Supporting Information

Secondary Metabolites with Nitric Oxide Inhibition from Marine-Derived Fungus *Alternaria* sp. 5102

Senhua Chen ^{2, 3,}†, Yanlian Deng ^{1,}†, Chong Yan ¹, Zhenger Wu ², Heng Guo ², Lan Liu ^{2,3} and Hongju Liu ^{1,*}

- ¹ School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; dengylian2016@163.com (Y.D.); jdsbj2000@163.com (C.Y.); liuhj8@mail2.sysu.edu.cn (H.L.)
- ² School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; chensenh@mail.sysu.edu.cn (S.C.); wuzher@mail2.sysu.edu.cn (Z.W.); hengeguo163@163.com (H.G.); cesllan@mail.sysu.edu.cn (L.L.);
- ³ Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
- * Correspondence: liuhj8@mail2.sysu.edu.cn; Tel.: +86769-22896599
- ‡ These authors contributed equally to this work.

Pages						
4	Figure S1	The HRESI-MS spectrum of compound 1.				
4	Figure S2	The ¹ H NMR (400MHz) spectrum of compound 1 in CDCl ₃				
5	Figure S3	The ${}^{13}C$ NMR (100MHz) spectrum of compound 1 in CDCl ₃				
5	Figure S4	The HSQC spectrum of compound 1 in CDCl ₃				
6	Figure S5	The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound 1 in CDCl ₃				
6	Figure S6	The HMBC spectrum of compound 1 in CDCl ₃				
7	Figure S7	The NOESY spectrum of compound 1 in CDCl ₃				
7	Figure S8	The IR spectrum of compound 1.				
8	Figure S9	¹ H (400 MHz) NMR spectrum of 1a in pyridine- d_5				
8	Figure S10	¹ H (400 MHz) NMR spectrum of 1b in pyridine- d_5				
9	Figure S11	The HRESI-MS spectrum of compound 2 .				
9	Figure S12	The ¹ H NMR (400MHz) spectrum of compound 2 in CDCl ₃ - d .				
10	Figure S13	The ¹³ C NMR (100MHz) spectrum of compound 2 in CDCl ₃ - d .				
10	Figure S14	The HSQC spectrum of compound 2 in CDCl ₃ - d .				
11	Figure S15	The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound 2 in CDCl ₃				
11	Figure S16	The HMBC spectrum of compound 2 in CDCl ₃				
12	Figure S17	The NOESY spectrum of compound 2 in CDCl ₃				
12	Figure S18	The IR spectrum of compound 2.				
13	Figure S19	¹ H (400 MHz) NMR spectrum of 2a in pyridine- d_5				
13	Figure S20	¹ H (400 MHz) NMR spectrum of 2b in pyridine- d_5				
14	Figure S21	The HRESI-MS/MS spectrum of compound 3 .				
14	Figure S22	The ¹ H NMR (400MHz) spectrum of compound 3 in CDCl ₃				
15	Figure S23	The ¹³ C NMR (100MHz) spectrum of compound 3 in CDCl ₃				
15	Figure S24	The HSQC spectrum of compound 3 in CDCl ₃				
16	Figure S25	The ¹ H- ¹ H COSY spectrum of compound 3 in CDCl ₃				
16	Figure S26	The HMBC spectrum of compound 3 in CDCl ₃				
17	Figure S27	The NOESY spectrum of compound 3 in CDCl ₃				
17	Figure S28	The IR spectrum of compound 3 .				
18	Figure S29	The HRESI-MS/MS spectrum of compound 4.				
18	Figure S30	The ¹ H NMR (400MHz) spectrum of compound 4 in CDCl ₃				
19	Figure S31	The ${}^{13}C$ NMR (100MHz) spectrum of compound 4 in CDCl ₃				
19	Figure S32	The HSQC spectrum of compound 4 in CDCl ₃				
20	Figure S33	The ¹ H- ¹ H COSY spectrum of compound 4 in CDCl ₃				
20	Figure S34	The HMBC spectrum of compound 4 in CDCl ₃				
21	Figure S35	The NOESY spectrum of compound 4 in CDCl ₃				
21	Figure S36	The IR spectrum of compound 4.				
22	Figure S37	The ¹ H NMR (400MHz) spectrum of compound 5 in acetone- d_6 .				
22	Figure S38	The ¹³ C NMR (100MHz) spectrum of compound 5 in acetone- d_6 .				
23	Figure S39	The ¹ H NMR (400MHz) spectrum of compound 6 in acetone- d_6 .				
23	Figure S40	The ¹³ C NMR (100MHz) spectrum of compound 6 in acetone- d_6 .				
24	Figure S41	The ¹ H NMR (400MHz) spectrum of compound 7 in acetone- d_6 .				
24	Figure S42	The ¹³ C NMR (100MHz) spectrum of compound 7 in acetone- d_6 .				
25	Figure S43	The ¹ H NMR (400MHz) spectrum of compound 9 in CDCl ₃ - d .				

