired aminomethyl derivative 14.
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Scheme 2. Synthesis of the derivatives having heteroatom-containing side chains (type B).

Next, a nitration reaction was conducted with non-substituted derivative 3 by adding HNO3 in
AcOH to afford monoMOM-protected nitro derivative 15a as a crude product; then it was deprotected
under acidic condition to give the nitro derivative 15 (Scheme 3). After that, hydrogenation with
Adam’s catalyst produced the aniline derivative 16 from 15.
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Scheme 3. Synthesis of nitro and aniline derivatives.

Finally, we tried to synthesize the halogenated derivatives (Scheme 4). Chloro and iodo groups
were introduced to treat 3 with N-chlorosuccinimide and N-iodosuccinimide in DMF to afford the
chloro derivative 18a and the iodo derivative 20a, respectively. The diMOM groups of 18a and 20a
were then deprotected under acidic conditions to afford the desired 18 and 20. Bromo derivative 19
was obtained from 2 in 97% yield by acid treatment to cleave the diMOM group. However, despite
several efforts to introduce fluorine to the aromatic ring from 3, we could not get the desired fluoro
derivative 17. We also tried the Sandmeyer reaction with 16 but did not obtain the desired 17.
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Scheme 4. Synthesis of halogenated derivatives (type C).

2.2. Antimicrobial Evaluation of Synthesized Derivatives

After the initially set derivatives of eurotiumide A were synthesized, the first antimicrobial
activity screening was conducted against the Gram-positive MSSA and MRSA as well as the
Gram-negative P. gingivalis in 10 µM solutions of the synthesized derivatives to narrow down
the promising antimicrobial candidates. The results are depicted in Figure 3. (+/−)-Eurotiumide A (1)
exhibited mild antimicrobial activity against MSSA at this concentration (Figure 3a). While most of
the derivatives did not show antimicrobial activity against this strain, the isopentyl derivative 6 and
the iodo derivative 20 exhibited more potent antimicrobial activity than 1. Next, we tested the same
screening against MRSA (Figure 3b). Most of the derivatives that displayed good activity against MSSA
showed no antimicrobial activity against MRSA. Even natural product 1 and the iodo derivative 20 also
did not show good antimicrobial activity against MRSA. Surprisingly, only the isopentyl derivative 6,
which was a reduced derivative of 1, was found to have good antimicrobial activity against MRSA. We
also conducted antimicrobial screening against P. gingivalis (Figure 3c). Unlike the case with S. aureus,
many derivatives, specifically eurotiumide A (1), isopentyl derivative 6, vinyl derivative 7, aniline
derivative 16, and three halogenated derivatives (18, 19, 20), were effective against P. gingivalis.
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Figure 3. Initial screening of antimicrobial activity against (a) methicillin-susceptible S. aureus, (b)
methicillin-resistant S. aureus, and (c) P. gingivalis. The terminal concentration was 10 µM.

Since we acquired promising agents against all three strains, we determined the IC50 values of
these candidates (Table 1). The IC50 values of the isopentyl derivative 6 and the iodo derivative 20
against MSSA were 5.6 µM (2.0 µg/mL) and 9.0 µM (3.7 µg/mL), respectively. Moreover, the IC50 value
of 6 against MRSA was 4.3 µM (1.5 µg/mL), which is the same level of activity against MSSA. The IC50

values of these seven candidates (1, 6, 7, 16, 18, 19, and 20) against P. gingivalis ranged from 2.0 to
7.0 µM. We also checked the cytotoxicity of three compounds (1, 6, and 20) against the A549 cell line,
and these three compounds were non-toxic in 10 µM.

Table 1. The IC50 values (µM) of the selected side chain derivatives against methicillin-susceptible S.
aureus (MSSA), methicillin-resistant S. aureus (MRSA), and P. gingivalis. Vancomycin (VCM) was used
as a positive control against MSSA and MRSA. Cefcapene pivoxyl (CFPN-PI) was used as a positive
control against P. gingivalis.

Strains 1 6 7 16 18 19 20 VCM CFPN-PI

Methicillin-susceptible
S. aureus (MSSA) – 5.6 – – – – 9.0 1.3 –

Methicillin-resistant
S. aureus (MRSA) – 4.3 – – – – – 1.5 –

P. gingivalis 3.6 2.0 3.5 6.7 6.4 7.0 3.5 – 0.03

In this study, we discovered that the isopentyl derivative 6, which is a one-point modified
compound of natural product 1, and the iodo derivative 20 have superior antimicrobial activity to 1
against MSSA and P. gingivalis. Although 20 did not exhibit good efficacy against MRSA, 6 was found to
maintain antimicrobial activity against these three strains, including MRSA. These results indicate that
S. aureus is sensitive to changes in the side chain of the aromatic ring and that MRSA can distinguish the
subtle difference between prenyl and isopentyl moieties. Moreover, the weak antimicrobial activity of
1 against MRSA suggests a binding affinity between 1 and the penicillin binding protein 2’ [26], which
is the main resistance mechanism of MRSA against antibiotics. The inhibition of cell wall synthesis
seems to be the mode of action of 1, although a more detailed study is needed to clarify the mode of
action of 6 and 20. On the other hand, we found that several compounds having alkyl and halogenated
side chains well suppressed the increase in P. gingivalis.
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3. Materials and Methods

3.1. Preparation of Eurotiumide A Derivatives.

3.1.1. General Procedure

All the reactions were carried out in a round-bottomed flask with an appropriate number of
necks and side arms connected to a three-way stopcock and/or a rubber septum cap under an argon
atmosphere. All vessels were first evacuated by rotary pump and then flushed with argon prior
to use. Solutions and solvents were introduced by hypodermic syringe through a rubber septum.
During the reaction, the vessel was kept under a positive pressure of argon. Dry THF was freshly
prepared by distillation from benzophenone ketyl before use. Anhydrous CH2Cl2, DMF, ethanol,
MeCN, methanol, pyridine, and toluene were purchased from Kanto Chemical Co. Inc. Infrared (IR)
spectra were recorded on a JASCO FT/IR-4100 spectrophotometer using a 5 mm KBr plate. Wavelengths
of maximum absorbance are quoted in cm−1. 1H-NMR spectra were recorded on a JEOL ECA–400
(400 MHz), Bruker AV-400N (400 MHz), and Bruker AV–500 (500 MHz) in CDCl3. Chemical shifts
are reported in parts per million (ppm), and signals are expressed as singlet (s), doublet (d), triplet
(t), multiplet (m), broad (br), and overlapped. 13C-NMR spectra were recorded on a JEOL ECA–400
(100 MHz), Bruker AV–400N (100 MHz), and Bruker AV–500 (125 MHz) in CDCl3. Chemical shifts are
reported in parts per million (ppm) (see Supplementary Materials). High resolution mass (HRMS)
spectra were recorded on a Thermo Scientific Exactive. All melting points were measured with a
Yanaco MP-500D. Analytical thin layer chromatography (TLC) was performed using 0.25 mm E. Merck
Silica gel (60F-254) plates. Reaction components were visualized phosphomolybdic acid or ninhydrin
or p-anisaldehyde in 10% sulfuric acid in ethanol. Kanto Chem. Co. Silica Gel 60N (particle size
0.040–0.050 mm) was used for column chromatography.

