Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus *Trichoderma Longibrachiatum* and Their Antagonistic Activities against Soil-borne Pathogens

Feng-Yu Du 1,2,+, Guang-Lin Ju 1,+, Lin Xiao 1, Yuan-Ming Zhou 3, and Xia Wu 4,*

- ¹ College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; fooddfy@126.com (F.Y.); jgl2018666@163.com (G.J.); xiaolin_qd@163.com (L.X.)
- ² Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- ³ Analytical and Testing Center, Qingdao Agricultural University, Qingdao 266109, China; zym7410@163.com (Y.Z.)
- ⁴ Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; wuxia3897@163.com (X.W.)
- * Correspondence: wuxia3897@163.com (X.W.)
- + These authors contributed equally to this work.

Contents

Figure S1. HRESIMS spectrum of compound 1.	S2
Figure S2. ¹ H NMR (500 MHz, CDCl ₃) spectrum of compound 1 .	S3
Figure S3. ¹³ C NMR spectrum of compound 1 .	S3
Figure S4. DEPT-135 spectrum of compound 1.	S4
Figure S5. HSQC spectrum of compound 1.	S4
Figure S6. ¹ H- ¹ H COSY spectrum of compound 1 .	S5
Figure S7. HMBC spectrum of compound 1 .	S6
Figure S8. 1H NMR (600 MHz, CD3OD) spectrum of compound 1.	S7
Figure S9. ¹³ C NMR spectrum of compound 1 .	S8
Figure S10. HSQC spectrum of compound 1.	S8
Figure S11. ¹ H- ¹ H COSY spectrum of compound 1 .	S9
Figure S12. HMBC spectrum of compound 1 .	S10
Figure S13. NOESY spectrum of compound 1 .	S11
Figure S14. ¹ H NMR (500 MHz, DMSO-d ₆) spectrum of compound 1 .	S11
Experimental Section: Method of calculated ECD spectrum of compound 1 .	S12

Figure S1. HRESIMS spectrum of compound 1.

Figure S2. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1.

Figure S3. ¹³C NMR spectrum of compound 1.

Figure S4. DEPT-135 spectrum of compound 1.

Figure S5. HSQC spectrum of compound 1.

Figure S6. ¹H-¹H COSY spectrum of compound 1.

Figure S7. HMBC spectrum of compound **1**.

Figure S8. ¹H NMR (600 MHz, CD₃OD) spectrum of compound 1.

Figure S10. HSQC spectrum of compound 1.

Figure S11. ¹H-¹H COSY spectrum of compound 1.

Figure S12. HMBC spectrum of compound 1.

Figure S13. NOESY spectrum of compound 1.

Figure S14. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1**.

Method of calculated ECD spectrum of compound 1: Monte Carlo conformational searches were carried out using the Spartan's 10 software using Merck Molecular Force Field (MMFF). The conformers with a Boltzmann population of over 5% were chosen for ECD calculations, and then the conformers were initially optimized at B3LYP/6-31+g (d, p) level in MeOH, using the CPCM polarizable conductor calculation model. The theoretical calculation of ECD was conducted in MeOH using time-dependent density functional theory (TD-DFT) at the B3LYP/6-311+g (d, p) level for all conformers of compound **1**. Rotatory strengths for a total of 50 excited states were calculated. ECD spectra were generated using the program SpecDis 1.6 (University of Würzburg, Würzburg, Germany) and GraphPad Prism 5 (2365 Northside Dr., Suite 560, San Diego, CA 92108) from dipole-length rotational strengths, by applying Gaussian band shapes with sigma = 0.3 eV.