New Cytotoxic Cerebrosides from the Red Sea Cucumber *Holothuria spinifera* Supported by *In-Silico* Studies

Reda F. A. Abdelhameed ^{1,+}, Enas E. Eltamany ¹⁺, Dina M. Hal ¹, Amany K. Ibrahim ¹, Asmaa M. AboulMagd ², Tarfah Al-Warhi ³, Khayrya A. Youssif ⁴, Adel M. Abd El-kader ^{5,6}, Hashim A Hassanean ¹, Shaimaa Fayez ^{7,8}, Gerhard Bringmann ^{7,*}, Safwat A. Ahmed ^{1,*}, Usama Ramadan Abdelmohsen ^{5,9}

¹ Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt

² Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt

³Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

⁴Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt

⁵ Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt

⁶Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt

⁷ Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

⁸ Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566 Cairo, Egypt

⁹Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt

+ Equal contribution

* Correspondence: S.A.A., Phone: (+20) 010-92638387, Fax: (+20) 064-3230741, email: safwat_aa@yahoo.com; G.B., Phone: (+49) 0931-3185323, Fax: (+49) 0931-3184755, email bringmann@chemie.uni-wuerzburg.de

Received: 30 June 2020; Accepted: 23 July 2020; Published: July 2020

Figure S1:	LC-HRESIMS of Compound 1 (+MS)	4
Figure S2:	¹ H NMR spectrum of compound 1 in (C5D5N, 400 MHz)	5
Figure S3:	Partial expansion of the ¹ H NMR spectrum of compound 1 in (C5D5N, 400 MHz)	6
Figure S4:	Partial expansion of the ¹ H NMR spectrum of compound 1 in (C ₅ D ₅ N, 400 MHz)	7
Figure S5:	¹³ C NMR spectrum of compound 1 in (C5D5N, 100 MHz)	8
Figure S6:	Partial expansion of the ¹³ C NMR spectrum of compound 1 in (C ₅ D ₅ N, 100 MHz)	9
Figure S7:	Partial expansion of the ¹³ C NMR spectrum of compound 1 in (C5D5N, 100 MHz)	10
Figure S8:	Partial expansion of the ¹³ C NMR spectrum of compound 1 in (C5D5N, 100 MHz)	11
Figure S9:	Chromatogram of semi-preparative HPLC purification of compound 1	12
Figure S10:	Chromatogram of semi-preparative HPLC purification of spiniferoside A1 (1a)	13
Figure S11:	Chromatogram of semi-preparative HPLC purification of spiniferoside A2 (1b)	14
Figure S12:	Chromatogram of semi-preparative HPLC purification of spiniferoside A3 (1c)	15

Table of Contents

Figure S13:	LC-HRESIMS for spiniferoside A1 (1a)	16
Figure S14:	LC-HRESIMS for spiniferoside A2 (1b)	17
Figure S15:	LC-HRESIMS for spiniferoside A3 (1c)	18
Figure S16:	LC-HRESIMS of Compound 2 (+ MS)	19
Figure S17:	1 H NMR spectrum of compound 2 in C ₅ D ₅ N (in 400 MHz)	20
Figure S18:	Partial expansion of the ¹ H NMR spectrum of compound 2 (in C5D5N, 400 MHz)	21
Figure S19:	Partial expansion of the ¹ H NMR spectrum of compound 2 (in C5D5N, 400 MHz)	22
Figure S20:	Partial expansion of the ¹ H NMR spectrum of compound 2 (in C5D5N, 400 MHz)	23
Figure S21:	¹³ C NMR spectrum of compound 2 (in C5D5N, 100 MHz)	24
Figure S22:	Partial expansion of the ¹³ C NMR spectrum of compound 2 (in C5D5N, 100 MHz)	25
Figure S23:	Partial expansion of the ¹³ C NMR spectrum of compound 2 (in C ₅ D ₅ N, 100 MHz)	26
Figure S24:	Partial expansion of the ¹³ C NMR spectrum of compound 2 (in C ₅ D ₅ N, 100 MHz)	27
Figure S25:	LC-HRESIMS for α -hydroxy fatty acid methyl ester after hydrolysis of compound 2	28
Figure S26:	GC-MS analysis of fatty acid methyl ester carried out after oxidation of α -hydroxy fatty acid methyl ester (Compound 2)	29
Figure S27:	LC-HRESIMS of Compound 3	30
Figure S28:	¹ H NMR spectrum of compound 3 (in C5D5N, 400 MHz)	31
Figure S29:	Partial expansion of the ¹ H NMR spectrum of compound 3 (in C ₅ D ₅ N, 400 MHz)	32
Figure S30:	¹³ C NMR spectrum of compound 3 (in C ₅ D ₅ N, 100 MHz)	33
Figure S31:	Partial expansion of the ¹³ C NMR spectrum of compound 3 (in C ₅ D ₅ N, 100 MHz)	34
Figure S32:	LC-HRESIMS for α -hydroxy fatty acid methyl ester after hydrolysis of compound 3	35
Figure S33:	GC-MS analysis of fatty acid methyl ester carried out after oxidation of α -hydroxy fatty acid methyl ester	36
Figure S34:	¹ H NMR spectrum of compound 4 (in DMSO, 400 MHz)	37
Figure S35:	¹³ C NMR spectrum of compound 4 (in C ₅ D ₅ N, 100 MHz)	38
Figure S36:	Cytotoxicity of compound 1 on MCF-7	39
Figure S37:	Cytotoxicity of compound 2 on MCF-7	40
Figure S38:	Cytotoxicity of compound 3 on MCF-7	41
Figure S39:	Cytotoxicity of compound 4 on MCF-7	42
Figure S40:	Cytotoxicity of Doxorubicin on MCF-7	43