3.1.2. Synthesis of (3S,4S)-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (4)

To a solution of bromo compound 3 (10.0 mg, 30.8 µmol) in MeOH (2.3 mL) was added 6 M
aqueous HCl (0.77 mL) at 0 ◦C. After stirring for 30 min at 40 ◦C, the reaction was quenched by adding
saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified by preparative thin layer chromatography (PTLC) (EtOAc:n-hexane
= 3:7) to give non-substituted derivative 4 (6.8 mg, 79%) as a white solid. m.p. 120–121 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 10.62 (1H, s), 7.06 (1H, d, J = 9.0 Hz), 6.91 (1H, d, J = 9.0 Hz), 5.89 (1H, br-s), 4.77
(1H, d, J = 2.7 Hz), 4.50 (1H, ddd, J = 2.7, 5.4, 8.3 Hz), 3.40 (3H, s), 1.95 (1H, m), 1.85 (1H, m), 1.70–1.50
(1H, overlapped), 1.46 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (100 MHz,
CDCl3) δ 169.0, 156.2, 145.7, 125.1, 121.7, 118.8, 107.6, 81.4, 69.8, 56.8, 31.6, 29.8, 24.9, 22.5, 14.0.; IR (KBr)
3219, 2955, 2924, 2860, 1661, 1586, 1471, 1293, 1204, 905 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for
(C15H20O5Na)+ 303.1208, found 303.1200.

3.1.3. Synthesis of (3S,4S)-5,8-dihydroxy-7-isopentyl-4-methoxy-3-pentylisochroman-1-one (6)

To a solution of eurotiumide A (1) (1.6 mg, 4.6 µmol) in MeOH (0.23 mL) was added Pd/C (1.6 mg,
100 w/w%) at room temperature. After stirring for 1.5 h under hydrogen atmosphere (balloon), the
reaction mixture was passed through Celite and the organic solvent was removed under reduced
pressure. The residue was purified with flash column chromatography (EtOAc:n-hexane = 2:3) to give
isopentyl derivative 6 (1.4 mg, 88%) as a white wax. 1H-NMR (500 MHz, CDCl3) δ 10.91 (1H, s), 6.93
(1H, s), 5.62 (1H, br-s), 4.74 (1H, d, J = 2.5 Hz), 4.48 (1H, ddd, J = 2.6, 5.4, 8.6 Hz), 3.38 (3H, s), 2.62
(2H, m), 1.95 (1H, m), 1.85 (1H, m), 1.65–1.50 (2H, overlapped), 1.50–1.40 (3H, overlapped), 1.40–1.30
(4H, overlapped), 0.95 (6H, d, J = 6.3 Hz), 0.90 (3H, J = 6.9 Hz); 13C-NMR (125 MHz, CDCl3) δ 169.4,
154.7, 145.0, 133.6, 124.8, 118.6, 106.8, 81.4, 69.9, 56.6, 38.4, 31.6, 29.8, 29.7, 27.9, 27.5, 14.9, 22.5, 14.0.;
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IR (KBr) 3290, 2956, 2927, 2870, 1761, 1445, 1171, 807 cm−1; HRMS (ESI) m/z (M + H)+ calculated for
(C20H31O5)+ 351.2171, found 351.2177.

3.1.4. (3S,4S)-4-methoxy-5,8-bis(methoxymethoxy)-7-methyl-3-pentylisochroman-1-one (5a)

To a solution of bromo compound 3 (40.0 mg, 89.4 µmol) and CsF (16.3 mg, 107 µmol) in degassed
DMF (0.45 mL) were added Me4Sn (15 µL, 107 µmol) and PdCl2(PPh3)2 (6.3 mg, 8.94 µmol) at room
temperature. After stirring for 50 min at 80 ◦C, the reaction was quenched by adding water. The mixture
was extracted with EtOAc (×3) and the combined organic layers were washed with brine, dried over
Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified with flash
column chromatography (EtOAc:n-hexane = 3:7) to give diMOM-protected methyl derivative 5a
(28.5 mg, 83%) as a yellow amorphous. 1H-NMR (400 MHz, CDCl3) δ 7.255 (1H, s), 5.21 (2H, s), 5.10
(1H, d, J = 6.8 Hz), 5.07 (1H, d, J = 6.8 Hz), 4.59 (1H, d, J = 1.5 Hz), 4.26 (1H, ddd, J = 1.5, 5.9, 7.5 Hz),
3.60 (3H, s), 3.50 (3H, s), 3.30 (3H, s), 2.39 (3H, s), 2.02 (1H, m), 1.81 (1H, m), 1.70–1.50 (1H, overlapped),
1.43 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.4,
152.3, 149.8, 135.7, 126.3, 121.3, 118.7, 101.5, 95.0, 80.9, 68.2, 57.5, 56.7, 56.4, 31.6, 30.6, 24.9, 22.6, 17.6,
14.0.; IR (KBr) 2958, 2927, 2858, 2828, 1728, 1478, 1153 cm−1; HRMS (ESI) m/z (M + H)+ calculated for
(C20H31O7)+ 383.2070, found 383.2069.

3.1.5. (3S,4S)-5,8-dihydroxy-4-methoxy-7-methyl-3-pentylisochroman-1-one (5)

To a solution of diMOM-protected methyl derivative 5a (10.0 mg, 26.0 µmol) in MeOH (2.0 mL)
was added 6 M aqueous HCl (0.65 mL) at 0 ◦C. After stirring for 1 h at 40 ◦C, the reaction was quenched
by adding saturated aqueous NaHCO3. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give methyl derivative 5
(5.2 mg, 68%) as a yellow solid. m.p. 113 ◦C; 1H-NMR (400 MHz, CDCl3) δ 10.89 (1H, s), 6.93 (1H, s),
5.59 (1H, br-s), 4.75 (1H, d, J = 2.7 Hz), 4.48 (1H, ddd, J = 2.7, 5.4, 8,3 Hz), 3.37 (3H, s), 2.25 (3H, s), 1.93
(1H, m), 1.84 (1H, m), 1.70-1.50 (1H, overlapped), 1.45 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H,
t, J = 6.6 Hz); 13C-NMR (125 MHz, CDCl3) δ 169.4, 154.9, 144.9, 128.7, 125.8, 118.6, 106.6, 81.4, 69.8,
56.5, 31.6, 29.8, 24.9, 22.5, 15.8, 14.0.; IR (KBr) 3340, 2957, 2928, 2859, 1682, 1654, 1604, 1296, 1172 cm−1;
HRMS (ESI) m/z (M + Na)+ calculated for (C16H22O5Na)+ 317.1365, found 317.1350.