25	Figure S44	The ${}^{13}C$ NMR (100MHz) spectrum of compound 9 in CDCl ₃ -d.
26	Figure S45	The ¹ H NMR (400MHz) spectrum of compound 10 in DMSO- d_6 .
26	Figure S46	The ¹³ C NMR (100MHz) spectrum of compound 10 in DMSO- d_6 .
27	Figure S47	The ¹ H NMR (400MHz) spectrum of compound 11 in acetone- d_6 .
27	Figure S48	The ¹³ C NMR (100MHz) spectrum of compound 11 in acetone- d_6 .
28	Figure S49	The ¹ H NMR (400MHz) spectrum of compound 13 in MeOH- d_4 .
28	Figure S50	The ${}^{13}C$ NMR (100MHz) spectrum of compound 13 in MeOH- d_4 .
29	Figure S51	The ¹ H NMR (400MHz) spectrum of compound 14 in DMSO- d_6 .
29	Figure S52	The ¹³ C NMR (100MHz) spectrum of compound 14 in DMSO- d_6 .
30	Figure S53	The ¹ H NMR (400MHz) spectrum of compound 16 in acetone- d_6 .
30	Figure S54	The ¹³ C NMR (100MHz) spectrum of compound 16 in acetone- d_6 .
31	Figure S55	The ¹ H NMR (400MHz) spectrum of compound 17 in acetone- d_6 .
31	Figure S56	The ¹³ C NMR (100MHz) spectrum of compound 17 in acetone- d_6 .
32	Figure S57	The ¹ H NMR (400MHz) spectrum of compound 18 in CDCl ₃ - d .
32	Figure S58	The ¹³ C NMR (100MHz) spectrum of compound 18 in CDCl ₃ - <i>d</i> .
33	Figure S59	The ¹ H NMR (400MHz) spectrum of compound 19 in acetone- d_6 .
33	Figure S60	The ¹³ C NMR (100MHz) spectrum of compound 19 in acetone- d_6 .
34	Figure S61	The ¹ H NMR (400MHz) spectrum of compound 20 in acetone- d_6 .
34	Figure S62	The ¹³ C NMR (100MHz) spectrum of compound 20 in acetone- d_6 .
35	Figure S63	The ¹ H NMR (400MHz) spectrum of compound 21 in DMSO- d_6 .
35	Figure S64	The ¹³ C NMR (100MHz) spectrum of compound 21 in DMSO- d_6 .
36	Figure S65	The ¹ H NMR (400MHz) spectrum of compound 22 in CDCl ₃ - d .
36	Figure S66	The ¹³ C NMR (100MHz) spectrum of compound 22 in CDCl ₃ - <i>d</i> .
37	Experimental	
	Section	
37	Table S1	Energy Analysis for the Conformers of (4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3.
38	Figure S67	B3LYP/6-31G(d) optimized low-energy conformers of
		(4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3 .
38	Table S2	Energy Analysis for the Conformers of (5S,6R,10R)-4.
39	Figure S68	B3LYP/6-31G(d) optimized low-energy conformers of
		(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)- 4 .
39-40		NMR data of known compounds
41-43		Statistical Analysis

Figure S1. The HRESIMS spectrum of compound 1.

Figure S2. The ¹H NMR (400MHz) spectrum of compound 1 in CDCl₃.

Figure S7. The NOESY spectrum of compound 1 in CDCl₃.

Figure S9. ¹H (400 MHz) NMR spectrum of 1a in pyridine- d_5

Figure S10. ¹H (400 MHz) NMR spectrum of 1b in pyridine- d_5

Figure S11. The HRESIMS spectrum of compound 2.

