Terpenoids from the Deep-Sea-Derived Fungus *Penicillium thomii* YPGA3 and Their Bioactivities

Zhongbin Cheng ^{1,4,*}, Wan Liu ¹, Runzhu Fan ³, Shouye Han ¹, Yuanli Li ¹, Xiaoyun Cui ¹, Jia Zhang ¹, Yinan Wu ¹, Xin Lv ¹, Yun Zhang ¹, Zhuhua Luo ², Siti Aisyah Alias ⁵, Wei Xu ^{2,*} and Qin Li ^{1,4,*}

- ¹ School of Pharmacy, Henan University, Kaifeng 475004, China; 18737806806@163.com (W.L.); hanshouye123@163.com (S.H.); lyl3287439993@163.com (Y.L.); cxy521bjt@163.com (X.C.); z919395@126.com (J.Z.); w1287457895@163.com (Y.W.); 15225826138@163.com (X.L); zy190831@163.com (Y.Z.)
- ² Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; luozhuhua@tio.org.cn (Z.L.)
- ³ School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China, fanrzh@mail2.sysu.edu.cn (R.F.)
- ⁴ Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China
- ⁵ Institute of Ocean and Earth Science (IOES), C308, Institute of Postgraduate Studies Building, University of Malaya, 50603 Kuala Lumpur, Malaysia; siti.alias@gmail.con (A.S.A.)
- * Correspondence: czb360@126.com (Z.C.); xuwei@tio.org.cn (W.X.); liqin6006@163.com (Q.L.); Tel.: +86-371-2388-3849 (Q.L.)

	Table of Contents	Page
Figure S1	¹ H NMR Spectrum of 1 in Methanol- d_4 (400 MHz)	1
Figure S2	¹³ C NMR Spectrum of 1 in Methanol- d_4 (100 MHz)	1
Figure S3	HSQC Spectrum of 1 in Methanol-d4	2
Figure S4	¹ H- ¹ H COSY Spectrum of 1 in Methanol- <i>d</i> ₄	2
Figure S5	HMBC Spectrum of 1 in Methanol- <i>d</i> ₄	3
Figure S6	NOESY Spectrum of 1 in Methanol- <i>d</i> ₄	3
Figure S7	¹ H NMR Spectrum of 9 in Methanol- d_4 (400 MHz)	4
Figure S8	¹³ C NMR Spectrum of 9 in Methanol- d_4 (100 MHz)	4
Figure S9	HSQC Spectrum of 9 in Methanol-d4	5
Figure S10	¹ H- ¹ H COSY Spectrum of 9 in Methanol- <i>d</i> ₄	5
Figure S11	HMBC Spectrum of 9 in Methanol- <i>d</i> ₄	6
Figure S12	NOESY Spectrum of 9 in Methanol- <i>d</i> ₄	6
Figure S13	¹ H NMR Spectrum of 10 in Methanol- d_4 (400 MHz)	7
Figure S14	¹³ C NMR Spectrum of 10 in Methanol- d_4 (100 MHz)	7
Figure S15	HSQC Spectrum of 10 in Methanol-d4	8
Figure S16	¹ H- ¹ H COSY Spectrum of 10 in Methanol- <i>d</i> ₄	8

Figure S17	HMBC Spectrum of 10 in Methanol- <i>d</i> ₄	9
Figure S18	NOESY Spectrum of 10 in Methanol- <i>d</i> ₄	9
Figure S19	¹ H NMR Spectrum of 2 in Methanol- d_4	10
Figure S20	¹³ C NMR Spectrum of 2 in Methanol- d_4	10
Figure S21	¹ H NMR Spectrum of 3 in Methanol- d_4	11
Figure S22	¹³ C NMR Spectrum of 3 in Methanol- d_4	11
Figure S23	¹ H NMR Spectrum of 4 in Methanol- <i>d</i> ₄	12
Figure S24	¹³ C NMR Spectrum of 4 in Methanol- <i>d</i> ₄	12
Figure S25	¹ H NMR Spectrum of 5 in Methanol- <i>d</i> ₄	13
Figure S26	¹³ C NMR Spectrum of 5 in Methanol- <i>d</i> ₄	13
Figure S27	¹ H NMR Spectrum of 6 in Methanol- <i>d</i> ₄	14
Figure S28	¹³ C NMR Spectrum of 6 in Methanol- d_4	14
Figure S29	¹ H NMR Spectrum of 7 in Methanol- <i>d</i> ₄	15
Figure S30	¹³ C NMR Spectrum of 7 in Methanol- <i>d</i> ₄	15
Figure S31	¹ H NMR Spectrum of 8 in Methanol- <i>d</i> ₄	16
Figure S32	¹ H NMR Spectrum of 11 in Methanol- <i>d</i> ₄	16
Figure S33	¹³ C NMR Spectrum of 11 in Methanol- <i>d</i> ₄	17
Figure S34	HRESIMS spectrum of 1	17
Figure S35	HRESIMS spectrum of 9	18
Figure S36	HRESIMS spectrum of 10	18
S37	Details for ECD calculations of 1 and 9	19
Table S1	Inhibitions (%) on NO production and cytotoxicity (%) toward RAW	23
	264.7, MCF-7, and MDA-MB-468 cells (cell viability) of compounds	
	1–11.	

¹H-¹H COSY Spectrum of **9** in Methanol-*d*₄

Pt-51 06-Aug-2019 CZB-11 5 (0.085) AM (Cen,4, 80.00, Ht,5000.0,000,1.00); Sm (Mn, 2x3.00); Cm (1:25) 469.2202 949 100-Ĥ Ĥ ÓН % 1 470.2223 472.1568 485.1960 429.2249 468.6004 486.2036 413.2654 519.2430 0 480 400 440 460 420 500 5²0 540 Figure S34 HRESIMS spectrum of 1

S38 Details for ecd calculations of 1 and 9

1. Computational Details.

In general, conformational analyses were carried out via random searching in the Sybyl-X 2.0 [1] using the MMFF94S force field with an energy cutoff of 3.0 kcal/mol. Subsequently, the conformers were re-optimized using density functional theory (DFT) at the b3lyp/6-31+g(d,p) level in MeOH using the polarizable conductor calculation model by the GAUSSIAN 09 program [2]. The energies, oscillator strengths, and rotational strengths (velocity) of the first 30 electronic excitations were calculated using the TDDFT methodology at the b3lyp/6-31+g(d,p) level in MeOH. The ECD spectra were simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, $\sigma = 0.27$ for 11*S*, 14*R*, 20*S*, 21*R*-1 and 0.3 for 3*S*, 4*R*, 5*R*, 9*S*, 10*R*-9) [3]. By comparing the experiment spectra with the calculated ECD spectra, the absolute configurations of 1, 9, and 10 were resolved.

1. Sybyl Software, version X 2.0; Tripos Associates Inc.: St. Louis, MO, 2013.

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Rev. C 01; Gaussian, Inc., Wallingford CT, 2009.

3. Stephens, P. J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. *Chirality* **2010**, *22*, 229–233.

Table S1. Energy analysis for 115, 14R, 205, 21R-1							
conformer	Gibbs free energy (298.15 K)						
	G (Hartree)	ΔE (kcal/mol)	Population (%)				
C1	-1499.8608818	0	40.89				

Table S1. Energy analysis for 11S, 14R, 20S, 21R-1

C2	-1499.8604866	0.000395	26.89
C3	-1499.8599264	0.000955	14.85
C4	-1499.8593622	0.00152	8.17
C5	-1499.8593622	0.00152	8.17
C6	-1499.8574176	0.003464	1.04

Figure S38. B3LYP-SCRF (PCM, methanol)/6-31G(d) optimized lowest energy conformers for 11*S*, 14*R*, 20*S*, 21*R*-1

	(21	(22	(23
State	Excitation energies(ev)	Rotatory Strengths*	Excitation energies(ev)	Rotatory Strengths*	Excitation energies(ev)	Rotatory Strengths*
1	4.3423	-10.1849	4.3432	-10.2701	4.3392	-9.5851
2	4.6544	-14.5714	4.6573	-13.4875	4.6508	-15.8288
3	5.3953	18.6966	5.3956	14.8889	5.3950	27.0698
4	5.4043	-40.6161	5.4046	-30.6921	5.4037	-50.9006
5	5.4244	31.1510	5.4231	28.0920	5.4265	33.1887
6	5.6561	4.9584	5.6564	3.2077	5.6594	4.6663
7	5.7113	1.4962	5.7189	-0.7876	5.6688	2.8995
8	5.7432	1.7120	5.7214	1.7861	5.7707	-0.2301
9	5.7977	-5.7033	5.7826	6.9826	5.8200	-2.9794
10	5.8477	-34.0495	5.7900	-18.5848	5.8502	-42.5731
11	5.8953	-8.5591	5.8461	-38.5442	5.9042	0.1414
12	5.9047	1.4478	5.9162	0.6205	5.9054	1.7291
13	5.9490	21.2693	5.9224	18.4753	5.9694	16.1350
14	5.9675	0.0957	5.9390	0.2110	6.0200	4.5258
15	5.9791	5.3116	5.9947	4.1796	6.0307	1.5716
16	6.0381	5.0929	6.0260	2.4399	6.0603	6.6554
17	6.0657	1.8406	6.0730	4.8799	6.0674	4.0735
18	6.1565	-5.2871	6.1612	-9.0049	6.1447	-5.9956