3.1.6. (3S,4S)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentyl-7-vinylisochroman-1-one (7a)

To a solution of bromo compound 3 (200 mg, 0.447 mmol) and CsF (135.8 mg, 0.894 mmol) in
degassed DMF (2.2 mL) were added tributylvinyltin (0.26 mL, 0.894 mmol) and PdCl2(PPh3)2 (62.8 mg,
89.0 µmol) at room temperature. After stirring for 1 h at 80 ◦C, the reaction was quenched by adding
water. The mixture was extracted with EtOAc (×3) and the combined organic layers were washed
with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was
purified with flash column chromatography (EtOAc:n-hexane = 3:7) to give diMOM-protected vinyl
derivative 7a (185.1 mg, quant) as a yellow solid. m.p. 63–64 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.56
(1H, s), 7.14 (1H, dd, J = 11.1, 17.7 Hz), 5.76 (1H, d, J = 17.7 Hz), 5.40 (1H, d, J = 11.1 Hz), 5.24 (2H,
s), 5.08 (1H, d, J = 6.3 Hz), 5.05 (1H, d, J = 6.3 Hz), 4.60 (1H, d, J = 1.3 Hz), 4.26 (1H, ddd, J = 1.3, 5.8,
7.4 Hz), 3.58 (3H, s), 3.50 (3H, s), 3.31 (3H, s), 2.03 (1H, m), 1.81 (1H, m), 1.56 (1H, m), 1.43 (1H, m),
1.40–1.25 (4H, overlapped), 0.90 (3H, t, J = 6.9 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.0, 150.7, 150.2,
134.9, 131.3, 128.5, 119.7, 116.7, 116.0, 101.5, 95.2, 80.8, 68.3, 57.9, 56.8, 56.4, 31.6, 30.6, 24.9, 22.5, 14.0.; IR
(KBr) 2953, 2931, 2861, 2829, 1730, 1471, 1426, 1155, 929 cm−1; HRMS (ESI) m/z (M + H)+ calculated for
(C21H31O7)+ 395.2070, found 395.2078.

3.1.7. (3S,4S)-5,8-dihydroxy-4-methoxy-3-pentyl-7-vinylisochroman-1-one (7)

To a solution of diMOM-protected methyl derivative 7a (13.7 mg, 34.7 µmol) in MeOH (2.6 mL)
was added 6 M aqueous HCl (0.87 mL) at 0 ◦C. After stirring for 3 h at 40 ◦C, the reaction was quenched
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by adding saturated aqueous NaHCO3. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give vinyl derivative 7
(8.5 mg, 75%) as a yellow wax. 1H-NMR (500 MHz, CDCl3) δ 11.10 (1H, s), 7.23 (1H, s), 7.01 (1H, dd,
J = 11.4, 17.7 Hz), 5.82 (1H, br-s), 5.80 (1H, d, J = 18.0 Hz), 5.37 (1H, d, J = 11.0 Hz), 4.77 (1H, br-s), 4.50
(1H, br-s), 3.40 (3H, s), 1.95 (1H, m), 1.85 (1H, m), 1.58 (1H, m), 1.45 (1H,m), 1.40–1.25 (4H, overlapped),
0.90 (3H, br-s); 13C-NMR (125 MHz, CDCl3) δ 169.3, 153.9, 145.4, 129.8, 128.0, 121.4, 120.9, 116.5, 107.7,
81.5, 69.7, 56.8, 31.6, 29.8, 24.9, 22.5, 14.0.; IR (KBr) 3311, 2956, 2930, 2859, 1659, 1438, 1171 cm−1; HRMS
(ESI) m/z (M + Na)+ calculated for (C17H22O5Na)+ 329.1365, found 329.1368.

3.1.8. (3S,4S)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentyl-7-phenylisochroman-1-one (9a)

Bromo compound 3 (10.0 mg, 22.4 µmol), Cs2CO3 (21.9 mg, 67.1 µmol), phenylboronic acid
(5.5 mg, 44.7 µM), and PdCl2(PPh3)2 (3.1 mg, 44.7 µmol) were dissolved in degassed dioxane (0.22 mL)
at room temperature. After stirring for 1 h under reflux condition, the reaction was quenched by
adding saturated aqueous NH4Cl. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with flash column chromatography (EtOAc:n-hexane = 3:7) to give
diMOM-protected phenyl derivative 9a (7.4 mg, 75%) as a white wax. 1H-NMR (500 MHz, CDCl3) δ
7.55 (1H, d, J = 7.6 Hz), 7.50-7.38 (3H, overlapped), 7.36 (1H, dd, J = 7.3 Hz), 5.25 (2H, s), 4.80 (2H, s),
4.66 (1H, s), 4.33 (1H, t, J = 7.0 Hz), 3.50 (3H, s), 3.37 (3H, s), 2.92 (3H, s), 2.06 (1H, m), 1.85 (1H, m),
1.70–1.50 (1H, overlapped), 1.50–1.25 (5H, overlapped), 0.92 (3H, br-s); 13C-NMR (125 MHz, CDCl3) δ
162.1, 150.5, 150.0, 139.5, 137.9, 129.8, 128.3, 128.1, 127.7, 121.0, 119.9, 101.0, 95.1, 80.8, 68.3, 57.1, 56.4,
31.6, 30.6, 24.9, 22.5, 14.0.; IR (KBr) 2956, 2927, 2859, 2828, 1728, 1467, 1152, 1008, 932 cm−1; HRMS (ESI)
m/z (M + Na)+ calculated for (C25H32O7Na)+ 467.2046, found 467.2043.

3.1.9. (3S,4S)-5,8-dihydroxy-4-methoxy-3-pentyl-7-phenylisochroman-1-one (9)

To a solution of diMOM-protected methyl derivative 9a (7.4 mg, 16.8 µmol) in THF (1.0 mL) was
added 6 M aqueous HCl (0.50 mL) at 0 ◦C. After stirring for 6 h at room temperature, the reaction was
quenched by adding saturated aqueous NaHCO3. The mixture was extracted with EtOAc (×3) and
the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated
under reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give phenyl
derivative 9 (6.0 mg, 90%) as a yellow solid. m.p. 173–174 ◦C; 1H-NMR (400 MHz, CDCl3) δ 11.21
(1H, s), 7.58 (2H, d, J = 7.3 Hz), 7.44 (2H, t, J = 7.3 Hz), 7.38 (1H, d, J = 7.6 Hz), 7.13 (1H, s), 5.76 (1H,
br-s), 4.82 (1H, d, J = 2.7 Hz), 4.55 (1H, ddd, J = 2.7, 5.1, 8.3 Hz), 3.44 (3H, s), 1.98 (1H, m), 1.89 (1H, m),
1.70–1.40 (2H, overlapped), 1.40–1.25 (4H, overlapped), 0.92 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz,
CDCl3) δ 169.5, 153.7, 145.4, 136.2, 131.8, 129.2, 128.3, 127.9, 125.5, 121.1, 107.8, 81.6, 69.6, 56.9, 31.6, 29.8,
24.9, 22.5, 14.0.; IR (KBr) 3307, 2955, 2928, 2859, 1650, 1425, 1295, 1194 cm−1; HRMS (ESI) m/z (M + H)+

calculated for (C21H25O5)+ 357.1702, found 357.1707.