Figure S12. The ¹H NMR (400MHz) spectrum of compound 2 in CDCl₃.

Figure S14. The HSQC spectrum of compound 2 in CDCl₃. 10/43

Figure S15. The ¹H-¹H COSY spectrum of compound 2 in CDCl₃.

Figure S16. The HMBC spectrum of compound 2 in CDCl₃. 11/43

Figure S17. The NOESY spectrum of compound 2 in CDCl₃.

Figure S19. ¹H (400 MHz) NMR spectrum of 2a in pyridine-d₅

Figure S20. ¹H (400 MHz) NMR spectrum of 2b in pyridine-d₅

Figure S21. The HRESI-MS spectrum of compound 3.

Figure S22. The ¹H NMR (400MHz) spectrum of compound 3 in CDCl₃. 14/43

15 / 43

Figure S26. The HMBC spectrum of compound 3 in CDCl₃.

Figure S27. The NOESY spectrum of compound 3 in CDCl₃.

Figure S28. The IR spectrum of compound 3.

Figure S30. The ¹H NMR (400MHz) spectrum of compound 4 in CDCl₃.

Figure S32. The HSQC spectrum of compound 4 in CDCl₃-d. 19/43

Figure 34. The HMBC spectrum of compound 4 in CDCl₃-*d*.

Figure 36. The IR spectrum of compound 4.

22 / 43

23 / 43

Figure 42. The ¹³C NMR (100MHz) spectrum of compound 7 in acetone- d_6 .

25 / 43

26 / 43

Figure 48. The 13 C NMR (100MHz) spectrum of compound 11 in acetone- d_6 .

28 / 43

29 / 43

Figure 54. The 13 C NMR (100MHz) spectrum of compound 16 in acetone- d_6 .

Figure 56. The 13 C NMR (100MHz) spectrum of compound 17 in acetone- d_6 .

Figure 58. The ¹³C NMR (100MHz) spectrum of compound 18 in CDCl₃-d.

Figure 60. The 13 C NMR (100MHz) spectrum of compound 19 in acetone- d_6 .

Figure 62. The 13 C NMR (100MHz) spectrum of compound 20 in acetone- d_6 .

34 / 43

Experimental Section

Calculation of ECD Spectra

Molecular Merck force field (MMFF) and DFT/TD-DFT calculations were carried out with Spartan' 14 software (Wavefunction Inc., Irvine, CA, USA) and Gaussian 09 program, respectively¹. Conformers within 10 kcal/mol energy window were generated and optimized using DFT calculations at B3LYP/6-31G(d) level. Conformers with Bolzmann distribution over 1% were chosen for ECD calculations in methanol at B3lYP/6-311+g(2d,p) level. The IEF-PCM solvent model for MeOH was used. ECD spectra were generated using the program SpecDis 3.0 (University of Würzburg, Würzburg, Germany) and OriginPro 8.5 (OriginLab, Ltd., Northampton, MA, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.30 ev. All calculations were performed by Tianhe-2 in National Super Computer Center in Guangzhou.

aamnound	Conformat	G (Hartree)	G (Kcal/mol)	ΔG	Boltzmann
compound	ion			(Kcal/mol)	Dist (%)
(4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3	3-1	-735.4527047	-461503.5362	0	27.76
(4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3	3-2	-735.4525708	-461503.4522	0.084003438	24.08
(4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3	3-3	-735.4525708	-461503.4522	0.084003438	24.08
(4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,10 <i>R</i>)- 3	3-4	-735.4525708	-461503.4522	0.084003438	24.08

Table S1. Energy Analysis for the Conformers of (4S,5S,6S,10R)-3.

3-1

3-2

Figure S67. B3LYP/6-31G(d) optimized low-energy conformers of (4*S*,5*S*,6*S*,10*R*)**-3.**

aamnound	Conformat	G (Hartree)	G (Kcal/mol)	ΔG	Boltzmann
compound	ion			(Kcal/mol)	Dist (%)
(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)-4	4-1	-735.4515258	-461502.7964	0	0.532700266
(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)-4	4-2	-735.4502537	-461501.9982	0.798237225	0.138352351
(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)-4	4-3	-735.4500343	-461501.8605	0.935910293	0.109649128
(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)-4	4-4	-735.4500343	-461501.8605	0.935910293	0.109649128
(5 <i>S</i> ,6 <i>R</i> ,10 <i>R</i>)-4	4-5	-735.4500343	-461501.8605	0.935910293	0.109649128

 Table S2. Energy Analysis for the Conformers of (45,55,65,10R)-3.