Table S2. Calculated ECD Data for 11S, 14R, 20S, 21R-1

19	6.1972	-0.0130	6.1847	0.9770	6.1510	-0.2243
20	6.2190	4.9570	6.2064	8.1167	6.2250	4.0146
21	6.2659	-3.0170	6.2646	-0.6407	6.2524	-6.6939
22	6.2790	-0.3485	6.2968	-0.1736	6.2927	0.5157
23	6.4383	3.2705	6.4355	4.3680	6.4068	-4.7789
24	6.4503	0.3908	6.4405	-0.5025	6.4543	7.9211
25	6.4757	-2.8255	6.4627	-3.1545	6.4852	-2.4991
26	6.4892	-0.7179	6.5011	-2.7557	6.4994	-0.6109
27	6.5368	-26.7631	6.5343	-20.1978	6.5262	-17.3879
28	6.5442	6.8975	6.5499	0.6200	6.5583	-1.1859
29	6.5480	-0.3074	6.5675	0.6440	6.5637	-0.0416
30	6.5770	0.4094	6.5861	0.6410	6.5814	1.4085

<u>.</u>	(24	C5		C6		
State	Excitation energies(ev)	Rotatory Strengths*	Excitation energies(ev)	Rotatory Strengths*	Excitation energies(ev)	Rotatory Strengths*	
1	4.3394	-9.4963	4.3394	-9.4821	4.3418	-9.2010	
2	4.6525	-15.4632	4.6526	-15.4487	4.6548	-11.2070	
3	5.3918	27.8599	5.3919	27.8017	5.3939	11.1133	
4	5.4025	-46.1109	5.4025	-46.0166	5.4038	-27.2933	
5	5.4243	23.2449	5.4243	23.1910	5.4218	26.0566	
6	5.5063	5.0155	5.5066	4.9951	5.5723	-0.2314	
7	5.6553	5.5980	5.6553	5.5860	5.6527	2.5150	
8	5.7621	0.1037	5.7621	0.1020	5.7004	15.0218	
9	5.7757	-0.6904	5.7756	-0.7055	5.7085	0.6744	
10	5.8459	-51.9862	5.8458	-51.8569	5.7614	-0.8375	
11	5.8705	2.1775	5.8704	2.1688	5.7819	3.8384	
12	5.8951	-3.4719	5.8951	-3.4442	5.8381	-59.8221	
13	5.9290	30.1975	5.9293	30.0686	5.8755	37.1290	
14	5.9712	-1.5763	5.9711	-1.5725	5.9307	2.4740	
15	6.0406	2.4680	6.0406	2.4618	5.9850	5.7563	
16	6.0634	11.4005	6.0633	11.4016	6.0139	1.1671	
17	6.1148	-3.9200	6.1147	-3.9499	6.0674	3.7117	
18	6.1731	0.0958	6.1734	0.0963	6.1415	0.6544	
19	6.2329	3.6266	6.2328	3.6281	6.1661	-10.6797	
20	6.2625	-2.0900	6.2624	-2.1071	6.2494	9.9309	
21	6.2680	-11.4966	6.2680	-11.4825	6.2600	1.4891	
22	6.3792	20.3547	6.3794	20.3296	6.3119	0.5731	
23	6.4096	0.8348	6.4097	0.8304	6.4373	-8.4470	
24	6.4222	-2.9996	6.4222	-3.0094	6.4452	11.8189	
25	6.4410	-4.5657	6.4411	-4.4907	6.4662	-15.5996	
26	6.4502	-2.2603	6.4505	-2.3350	6.5083	4.2941	
27	6.4854	12.8157	6.4853	12.7508	6.5174	-5.4997	
28	6.4914	3.6017	6.4914	3.6502	6.5433	2.6387	
29	6.4975	3.7892	6.4974	3.7817	6.5635	-2.6095	
30	6.5380	-1.1399	6.5380	-1.1394	6.5826	-0.5648	

* R(velocity) 10**-40 erg-esu-cm

conformer	Gibbs free energy (298.15 K)					
	G (Hartree)	ΔE (kcal/mol)	Population (%)			
C1	-1156.4235876	0.000000	56.71			
C2	-1156.4232029	0.000385	37.72			
C3	-1156.4213995	0.002188	5.57			

Table S3. Energy analysis for 3S, 4R, 5R, 9S, 10R-9

Figure S39. B3LYP-SCRF (PCM, methanol)/6-31G(d) optimized lowest energy conformers for 3*S*, 4*R*, 5*R*, 9*S*, 10*R*-9

Table	S4.	Calculated	ECD	Data	for	3 <i>S</i> .	4R.	5R.	9.S.	10 <i>R</i> -9
Table	от.	Calculateu	LCD	Data	101	50,	чл,	эл,	<i>J</i> D ,	101-7

	(C1	(22	(23
State	Excitation	Rotatory	Excitation	Rotatory	Excitation	Rotatory
	energies(ev)	Strengths*	energies(ev)	Strengths*	energies(ev)	Strengths*
1	4.6010	0.1885	4.6085	1.0179	4.6150	0.2292
2	4.9383	-28.1188	4.9495	26.3398	4.9393	-28.3588
3	5.4430	28.8170	5.4568	-65.4959	5.4052	0.6885
4	5.5712	2.4772	5.5719	2.6024	5.4616	32.8551
5	5.6262	2.9246	5.6229	0.8594	5.5707	-3.0752
6	5.7118	0.8070	5.7088	0.4546	5.6432	2.8000
7	5.9114	7.6240	5.9135	4.6963	5.9272	-2.7408
8	5.9454	3.1454	5.9601	10.2782	5.9568	14.9799
9	6.1970	-2.6215	6.1922	-0.5705	5.9878	3.7343
10	6.2073	-22.3430	6.1980	-19.5587	6.0296	1.3518
11	6.2999	-3.3864	6.3013	-8.5403	6.1631	-1.9222
12	6.3025	-1.4133	6.3241	0.5372	6.1866	-29.4981
13	6.3424	0.8785	6.3435	-0.6169	6.3043	6.6005
14	6.4080	3.3274	6.4011	4.0959	6.3536	-1.9615
15	6.4418	2.4771	6.4086	-8.9424	6.3849	2.2176
16	6.5588	-8.0922	6.5734	4.6145	6.4169	13.9958
17	6.5663	-3.1322	6.5766	-14.0776	6.4441	-4.2821
18	6.6284	-0.1331	6.6421	0.2160	6.5218	1.1277
19	6.6585	-0.7568	6.6605	0.4400	6.5407	-13.8342
20	6.7071	-4.5083	6.6943	-6.6818	6.5723	1.0345
21	6.7468	18.9827	6.7328	-1.4261	6.6679	-1.2891
22	6.7492	-1.3379	6.7455	8.4490	6.6928	18.5719
23	6.7642	-2.1712	6.7574	7.2109	6.7063	-2.5368
24	6.7657	1.1022	6.7676	3.7896	6.7288	-0.7610
25	6.8090	9.7731	6.8120	0.8038	6.7586	1.2365

26	6.8196	2.4893	6.8218	-0.1712	6.8103	8.2468
27	6.8607	4.7353	6.8678	4.9920	6.8485	5.9794
28	6.8992	0.3276	6.9075	-2.6399	6.8779	-24.1421
29	6.9033	7.0166	6.9110	7.0137	6.8954	1.5147
30	6.9380	15.6876	6.9462	-5.4814	6.9200	12.7690

* R(velocity) 10**-40 erg-esu-cm

Table S1. Inhibitions (%) on NO production and cytotoxicity (%) toward RAW 264.7, MCF-7, and MDA-MB-468 cells (cell viability) of compounds 1–11.

no.	NO	RAW264.7	MCF7	MM468
1	97.80	33.15	104.04	31.61
2	56.83	46.16	117.22	78.25
3	-9.91	60.89	84.70	87.23
4	5.29	97.36	82.41	92.60
5	12.11	104.42	69.09	87.28
6	-3.74	74.58	73.83	92.29
7	-3.08	80.77	74.81	91.10
8	24.01	53.52	76.26	79.27
9	7.81	83.30	88.78	92.14
10	72.25	58.40	89.96	94.51
11	4.85	89.86	83.52	89.27