3.1.10. (3S,4S)-7-([1,1’-biphenyl]-4-yl)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentylisochroman-1-
one (10a)

Bromo compound 3 (20.0 mg, 44.7 µmol), Cs2CO3 (21.9 mg, 67.1 µmol), 4-biphenylboronic acid
(5.5 mg, 44.7 µmol), and PdCl2(PPh3)2 (3.2 mg, 4.47 µmol) were dissolved in degassed dioxane (0.23 mL)
at room temperature. After stirring for 1 h under reflux condition, the reaction was quenched by
adding saturated aqueous NH4Cl. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give diMOM-protected
biphenyl derivative 10a (18.0 mg, 88%) as a white solid. 1H-NMR (500 MHz, CDCl3) δ 7.74–7.60 (6H,
overlapped), 7.53–7.40 (3H, overlapped), 7.38 (1H, t, J = 7.3 Hz), 5.28 (2H, s), 4.85 (1H, d, J = 7.0 Hz),
4.84 (1H, d, J = 7.0 Hz), 4.68 (1H, d, J = 1.3 Hz), 4.35 (1H, ddd, J = 1.3, 6.0, 7.6 Hz), 3.51 (3H, s), 3.38
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(3H, s), 2.99 (3H, s), 2.08 (1H, m), 1.86 (1H, m), 1.70-1.50 (1H, overlapped), 1.46 (1H, m), 1.40–1.25 (4H,
overlapped), 0.92 (3H, t, J = 6.9 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.1, 150.6, 150.0, 140.5, 140.4,
139.1, 136.8, 130.2, 128.9, 128.1, 127.5, 127.0, 126.9, 120.9, 120.0, 101.1, 95.1, 80.8, 68.3, 57.2, 56.9, 56.4,
31.6, 30.6, 24.9, 22.5, 14.0.; IR (KBr) 2956, 2927, 2858, 2827, 1728, 1467, 1152, 1007, 931 cm−1; HRMS (ESI)
m/z (M + H)+ calculated for (C31H37O7)+ 521.2539, found 521.2539.

3.1.11. (3S,4S)-7-([1,1’-biphenyl]-4-yl)-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (10)

To a solution of diMOM-protected biphenyl derivative 10a (12.9 mg, 24.8 µmol) in THF (1.7 mL)
was added 6 M aqueous HCl (0.83 mL) at 0 ◦C. After stirring for 17 h at room temperature, the reaction
was quenched by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc
(×3) and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and
concentrated under reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to
give biphenyl derivative 10 (9.9 mg, 92%) as a yellow solid. m.p. 181–182 ◦C; 1H-NMR (400 MHz,
CDCl3) δ 11.28 (1H, s), 7.67 (4H, s), 7.64 (2H, d, J = 7.3 Hz), 7.46 (2H, t, J = 7.3 Hz), 7.37 (1H, t, J = 7.3
Hz), 7.19 (1H, s), 5.75 (1H, br-s), 4.84 (1H, d, J = 2.7 Hz), 4.56 (1H, ddd, J = 2.7, 5.4, 8.3 Hz), 3.46 (3H, s),
1.98 (1H, m), 1.89 (1H, m), 1.70–1.50 (2H, overlapped), 1.45–1.25 (4H, overlapped), 0.92 (3H, t, J = 6.8
Hz); 13C-NMR (125 MHz, CDCl3) δ 169.4, 153.8, 145.5, 140.7, 135.2, 131.4, 129.6, 128.8, 127.5,127.15,
127.07, 125.3, 121.0, 107.9, 81.5, 69.8, 56.9, 31.6, 29.8, 24.9, 22.5, 14.0.; IR (KBr) 3283, 2954, 2929, 2863,
1668, 1595, 1295, 1220, 772 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for (C27H28O5Na)+ 455.1834,
found 455.1831.

3.1.12. (3S,4S)-7-ethynyl-4-methoxy-5,8-bis(methoxymethoxy)-3-pentylisochroman-1-one (8a)

To a solution of aldehyde 12a (5.4 mg, 13.6 µmol) in MeOH (0.14 mL) were added K2CO3 (5.7 mg,
40.9 µmol) and Ohira–Bestmann reagent (3.9 mg, 20.4 µmol) at room temperature. After stirring for
40 min at the same temperature, the mixture was concentrated under reduced pressure. The residue
was purified with column chromatography (EtOAc:n-hexane = 1:4 to 1:1) to give diMOM alkyne
derivative 8a (6.3 mg, quant) as a yellow oil. 1H-NMR (500 MHz, CDCl3) δ 7.52 (1H, s), 5.27 (1H, d,
J = 6.0 Hz), 5.22 (2H, s), 5.17 (1H, d, J = 6.0 Hz), 4.59 (1H, d, J = 1.3 Hz), 4.27 (1H, ddd, J = 1.3, 5.8,
7.4 Hz), 3.65 (3H, s), 3.49 (3H, s), 3.32 (3H, s), 2.05 (1H, m), 1.82 (1H, m), 1.65–1.50 (1H, overlapped),
1.42 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 7.1 Hz); 13C-NMR (125 MHz, CDCl3) δ 161.2,
154.6, 149.5, 130.0, 123.5, 120.4, 120.1, 101.0, 95.2, 82.7, 80.7, 79.3, 68.3, 58.1, 57.0, 56.5, 31.6, 30.5, 24.8,
22.5, 14.0.; IR (KBr) 3260, 2954, 2932, 2861, 2830, 1730, 1155, 1012, 931 cm−1; HRMS (ESI) m/z (M + H)+

calculated for (C21H29O7)+ 393.1913, found 393.1903.

3.1.13. (3S,4S)-7-ethynyl-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (8)

To a solution of diMOM alkyne derivative 8a (6.3 mg, 13.6 µmol) in MeOH (1.2 mL) was added
6 M aqueous HCl (0.40 mL) at room temperature. After stirring for 24 h at the same temperature, the
reaction was quenched by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with
EtOAc (×3) and the combined organic layers were washed with brine, dried over Na2SO4, filtered,
and concentrated under reduced pressure. The residue was purified with column chromatography
(EtOAc:n-hexane = 1:4 to 1:1) to give alkyne derivative 8 (3.3 mg, 67%) as a yellow solid. m.p.
132–133 ◦C; 1H-NMR (500 MHz, CDCl3) δ 11.20 (1H, s), 7.22 (1H, s), 6.03 (1H, br-s), 4.76 (1H, d,
J = 2.5 Hz), 4.51 (1H, ddd, J = 2.5, 5.1, 8.2 Hz), 3.40 (3H, s), 3.39 (1H, s), 1.94 (1H, m), 1.84 (1H, m),
1.70–1.50 (1H, overlapped), 1.45 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 7.0 Hz); 13C-NMR
(125 MHz, CDCl3) δ 168.6, 157.3, 145.1, 127.8, 123.4, 112.6, 108.0, 83.2, 81.4, 77.7, 69.7, 57.0, 31.5, 29.7,
24.8, 22.5, 14.0.; IR (KBr) 3294, 2956, 2930, 2859, 1679, 1434, 1172 cm−1; HRMS (ESI) m/z (M + H)+

calculated for (C17H21O5)+ 305.1389, found 305.1391.
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3.1.14. (3S,4S)-4-methoxy-5,8-bis(methoxymethoxy)-1-oxo-3-pentylisochromane-7-carbaldehyde (12a)