Figure S1. LC-HRESIMS of compound 1 (M+H)⁺.

Figure S2. ¹H NMR spectrum of compound **1** (in C₅D₅N, 400 MHz).

Figure S3. Partial expansion of the ¹H NMR spectrum of compound 1 (in C₅D₅N, 400 MHz).

Figure S4. Partial expansion of the ¹H NMR spectrum of compound **1** (in C₅D₅N, 400 MHz).

Figure S5. ¹³C NMR spectrum of compound **1** (in C₅D₅N, 100 MHz).

Figure S6. Partial expansion of the ¹³C NMR spectrum of compound **1** (in C₅D₅N, 100 MHz).

Figure S7. Partial expansion of the ¹³C NMR spectrum of compound 1 (in C₅D₅N, 100 MHz).

Figure S8. Partial expansion of the ¹³C NMR spectrum of compound **1** (in C₅D₅N, 100 MHz).

Figure S9. Chromatogram of semi-preparative HPLC purification of compound 1.

Figure S10. Chromatogram of semi-preparative HPLC purification of spiniferoside A1 (1a).

Figure S11. Chromatogram of semi-preparative HPLC purification of spiniferoside A2 (1b).

Figure S12. Chromatogram of semi-preparative HPLC purification of spiniferoside A3 (1c).

Figure S13. LC-HRESIMS for spiniferoside A1 (1a).

Figure S14. LC-HRESIMS for spiniferoside A2 (1b).

Figure S15: LC-HRESIMS for spiniferoside A3 (1c).

Figure S16. LC-HRESIMS of compound 2 (M+H)⁺

Figure S17. ¹H NMR spectrum of compound 2 (in C₅D₅N, 400 MHz).

Figure S18. Partial expansions of the ¹H NMR spectrum of compound 2 (in C₅D₅N, 400 MHz).

Figure S19. Partial expansions of the ¹H NMR spectrum of compound 2 (in C₅D₅N, 400 MHz).

Figure S20. Partial expansions of the ¹H NMR spectrum of compound **2** (in C₅D₅N, 400 MHz).

Figure S21. ¹³C NMR spectrum of compound 2 (in C₅D₅N, 100 MHz).

Figure S22. Partial expansion of the ¹³C NMR spectrum of compound **2** (in C₅D₅N, 100 MHz).

Figure S23. Partial expansion of the ¹³C NMR spectrum of compound 2 (in C₅D₅N, 100 MHz).

Figure S24. Partial expansion of the ¹³C NMR spectrum of compound **2** (in C₅D₅N, 100 MHz).

Figure S25. LC-HRESIMS for α -hydroxy fatty acid methyl ester after hydrolysis of compound 2

Figure S26. GC-MS analysis of fatty acids methyl esters carried out after oxidation of α -hydroxy fatty acid methyl ester (Compound 2)

Figure S27. LC-HRESIMS of Compound 3 (M+H)⁺.

Figure S28. ¹H NMR spectrum of compound **3** (in C₅D₅N, 400 MHz).

Figure S29. Partial expansion of the ¹H NMR spectrum of compound **3** (in C₅D₅N, 400 MHz).

Figure S31. Partial expansion of the ¹³C NMR spectrum of compound **3** (in C₅D₅N, 100 MHz).

Figure S32. LC-HRESIMS for α -hydroxy fatty acid methyl ester after hydrolysis of compound **3**

Figure S33. GC-MS analysis of fatty acids methyl esters carried out after oxidation of α -hydroxy fatty acid methyl ester (Compound 3)

Figure S34. ¹H NMR spectrum of compound 4 (in DMSO, 400 MHz)

Figure S35. ¹³C NMR spectrum of compound 4 (in DMSO, 400 MHz)

Figure S36. Cytotoxicity of compound 1 on MCF-7

Figure S37. Cytotoxicity of compound 2 on MCF-7

Figure S38. Cytotoxicity of compound 3 on MCF-7

Figure S39. Cytotoxicity of compound 4 on MCF-7

Figure S40. Cytotoxicity of Doxorubicin on MCF-7