4-1

4-3

4-5

4-4

Figure S68. B3LYP/6-31G(d) optimized low-energy conformers of (5S,6R,10R)-4.

NMR data of known compounds 5-22.

Compound 5: ¹H NMR (400 MHz, acetone- d_6) δ_H 7.59 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 8.2 Hz, 1H), 5.85 (dd, J = 8.2, 4.6 Hz, 1H), 3.70 (s, 3H), 3.13 (dd, J = 16.7, 4.5 Hz, 1H), 2.85 (dd, J = 16.7, 8.2 Hz, 1H); ¹³C NMR (100 MHz, acetone- d_6) δ_C 170.5, 170.3, 157.4, 151.3, 137.4, 116.7, 114.1, 112.3, 78.1, 52.1, 39.6.

Compound 6: ¹H NMR (400 MHz, acetone- d_6) δ_H 7.58 (s, 1H), 7.13 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 5.85 (s, 1H), 3.11 (dd, J = 16.8, 4.7 Hz, 3H), 2.85 (dd, J = 16.8, 8.0 Hz, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ_C 171.0, 170.4, 157.1, 151.4, 137.4, 116.5, 114.2, 112.2, 78.23, 39.4.

Compound 7: ¹H NMR (400 MHz, acetone-*d*₆) $\delta_{\rm H}$ 11.51 (s, 1H), 7.03 (d, *J* = 2.5 Hz, 1H), 6.57 (d, *J* = 2.4 Hz, 1H), 3.94 (s, 3H), 2.97 (s, 1H), 2.80 (s, 1H), 1.71 (s, 3H); ¹³C NMR (100 MHz, DMSO) $\delta_{\rm C}$ 178.2, 163.8, 160.9, 159.1, 141.4, 116.5, 114.2, 110.7, 100.5, 22.4, 19.3.

Compound 9: ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 11.35 (s, 1H), 6.51 (d, J = 2.2 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 5.22 (m, 1H), 3.89 (s, 3H), 3.32 (d, J = 7.2 Hz, 1H), 2.18 (m, 2H), 1.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 167.1, 165.1, 156.6, 154.0, 136.9, 120.9, 100.9, 100.4, 100.1, 71.9, 55.9, 40.5, 32.5, 21.3.

Compound 10: ¹H NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 11.92 (m, 1H), 6.42 (dd, J = 18.6, 1.8 Hz, 2H), 6.10 (d, J = 6.5 Hz, 1H), 5.92 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 6.4 Hz, 1H), 3.75 (s, 3H), 1.76 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 6.4 Hz, 1H), 3.75 (s, 3H), 1.76 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 6.4 Hz, 1H), 3.75 (s, 3H), 1.76 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 6.4 Hz, 1H), 3.75 (s, 3H), 1.76 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 6.4 Hz, 1H), 3.75 (s, 3H), 1.76 (d, J = 1.9 Hz, 1H), 4.63 (d, J = 1.9 H

1.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ_C 200.1, 168.7, 166.7, 165.6, 158.2, 149.9, 130.4, 105.0, 102.1, 99.3, 91.9, 78.2, 55.8, 13.1.

Compound 11: ¹H NMR (400 MHz, acetone- d_6) $\delta_{\rm H}$ 11.97 (s, 1H), 9.26 (s, 1H), 7.30 (d, J = 2.3 Hz, 1H), 6.80 (m, 1H), 6.71 (d, J = 2.7 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 3.97 (s, 3H), 2.81 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) $\delta_{\rm C}$ 167.6, 166.0, 159.4, 154.1, 139.7, 139.1, 118.5, 110.7, 104.6, 102.8, 100.5, 99.9, 56.3, 25.6.