A stirred solution of 7a (185.1 mg, 0.469 mmol) in CH2Cl2 (10.0 mL) was cooled to −78 ◦C and
a stream of ozone was passed through it for 30 min. At this time, ozone gas was bubbled into the
reaction mixture until the color of the reaction mixture turned to blue. After completion of the reaction,
the mixture was purged with oxygen gas for 30 min before being treated with PPh3 (246.2 mg, 0.939
mmol) and allowed to warm to room temperature. After stirring at the same temperature for 12 h, the
mixture was concentrated under reduced pressure and the resultant mixture was purified with column
chromatography (EtOAc:n-hexane = 1:4 to 2:3) to give diMOM benzaldehyde derivative 12a (177.4 mg,
95%) as a white solid. m.p. 38–39 ◦C; 1H-NMR (400 MHz, CDCl3) δ 10.42 (1H, s), 7.83 (1H, s), 5.29 (2H,
s), 5.2 (2H, s), 4.65 (1H, d, J = 1.0 Hz), 4.29 (1H, J = 1.0, 5.6, 8.3 Hz), 3.59 (3H, s), 3.50 (3H, s), 3.35 (3H, s),
2.06 (1H, m), 1.83 (1H, m), 1.70-1.50 (1H, overlapped), 1.44 (1H, m), 1.40-1.30 (4H, overlapped), 0.91 (3H,
t, J = 7.1 Hz); 13C-NMR (125 MHz, CDCl3) δ 189.9, 161.4, 156.6, 150.6, 135.8, 132.5, 120.8, 116.9, 103.0,
95.4, 81.0, 68.7, 58.4, 57.8, 57.0, 31.9, 30.8, 25.2, 22.8, 14.3.; IR (KBr) 2957, 2929, 2859, 2829, 1730, 1691,
1379, 1155, 930 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C20H29O8)+ 397.1862, found 397.1866.

3.1.15. (3S,4S)-5,8-dihydroxy-4-methoxy-1-oxo-3-pentylisochromane-7-carbaldehyde (12)

To a solution of diMOM aldehyde derivative 12a (10.0 mg, 25.2 µmol) in THF (1.9 mL) was added 6
M aqueous HCl (0.63 mL) at 0 ◦C. After stirring for 4 h at room temperature, the reaction was quenched
by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the
combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 2:3) to give benzaldehyde
derivative 12 (6.0 mg, 77%) as a pale yellow solid. m.p. 170 ◦C (dec); 1H-NMR (400 MHz, CDCl3) δ
11.33 (1H, s), 10.47 (1H, s), 7.70 (1H, d, J = 1.5 Hz), 6.62 (1H, br-s), 4.75 (1H, d, J = 2.2 Hz), 4.49 (1H, ddd,
J = 2.2, 5.6, 8.0 Hz), 3.43 (3H, s), 2.03 (1H, s), 1.88 (1H, m), 1.61 (1H, m), 1.48 (1H, m), 1.42–1.30 (4H,
overlapped), 0.92 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz, CDCl3) δ 189.0, 168.8, 158.9, 146.0, 131.3,
124.9, 121.5, 110.2, 82.2, 69.2, 57.9, 31.9, 30.3, 25.1, 22.8, 14.3.; IR (KBr) 3444, 3169, 2953, 2940, 2920, 1676,
1455, 1395, 1299 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C16H21O6)+ 309.1338, found 309.1342.

3.1.16. (3S,4S)-7-(hydroxymethyl)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentylisochroman-1-
one (11a)

To a solution of diMOM aldehyde derivative 12a (20.0 mg, 50.5 µmol) in MeOH (0.25 mL) was
added NaBH4 (2.1 mg, 55.5 µmol) at 0 ◦C. After stirring for 15 min at the same temperature, the reaction
was quenched by adding water at 0 ◦C. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 1:1) to give diMOM hydroxymethyl
derivative 11a (18.6 mg, 93%) as a white wax. 1H-NMR (400 MHz, CDCl3) δ 7.46 (1H, s), 5.25 (1H, d,
J = 6.8 Hz), 5.24 (1H, d, J = 6.8 Hz), 5.15 (2H, s), 4.72 (1H, dd, J = 6.4, 12.5 Hz), 4.62 (1H, d, J = 1.2 Hz),
4.58 (1H, dd, J = 7.8, 12.5 Hz), 4.25 (1H, ddd, J = 1.2, 5.8, 8.0 Hz), 3.64 (3H, s), 3.55 (1H, t, J = 6.8 Hz),
3.50 (3H, s), 3.31 (3H, s), 2.05 (1H, m), 1.83 (1H, m), 1.65-1.50 (1H, overlapped), 1.43 (1H, m), 1.42–1.30
(4H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.4, 152.7, 150.7, 138.7, 128.9,
120.8, 119.3, 102.2, 95.4, 81.2, 68.4, 61.4, 57.8, 57.2, 56.8, 31.9, 30.9, 25.2, 22.9, 14.4.; IR (KBr) 3443, 2957,
2928, 2859, 2828, 1724, 1153, 1012 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C20H31O8)+ 399.2019,
found 399.2017.

3.1.17. (3S,4S)-5,8-dihydroxy-7-(hydroxymethyl)-4-methoxy-3-pentylisochroman-1-one (11)

To a solution of diMOM hydroxymethyl derivative 11a (7.2 mg, 24.1 µmol) in MeOH (1.8 mL) was
added 6 M aqueous HCl (0.45 mL) at 0 ◦C. After stirring for 4 h at 40 ◦C, the reaction was quenched
by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the
combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under
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reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 1:1) to give hydroxymethyl
derivative 11 (3.9 mg, 52%) as a white solid. m.p. 143–145 ◦C; 1H-NMR (400 MHz, CDCl3) δ 10.99
(1H, s), 7.12 (1H, s), 6.03 (1H, br-s), 4.74 (1H, d, J = 2.4 Hz), 4.72 (2H, br-s), 4.48 (1H, ddd, J = 2.4, 5.2,
8.0 Hz), 3.38 (3H, s), 2.53 (1H, br-s), 1.96 (1H, m), 1.86 (1H, m), 1.70–1.50 (1H, overlapped), 1.46 (1H, m),
1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz, CDCl3) δ 169.5, 154.2, 145.8,
130.8, 123.8, 121.4, 107.8, 82.1, 69.8, 61.2, 57.2, 31.9, 30.2, 25.2, 22.8, 14.3.; IR (KBr) 2951, 2921, 2854, 1682,
1440, 1302 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C16H23O6)+ 311.1495, found 311.1498.

3.1.18. ((3S,4S)-4-methoxy-5,8-bis(methoxymethoxy)-1-oxo-3-pentylisochroman-7-yl)
methylmethanesulfonate (22)

To a solution of diMOM hydroxymethyl derivative 11a (7.2 mg, 24.1 µmol) in CH2Cl2 (0.47 mL)
were added Et3N (10.8 µL, 77.5 µmol) and MsCl (6.0 µL, 77.5 µmol) at 0 ◦C. After stirring for 40 min at
the same temperature, the reaction was quenched by adding water at 0 ◦C. The mixture was extracted
with EtOAc (×3) and the combined organic layers were washed with brine, dried over Na2SO4, filtered,
and concentrated under reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane
= 2:3) to give diMOM mesylated derivative 22 (30.4 mg, 91%) as a white wax. 1H-NMR (400 MHz,
CDCl3) δ 7.51 (1H, s), 5.45 (1H, d, J = 12.0 Hz), 5.37 (1H, d, J = 12.2 Hz), 5.25 (2H, s), 5.14 (1H, d,
J = 6.6 Hz), 5.12 (1H, d, J = 6.6 Hz), 4.62 (1H, d, J = 1.4 Hz), 4.27 (1H, ddd, J = 1.2, 5.6, 7.8 Hz), 3.59
(3H, s), 3.50 (3H, s), 3.33 (3H, s), 3.07 (3H, s), 2.03 (1H, m), 1.82 (1H, m), 1.58 (1H, m), 1.44 (1H, m),
1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (100 MHz, CDCl3) δ 161.9, 152.2, 150.5,
131.3, 130.5, 120.3, 119.7, 102.8, 95.5, 81.2, 68.6, 66.9, 58.1, 57.4, 56.9, 38.2, 31.9, 30.9, 25.2, 22.8, 14.3.; IR
(KBr) 2958, 2930, 2860, 1829, 1681, 1440, 1358, 1175, 933 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for
(C21H32O10SNa)+ 499.1614, found 499.1616.

3.1.19. (3S,4S)-7-(azidomethyl)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentylisochroman-1-one (13a)

To a solution of diMOM mesylated derivative 22 (5.3 mg, 11.1 µmol) in DMF (55 µL) was added
NaN3 (0.79 mg, 12.1 µmol) at room temperature. After stirring for 6 h at the same temperature, the
reaction was quenched by adding water at 0 ◦C. The mixture was extracted with EtOAc (×3) and the
combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give diMOM azide
derivative 13a (3.7 mg, 79%) as a pale-yellow oil. 1H-NMR (500 MHz, CDCl3) δ 7.44 (1H, s), 5.26 (1H, d,
J = 6.9 Hz), 5.25 (1H, d, J = 6.9 Hz), 5.13 (1H, d, J = 6.9 Hz), 5.11 (1H, d, J = 6.9 Hz), 4.65 (1H, d, J = 14.5
Hz), 4.62 (1H, d, J = 1.3 Hz), 4.53 (1H, d, J = 14.5 Hz), 4.27 (1H, ddd, J = 1.3, 5.7, 7.3 Hz), 3.60 (3H, s),
3.51 (3H, s), 3.32 (3H, s), 2.04 (1H, m), 1.82 (1H, m), 1.65–1.50 (1H, overlapped), 1.43 (1H, m), 1.40–1.30
(4H, overlapped), 0.91 (3H, t, J = 7.0 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.2, 152.1, 150.5, 133.5,
129.1, 119.7, 119.5, 102.6, 95.5, 81.2, 68.6, 57.9, 57.3, 56.8, 50.2, 31.9, 30.9, 25.2, 22.9, 14.4.; IR (KBr) 2957,
2928, 2858, 2829, 2105, 1729, 1153, 1009 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C20H30N3O7)+

424.2084, found 424.2085.

3.1.20. (3S,4S)-7-(azidomethyl)-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (13)

To a solution of diMOM azide derivative 13a (8.3 mg, 19.6 µmol) in MeOH (1.5 mL) was added 6 M
aqueous HCl (0.49 mL) at room temperature. After stirring for 4 h at 40 ◦C, the reaction was quenched
by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the
combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 3:7) to give nitro derivative
13 (3.1 mg, 49%) as a white solid. m.p. 98–99 ◦C; 1H-NMR (400 MHz, CDCl3) δ 10.98 (1H, s), 7.10 (1H,
s), 5.81 (1H, br-s), 4.78 (1H, d, J = 2.9 Hz), 4.52 (1H, ddd, J = 2.9, 5.4, 8.5 Hz), 4.45 (1H, d, J = 14.4 Hz),
4.42 (1H, d, J = 14.4 Hz), 3.41 (3H, s), 1.93 (1H, m), 1.86 (1H, m), 1.70-1.50 (1H, overlapped), 1.47 (1H,
m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 7.1 Hz); 13C-NMR (125 MHz, CDCl3) δ 169.1, 154.4,
145.7, 126.2, 124.6, 121.8, 108.0, 81.7, 70.4, 57.2, 49.3, 31.9, 30.0, 25.2, 22.8, 14.3.; IR (KBr) 2959, 2924, 2857,
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2108, 1654, 1441, 1293, 1170 cm−1; HRMS (ESI) m/z (M + H)+ calculated for (C16H22N3O5)+ 336.1559,
found 336.1563.

3.1.21. (3S,4S)-7-(aminomethyl)-4-methoxy-5,8-bis(methoxymethoxy)-3-pentylisochroman-1-one (14a)

To a solution of diMOM azide derivative 13a (3.3 mg, 7.8 µmol) in MeOH (0.78 mL) was added
Et3N (0.10 mL, 7.35 mmol) and Pd/C (1.6 mg, 1.5 µmol) at room temperature. After stirring for 1 h
at the same temperature, the mixture was filtered, and the filtrate was concentrated under reduced
pressure. The residue was purified with PTLC (MeOH:CH2Cl2 = 1:9) to give diMOM amine derivative
14a (2.0 mg, 65%) as brown oil. 1H-NMR (400 MHz, CDCl3) δ 7.49 (1H, s), 5.26 (2H, s), 5.16 (1H, d,
J = 7.2 Hz), 5.07 (1H, d, J = 6.8 Hz), 4.61 (1H, d, J = 1.2 Hz), 4.27 (1H, ddd, J = 1.2, 6.0, 7.6 Hz), 4.00
(2H, s), 3.61 (3H, s), 3.50 (3H, s), 3.32 (3H, s), 2.59 (1H, br-s), 2.03 (1H, m), 1.82 (1H, m), 1.57 (1H, m),
1.43 (1H, m), 1.40-1.25 (1H, overlapped), 0.91 (3H, t, J = 6.8 Hz); 13C-NMR (125 MHz, CDCl3) δ 162.6,
152.6, 150.5, 128.1, 120.0, 119.0, 102.4, 95.4, 81.2, 68.5, 57.9, 57.2, 56.8, 42.5, 32.0, 30.9, 30.0, 25.2, 22.9,
14.4.; IR (KBr) 2957, 2925, 2857, 2827, 1726, 1470, 1153, 1005 cm−1; HRMS (ESI) m/z (M + H)+ calculated
for (C20H32NO7)+ 398.2179, found 398.2178.

3.1.22. (3S,4S)-7-(aminomethyl)-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (14)

To a solution of diMOM amine derivative 14a (4.4 mg, 11.1 µmol) in MeOH (0.83 mL) was added
6 M aqueous HCl (0.28 mL) at 0 ◦C. After stirring for 5 h at room temperature, the reaction was
quenched by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with the mixture
of MeOH and CH2Cl2 (MeOH:CH2Cl2 = 1:4) (×4) and the combined organic layers were dried over
Na2SO4, filtered and concentrated under reduced pressure. The residue was purified with PTLC
(MeOH:CHCl3 saturated with NH3 = 1:9) to give amiomethyl derivative 14 (1.1 mg, 32%) as brown
solid. m.p. 78–80 ◦C; 1H-NMR (400 MHz, CDCl3) δ 6.98 (1H, s), 4.59 (1H, d, J = 1.8 Hz), 4.35 (1H, ddd,
J = 1.8, 6.0, 8.0 Hz), 3.97 (1H, d, J = 13.3 Hz), 3.88 (1H, d, J = 13.3 Hz), 3.19 (3H, s), 1.98 (1H, m), 1.83
(1H, m), 1.56 (1H, m), 1.43 (1H, m), 1.40–1.25 (4H, overlapped), 0.90 (3H, t, J = 7.0 Hz) ; 13C-NMR
(125 MHz, CDCl3) δ 169.9, 154.2, 146.2, 130.0, 125.8, 122.9, 108.1, 82.8, 68.5, 56.9, 42.3, 31.9, 30.6, 25.1,
22.8, 14,3.; IR (KBr) 2956, 2921, 2857, 1676, 1441, 1171 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for
(C16H23NO5Na)+ 332.1474, found 332.1474.

3.1.23. ((3S,4S)-5,8-dihydroxy-4-methoxy-7-nitro-3-pentylisochroman-1-one (15)

To a solution of 3 (28.9 mg, 89.1 µmol) in AcOH (0.50 mL) was added the mixture of AcOH and
70% HNO3 (0.80 mL:0.20 mL) at 0 ◦C. After stirring for 10 min at the same temperature, the reaction
was quenched by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc
(×3) and the combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried
over Na2SO4, filtered, and concentrated under reduced pressure. The residue was pathed through
SiO2 plug and the resultant mixture of monoMOM nitro derivative 15a was used for the next reaction
without further purification. To a solution of 15a mixture in MeOH (7.5 mL) was added 6 M aqueous
HCl (2.4 mL) at 0 ◦C. After stirring for 5 h at 40 ◦C, the reaction was quenched by adding saturated
aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the combined organic
layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure.
The residue was purified with PTLC (EtOAc:n-hexane = 1:1) to give nitro derivative 15 (21.5 mg, 74%)
as a yellow solid. m.p. 158-159; 1H-NMR (400 MHz, CDCl3) δ 11.89 (1H, s), 7.78 (1H, s), 6.80 (1H, br-s),
4.82 (1H, d, J = 2.6 Hz), 4.55 (1H, ddd, J = 2.6, 5.2, 8.3 Hz), 3.46 (3H, s), 1.96 (1H, m), 1.86 (1H, m),
1.59 (1H, m), 1.47 (1H, m), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 7.1 Hz); 13C-NMR (125 MHz,
CDCl3) δ 167.5, 150.4, 144.9, 137.6, 129.4, 119.7, 110.7, 81.0, 70.3, 57.6 , 31.4, 29.4, 24.7, 22.4, 14.0; IR
(KBr) 3416, 2962, 2927, 2857, 1679, 1445, 1261, 1018, 800 cm−1; HRMS (ESI) m/z (M + H)+ calculated for
(C15H20NO7)+ 326.1240, found 326.1224.
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3.1.24. (3S,4S)-7-amino-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (16)

To a solution of nitro derivative 15 (5.0 mg, 15.4 µmol) in THF (0.62 mL) and MeOH (80 µL) was
added PtO2 (0.3 mg, 1.54 µmol) at room temperature. After stirring for 1.5 h at the same temperature
under hydrogen atmosphere (1 atm), the mixture was passed through a membrane filter to remove
PtO2. The mixture was concentrated under reduced pressure and the residue was purified with PTLC
(EtOAc:n-hexane = 3:7, developed by three times) to give nitro derivative 16 (4.3 mg, 95%) as a yellow
solid. m.p. 118–119 ◦C; 1H-NMR (500 MHz, CDCl3) δ 10.72 (1H, s), 6.45 (1H, s), 5.68 (1H, br-s), 4.67
(1H, d, J = 2.5 Hz), 4.46 (1H, ddd, J = 2.5, 5.5, 8.3 Hz), 4.05 (1H, br-s), 3.32 (3H, s), 1.94 (1H, m), 1.84
(1H, m), 1.75–1.50 (1H, overlapped), 1.45 (1H, m), 1.40–1.25 (4H, overlapped), 0.90 (3H, t, J = 7.0 Hz);
13C-NMR (125 MHz, CDCl3) δ 169.8, 145.9, 144.5, 137.2, 109.8, 108.4, 106.8, 82.4, 69.1, 56.1, 31.6, 30.1,
24.9, 22.5, 14.0; IR (KBr) 3378, 2957, 2926, 2858, 1681, 1464, 1217, 1171 cm−1; HRMS (ESI) m/z (M + Na)+

calculated for (C15H21NO5Na)+ 318.1317, found 318.1321.

3.1.25. (3S,4S)-7-chloro-8-hydroxy-4-methoxy-5-(methoxymethoxy)-3-pentylisochroman-1-one (18a)

To a solution of 3 (5.0 mg, 15.4 µmol) in DMF (0.18 mL) was added the solution of
N-chlorosuccinimide (4.1 mg, 30.8 µmol) in DMF (31 µL) at room temperature. After stirring
for 5 h at 65 ◦C, the reaction was quenched by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture
was extracted with EtOAc (×3) and the combined organic layers were washed with brine, dried over
Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified with PTLC
(EtOAc:n-hexane = 1:9) to give monoMOM chloro derivative 18a (3.3 mg, 60%) as a brown solid. m.p.
79–81 ◦C; 1H-NMR (400 MHz, CDCl3) δ 11.23 (1H, s), 7.55 (1H, s), 5.18 (1H, d, J = 7.0 Hz), 5.16 (1H, d,
J = 7.0 Hz), 4.59 (1H, d, J = 1.7 Hz), 4.39 (1H, ddd, J = 1.7, 6.0, 8.0 Hz), 3.50 (3H, s), 3.30 (3H, s), 2.07
(1H, m), 1.86 (1H, m), 1.70-1.50 (1H, overlapped), 1.47 (1H, m), 1.45-1.25 (4H, overlapped), 0.92 (3H, t,
J = 7.1 Hz); 13C-NMR (125 MHz, CDCl3) δ 168.7, 152.8, 146.3, 125.1, 123.6, 123.0, 109.0, 95.7, 82.7, 67.4,
56.8, 56.4, 31.5, 30.4, 24.7, 22.5, 14.0.; IR (KBr) 2955, 2927, 2853, 2826, 1681, 1453, 1433, 1206 cm−1; HRMS
(ESI) m/z (M + Na)+ calculated for (C17H23O6ClNa)+ 381.1081, found 381.1088.

3.1.26. (3S,4S)-7-chloro-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (18)

To a solution of monoMOM chloro derivative 18a (3.3 mg, 9.20 µmol) in MeOH (0.69 mL) was
added 6 M aqueous HCl (0.23 mL) at 0 ◦C. After stirring for 2 h at 40 ◦C, the reaction was quenched by
adding saturated NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 1:9) to give chloro derivative 18
(2.1 mg, 73%) as a brown solid. m.p. 119-120 ◦C; 1H-NMR (400 MHz, CDCl3) δ 11.17 (1H, br-s), 7.34
(1H, s), 6.34 (1H, br-s), 4.82 (1H, br-s), 4.59 (1H, ddd, J = 2.8, 5.6, 8.4 Hz), 3.48 (3H, s), 2.03 (1H, m),
1.93 (1H, m), 1.64 (1H, m), 1.53 (1H, m), 1.51–1.35 (4H, overlapped), 0.98 (3H, t, J = 7.2 Hz); 13C-NMR
(100 MHz, CDCl3) δ 168.7, 152.1, 145.6, 124.9, 122.8, 121.1, 108.5, 81.8, 69.6, 57.0, 31.5, 29.8, 24.8, 22.5,
14.0.; IR (KBr) 3282, 2958, 2929, 2860, 1681, 1437, 1198 cm−1; HRMS (ESI) m/z (M + H)+ calculated for
(C15H20O5Cl)+ 315.0999, found 315.0998.

3.1.27. (3S,4S)-7-bromo-5,8-dihydroxy-4-methoxy-3-pentylisochroman-1-one (19)

To a solution of bromo derivative 2 (11.0 mg, 24.6 µmol) in MeOH (1.8 mL) was added 6 M
aqueous HCl (0.62 mL) at 0 ◦C. After stirring for 3.5 h at 40 ◦C, the reaction was quenched by adding
saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the combined
organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified with PTLC (EtOAc:n-hexane = 1:9) to give bromo derivative 19
(8.6 mg, 97%) as a white solid. m.p. 132 ◦C; 1H-NMR (400 MHz, CDCl3) δ 11.26 (1H, s), 7.36 (1H, s),
6.00 (1H, br-s), 4.76 (1H, d, J = 2.7 Hz), 4.52 (1H, ddd, J = 2.7, 5.1, 8.3 Hz), 3.41 (3H, s), 1.95 (1H, m),
1.86 (1H, m), 1.70-1.50 (2H, overlapped), 1.40–1.25 (4H, overlapped), 0.91 (3H, t, J = 7.0 Hz); 13C-NMR
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(125 MHz, CDCl3) δ 168.4, 153.0, 145.8, 127.9, 121.5, 111.6, 108.2, 81.4, 70.0, 57.0, 31.5, 29.6, 24.8, 22.5,
14.0.; IR (KBr) 3296, 2955, 2930, 2859, 1679, 1432, 1197 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for
(C15H19O5BrNa)+ 381.0314, found 381.0322.

3.1.28. (3S,4S)-5,8-dihydroxy-7-iodo-4-methoxy-3-pentylisochroman-1-one (20)

To a solution of 3 (12.6 mg, 38.8 µmol) in DMF (0.35 mL) was added the solution of
N-iodosuccinimide (17.5 mg, 77.6 µmol) in DMF (50 µL) at room temperature. After stirring for
3 h at room temperature, the reaction was quenched by adding saturated aqueous NaHCO3 at 0 ◦C.
The mixture was extracted with CH2Cl2 (×3) and the combined organic layers were washed with
brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was pathed
through SiO2 plug and the resultant mixture of monoMOM iodo derivative 20a was used for the next
reaction without further purification. To a solution of crude mixture of 20a in MeOH (0.83 mL) was
added 6 M aqueous HCl (0.30 mL) at 0 ◦C. After stirring for 5 h at 40 ◦C, the reaction was quenched
by adding saturated aqueous NaHCO3 at 0 ◦C. The mixture was extracted with EtOAc (×3) and the
combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified with PTLC (EtOAc:n-hexane = 1:9) to give iodo derivative
20 (4.0 mg, 87%) as a pale-yellow oil. m.p. 109–110 ◦C; 1H-NMR (500 MHz, CDCl3) δ 11.44 (1H, s),
7.57 (1H, s), 6.11 (1H, br-s), 4.51 (1H, ddd, J = 2.8, 5.4, 8.5 Hz), 3.40 (3H, s), 1.94 (1H, m), 1.85 (1H, m),
1.75–1.50 (4H, overlapped), 1.45 (1H, m), 1.40–1.30 (4H, overlapped), 0.91 (3H, t, J = 7.0 Hz); 13C-NMR
(125 MHz, CDCl3) δ 168.3, 155.3, 146.3, 133.8, 122.6, 107.1, 85.5, 81.5, 69.8, 56.9, 31.5, 29.7, 24.8, 22.5,
14.0; IR (KBr) 3293, 2977, 298, 2857, 1674, 1427, 1197 cm−1; HRMS (ESI) m/z (M + Na)+ calculated for
(C15H19O5Ina)+ 429.0175, found 429.0174.

3.2. Bactericidal Assay

Methicillin-susceptible Staphylococcus aureus (MSSA) ATCC25923 and methicillin-resistant
Staphylococcus aureus (MRSA) ATCC 33,591 were aerobically incubated at 37 ◦C in Luria–Bertani
medium (LB, Nippon Becton Dickinson Company, Tokyo, Japan). Porphyromonas gingivalis W83 was
anaerobically incubated at 37 ◦C in Gifu anaerobic medium (GAM, Nissui, Tokyo, Japan). Each culture
(20 µL) prepared to an optical density of 1.5 at 600 nm were appropriately incubated with various
concentrations of synthesized compounds in 200 µL of culture medium at 37 ◦C for 24 h in 96-well
plate (Thermo scientific, MA, USA). Compounds were dissolved in DMSO (Wako, Osaka, Japan).
The degree of turbidity in the broth culture was measured at absorbance 600 nm using microplate
reader (Thermo scientific, MA, USA).

3.3. Cellular Toxicity

Human lung adenocarcinoma epithelial cell line A549 cells were cultured at 37 ◦C in growth
medium (DMEM with 10% fetal bovine serum) in 5% CO2, and then seeded into 96-well plates at a
density of 1 × 105 cells/mL. Once the cells reached 80%–90% confluence, they were treated with or
without 10 µM of various compounds at 37 ◦C for 12 h. Next, 10 µL Cell Counting Kit-8 (Dojindo
Molecular Technologies, Kumamoto, Japan) solution was added to each well, and the plate was
incubated for 2 h at 37 ◦C. Cell viability was determined by measuring the absorbance at 450 nm using
a fluorimeter (Varioscan, Thermo, USA).

4. Conclusions

We constructed a chemical library of the side-chain derivatives of eurotiumide A, which is a
dihydroisocoumarin-type marine natural product. The antimicrobial evaluation of these compounds
was conducted against MSSA, MRSA, and P. gingivalis. We discovered several compounds to be
effective against these strains; among them, the isopentyl derivative 6 is especially more active against
all three strains than 1. Continuous research to clarify the modes of action of these derivatives is under
way in our laboratory.
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