Compound 13: ¹H NMR (400 MHz, MeOH-*d*₄) $\delta_{\rm H}$ 6.60 (s, 1H), 6.51 (s, 1H), 6.43 (d, *J* = 2.6 Hz, 1H), 6.18 (d, *J* = 2.6 Hz, 1H), 3.78 (s, 3H), 1.91 (s, 3H); ¹³C NMR (100 MHz, MeOH-*d*₄) $\delta_{\rm C}$ 174.2, 165.6, 164.9, 147.9, 144.8, 143.1, 135.3, 127.4, 117.3, 116.6, 111.4, 106.9, 100.5, 55.9, 19.3.

Compound 14: ¹H NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 11.91 (s, 1H), 9.93 (s, 1H), 9.15 (s, 1H), 7.23 (d, J = 2.3 Hz, 1H), 6.72 (s, 1H), 6.62 (d, J = 2.1 Hz, 1H), 3.91 (s, 3H), 2.66 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta_{\rm C}$ 166.1, 164.6, 164.1, 147.0, 141.5, 138.4, 131.2, 126.4, 116.9, 109.1, 103.4, 99.2, 98.3, 55.8, 24.5.

Compound 16: ¹H NMR (400 MHz, acetone- d_6) δ_H 11.30 (s, 1H), 7.00 (d, J = 2.2 Hz, 1H), 6.82 (d, J = 1.8 Hz, 1H), 6.65 (m, 1H), 6.21 (s, 1H), 3.95 (q, J = 2.4, 1.9 Hz, 3H), 1.72 (d, J = 1.9 Hz, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ_C 181.6, 168.4, 167.3, 165.1, 152.1, 148.1, 136.4, 122.8, 116.8, 104.7, 104.4, 100.7, 80.1, 56.6, 49.7.

Compound 17: ¹H NMR (400 MHz, acetone- d_6) δ_H 6.67 (s, 1H), 6.59 (s, 1H), 6.46 (d, J = 2.7 Hz, 2H), 6.21 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H), 1.93 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ_C 173.6, 166.0, 164.7, 147.6, 144.6, 142.9, 134.8, 126.8, 117.1, 116.2, 111.3, 105.8, 100.4, 55.9, 19.2.

Compound 18: ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.56 (t, J = 7.9 Hz, 1H), 6.96 (m, 2H), 5.89 (t, J = 6.6 Hz, 1H), 3.77 (s, 3H), 2.91 (dd, J = 6.7, 5.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 171.5, 169.7, 156.7, 149.0, 137.4, 116.2, 113.5, 111.0, 78.3, 52.4, 39.3.

Compound 19: ¹H NMR (400 MHz, acetone- d_6) $\delta_{\rm H}$ 6.72 (d, J = 6.8 Hz, 1H), 6.67 (s, 1H), 6.59 (s, 1H), 6.46 (dd, J = 2.6, 0.8 Hz, 1H), 6.37 (dd, J = 1.9, 0.9 Hz, 1H), 6.21 (dd, J = 2.6, 0.9 Hz, 1H), 3.84 (d, J = 0.9 Hz, 3H), 1.93 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) $\delta_{\rm C}$ 173.6, 166.0, 164.6, 147.6, 144.6, 142.9, 134.7, 126.8, 117.0, 116.2, 111.3, 100.4, 55.9, 19.3.

Compound 20: ¹H NMR (400 MHz, acetone- d_6) δ_H 6.65 (s, 1H), 6.56 (s, 1H), 6.44 (d, J = 2.6 Hz, 1H), 6.19 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H), 1.92 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ_C 173.6, 166.0, 164.6, 147.6, 144.6, 142.9, 134.8, 126.8, 117.0, 116.2, 111.1, 106.1, 100.4, 55.8, 19.3.

Compound 21: ¹H NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 10.53 (s, 1H), 6.61 (m, 2H), 5.97 (s, 1H), 2.64 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, DMSO) $\delta_{\rm C}$ 178.2, 163.8, 160.9, 159.1, 141.4, 116.5, 114.2, 110.7, 100.5, 22.4, 19.3.

Compound 22: ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.14 (s, 1H), 3.90 (s, 1H), 3.69 (d, J = 3.9 Hz, 1H), 2.75 (dd, J = 17.5, 8.5 Hz, 1H), 2.52 (m, 1H), 2.23 (dt, J = 17.5, 8.5 Hz, 2H), 1.17 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 176.7, 87.3, 62.8, 37.2, 31.3, 17.9.

Statistical Analysis:

