Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications
Abstract
:1. Introduction
2. Species Selection and Exploitation
2.1. Phycotoxins
2.2. High-Value Products
3. Polyunsaturated Fatty Acids (PUFA) Exploitation from Autotrophic Microalgae
3.1. PUFA—Synthesis by Microalgae
3.2. PUFA Role in Human Health
3.3. Microalgae—PUFA Enhancement Strategies
4. Sterols as an Underexploited Lipid Resource from Microalgae
4.1. Sterol Synthesis by Microalgae
4.2. Microalgae-Derived Phytosterols Biological Activities
4.3. Strategies for Sterol Enhancement
5. Carotenoids
6. Lipid Characterization
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Biology of microalgae. In Microalgae in Health and Disease Prevention; Levine, I., Fleurence, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 23–72. ISBN 978-0-12-811405-6. [Google Scholar]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- European Comission. EU Novel Food Catalogue. Available online: https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/index.cfm (accessed on 29 June 2021).
- European Comission. Commission implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off. J. Eur. Union 2017, 351, 1–188. [Google Scholar]
- The European Marine Observation and Data Network. EMODnet Human Activities, Algae Production. Available online: https://www.emodnet-humanactivities.eu/search-results.php?dataname=Microalgae (accessed on 29 June 2021).
- World Intellectual Property Organization (WIPO) Patent Landscape Report: Microalgae-Related Technologies; WIPO: Geneva, Switzerland, 2016.
- Li, D.; Du, W.; Fu, W.; Cao, X. A Quick Look Back at the Microalgal Biofuel Patents: Rise and Fall. Front. Bioeng. Biotechnol. 2020, 8, 1035. [Google Scholar] [CrossRef] [PubMed]
- European Patent Office. Espacenet Patent Search. Available online: https://worldwide.espacenet.com/ (accessed on 28 July 2021).
- Clarivate. Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 28 July 2021).
- Griffiths, M.; Dicks, R.; Richardson, C.; Harrison, S. Advantages and Challenges of Microalgae as a Source of Oil for Biodiesel. In Biodiesel Feedstocks and Processing Technologies; Stoytcheva, M., Montero, G., Eds.; IntechOpen: London, UK, 2011; pp. 177–200. ISBN 978-953-307-713-0. [Google Scholar]
- Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Gayen, K.; Mandal, M.K.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech 2017, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Moshood, T.D.; Nawanir, G.; Mahmud, F. Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Challenges 2021, 5, 100207. [Google Scholar] [CrossRef]
- Sorda, G.; Banse, M.; Kemfert, C. An overview of biofuel policies across the world. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, S.F.; Badruddin, I.A.; Mofijur, M.; Kamangar, S. Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Front. Energy Res. 2021, 9, 1–11. [Google Scholar] [CrossRef]
- Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; AbdulQuadir, M. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—A review. Water 2021, 13, 27. [Google Scholar] [CrossRef]
- Gao, F.; Yang, H.L.; Li, C.; Peng, Y.Y.; Lu, M.M.; Jin, W.H.; Bao, J.J.; Guo, Y.M. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresour. Technol. 2019, 282, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luo, S.; Fan, X.; Yang, Z.; Guo, R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energy 2011, 88, 3336–3341. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Zhuang, B.; Zhou, X. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment. Bioresour. Technol. 2014, 171, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Díaz, P.D.; Ruiz, J.; Arbib, Z.; Barragán, J.; Garrido-Pérez, M.C.; Perales, J.A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Res. 2017, 24, 477–485. [Google Scholar] [CrossRef]
- Debowski, M.; Zielinski, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Swica, I.; Rudnicka, A. The cultivation of lipid-rich microalgae biomass as anaerobic digestate valorization technology-A pilot-scale study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Li, T.; Lin, G.; Podola, B.; Melkonian, M. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 2015, 297, 112–118. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Huang, S.; Qiu, D.; Schideman, L.; Chai, X.; Zhao, Y. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour. Technol. 2014, 156, 322–328. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Vail, D.; Weathers, P. Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresour. Technol. 2011, 102, 5076–5082. [Google Scholar] [CrossRef]
- Tossavainen, M.; Lahti, K.; Edelmann, M.; Eskola, R.; Lampi, A.M.; Piironen, V.; Korvonen, P.; Ojala, A.; Romantschuk, M. Integrated utilization of microalgae cultured in aquaculture wastewater: Wastewater treatment and production of valuable fatty acids and tocopherols. J. Appl. Phycol. 2019, 31, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- Lavrinovičs, A.; Juhna, T. Review on Challenges and Limitations for Algae-Based Wastewater Treatment. Constr. Sci. 2018, 20, 17–25. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency Global Energy Review 2021: Assessing the Effects of Economic Recoveries on Global Energy Demand and CO2 Emissions in 2021; International Energy Agency: Paris, France, 2021.
- Bhola, V.; Swalaha, F.; Ranjith Kumar, R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Saxon, R.J.; Rad-Menéndez, C.; Campbell, C.N. Patent depositing of algal strains. Appl. Phycol. 2020, 263, 1–8. [Google Scholar] [CrossRef]
- Bilanovic, D.; Andargatchew, A.; Kroeger, T.; Shelef, G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations Response surface methodology analysis. Energy Convers. Manag. 2009, 50, 262–267. [Google Scholar] [CrossRef]
- Ratledge, C.; Cohen, Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008, 20, 155–160. [Google Scholar] [CrossRef]
- Rao, A.R.; Ravishankar, G.A. Global microalgal-based products for industrial applications. In Handbook of Algal Technologies and Phytochemicals: Volume II: Phycoremediation, Biofuels and Global Biomass Production; Ravishankar, G.A., Ambati, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 267–278. [Google Scholar]
- Global Industry Analysts Inc. StrategyR: Influencer Driven. Available online: https://www.strategyr.com/ (accessed on 14 September 2021).
- Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 2016, 7, 546. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Torres, G.; Bermejo-Padilla, E.; Pittman, J.K.; Theodoropoulos, C. Microalgae Strain Catalogue a Strain Selection Guide for Microalgae Users: Cultivation and Chemical Characteristics for High Added-Value Products; University of Manchester: Manchester, UK, 2021; pp. 1–86. [Google Scholar]
- Sprujit, J. Output WP2A7.01: Inventory of North-West European Algae Initiatives; Public Output Report of the EnAlgae Project; Swansea University: Swansea, UK, 2015. [Google Scholar]
- Morançais, M.; Mouget, J.-L.; Dumay, J. Chapter 7 Proteins and pigments. In Microalgae in Health and Disease Prevention; Levine, I., Fleurence, J., Eds.; Elsevier: London, UK, 2018; pp. 145–175. ISBN 9780128114056. [Google Scholar]
- Guiry, M. Phylum: Chlorophyta. Available online: https://www.algaebase.org/browse/taxonomy/?id=97241 (accessed on 5 June 2021).
- Barra, L.; Chandrasekaran, R.; Corato, F.; Brunet, C. The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar. Drugs 2014, 12, 1641–1675. [Google Scholar] [CrossRef] [PubMed]
- Chauton, M.S.; Reitan, K.I.; Norsker, N.H.; Tveterås, R.; Kleivdal, H.T. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture 2015, 436, 95–103. [Google Scholar] [CrossRef]
- Steinrücken, P.; Erga, S.R.; Mjøs, S.A.; Kleivdal, H.; Prestegard, S.K. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res. 2017, 26, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Geada, P.; Vasconcelos, V.; Vicente, A.; Fernandes, B. Microalgal biomass cultivation. In Algal Green Chemistry: Recent Progress in Biotechnology; Rastogi, R.P., Madamwar, D., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 257–284. ISBN 9780444640413. [Google Scholar]
- Duong, V.T.; Li, Y.; Nowak, E.; Schenk, P.M. Microalgae isolation and selection for prospective biodiesel production. Energies 2012, 5, 1835–1849. [Google Scholar] [CrossRef]
- von Alvensleben, N.; Stookey, K.; Magnusson, M.; Heimann, K. Salinity Tolerance of Picochlorum atomus and the Use of Salinity for Contamination Control by the Freshwater Cyanobacterium Pseudanabaena limnetica. PLoS ONE 2013, 8, e63569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadlamani, A.; Viamajala, S.; Pendyala, B.; Varanasi, S. Cultivation of Microalgae at Extreme Alkaline pH Conditions: A Novel Approach for Biofuel Production. ACS Sustain. Chem. Eng. 2017, 5, 7284–7294. [Google Scholar] [CrossRef]
- Bacellar Mendes, L.B.; Vermelho, A.B. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol. Biofuels 2013, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico, M.; González, A.G.; Santana-Casiano, M.; González-Dávila, M.; Pérez-Almeida, N.; Miguel Tangil, M.S. Production of primary and secondary metabolites using algae. In Prospects and Challenges in Algal Biotechnology; Tripathi, B.N., Kumar, D., Eds.; Springer: Singapore, 2017; pp. 311–326. ISBN 9789811019500. [Google Scholar]
- Morocho-Jácome, A.L.; Ruscinc, N.; Martinez, R.M.; de Carvalho, J.C.M.; Santos de Almeida, T.; Rosado, C.; Costa, J.G.; Velasco, M.V.R.; Baby, A.R. (Bio)Technological aspects of microalgae pigments for cosmetics. Appl. Microbiol. Biotechnol. 2020, 104, 9513–9522. [Google Scholar] [CrossRef]
- Rzymski, P.; Niedzielski, P.; Kaczmarek, N.; Jurczak, T.; Klimaszyk, P. The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning. Harmful Algae 2015, 46, 34–42. [Google Scholar] [CrossRef]
- Tabarzad, M.; Atabaki, V.; Hosseinabadi, T. Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol. Biol. Rep. 2020, 47, 6193–6205. [Google Scholar] [CrossRef]
- Somchit, M.N.; Mohamed, N.A.; Ahmad, Z.; Amiruddin, Z.; Shamsuddin, L.; Sofian, M.; Fauzee, O.; Kadir, A.A. Anti-inflammatory and anti-pyretic properties of Spirulina platensis and Spirulina lonar: A comparative study. Pak. J. Pharm. Sci. 2014, 27, 1277–1280. [Google Scholar]
- Ahmad, R.R.; Adzahar, N.S.; Basri, D.F.; Latif, E.S.; Sallehudin, N.J. In Vitro and in Vivo Cytotoxic Effects of Chlorella Against Various types of Cancer. IIUM Med. J. Malaysia 2021, 20, 149–158. [Google Scholar] [CrossRef]
- European Comission. CosIng: European Commission Database for Information on Cosmetic Substances and Ingredients. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simple (accessed on 28 May 2021).
- Centre for Science and Technology Studies Leiden University. VOSviewer: Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 5 June 2021).
- Khozin-Goldberg, I.; Iskandarov, U.; Cohen, Z. LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol. 2011, 91, 905–915. [Google Scholar] [CrossRef]
- Ryan, A.S.; Astwood, J.D.; Gautier, S.; Kuratko, C.N.; Nelson, E.B.; Salem, N. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: A review of human studies. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 305–314. [Google Scholar] [CrossRef]
- Harwood, J.L. Algae: Critical sources of very long-chain polyunsaturated fatty acids. Biomolecules 2019, 9, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khozin-Goldberg, I. Lipid metabolism in microalgae. In Developments in Applied Phycology: The Physiology of Microalgae; Borowitzka, M.A., Raven, J.A., Eds.; Springer: Cham, Switzerland, 2016; pp. 413–485. ISBN 9783319249438. [Google Scholar]
- Mühlroth, A.; Li, K.; Røkke, G.; Winge, P.; Olsen, Y.; Hohmann-Marriott, M.F.; Vadstein, O.; Bones, A.M. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of chromista. Mar. Drugs 2013, 11, 4662–4697. [Google Scholar] [CrossRef] [PubMed]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.Y.; Filaire, E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef]
- Shi, T.; Yu, A.; Li, M.; Ou, X.; Xing, L.; Li, M. Identification of a novel C22-Δ4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae. Biotechnol. Lett. 2012, 34, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.; Gilroy, D.; Serhan, C. Pro-Resolving lipid mediators and Mechanisms in the resolution of acute inflammation. Immunity 2014, 40, 315–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Voort, M.P.J.; Spruijt, J.; Potters, J.; de Wolf, P.L.; Elissen, H.J.H. Socio-Economic Assessment of Algae-Based PUFA Production; Public Output Report of the PUFAChain Project; PUFAChain: Göttingen, Germany, 2017. [Google Scholar]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Fernandes, T.; Fernandes, I.; Andrade, C.A.P.; Ferreira, A.; Cordeiro, N. Marine microalgae monosaccharide fluctuations as a stress response to nutrients inputs. Algal Res. 2017, 24, 340–346. [Google Scholar] [CrossRef]
- Fernandes, T.; Fernandes, I.; Andrade, C.A.P.; Cordeiro, N. Changes in Fatty acid Biosynthesis in Marine Microalgae as a Response to Medium Nutrient Availability; Elsevier: Amsterdam, The Netherlands, 2016; Volume 18, pp. 314–320. [Google Scholar]
- Fidalgo, J.P.; Cid, A.; Torres, E.; Sukenik, A.; Herrero, C. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 1998, 166, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Huang, Z.; Wen, W.; Yan, J. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 2013, 25, 129–137. [Google Scholar] [CrossRef]
- Sukenik, A. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour. Technol. 1991, 35, 263–269. [Google Scholar] [CrossRef]
- Mitra, M.; Patidar, S.K.; George, B.; Shah, F.; Mishra, S. A euryhaline nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res. 2015, 8, 161–167. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Cui, J.; Feng, Y.; Cui, Q. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour. Technol. 2013, 130, 731–738. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Malcata, F.X. Optimization of ω-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar. Biotechnol. 2005, 7, 381–388. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Qin, S.; Zeng, M.; Jiang, Y.; Hu, L.; Xiao, P.; Hao, W.; Hu, Z.; Lei, A.; et al. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol. Biofuels 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Menegol, T.; Diprat, A.B.; Rodrigues, E.; Rech, R. Effect of temperature and nitrogen concentration on biomass composition of heterochlorella luteoviridis. Food Sci. Technol. 2017, 37, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Beardall, J.; Heraud, P. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 2006, 82, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Zhou, W.; Schenk, P.M. Pavlova lutheri is a high-level producer of phytosterols. Algal Res. 2015, 10, 210–217. [Google Scholar] [CrossRef]
- Luo, X.; Su, P.; Zhang, W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs 2015, 13, 4231–4254. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Cabral, J.M.S. Phytosterols: Applications and recovery methods. Bioresour. Technol. 2007, 98, 2335–2350. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Schenk, P.M. UV–C radiation increases sterol production in the microalga Pavlova lutheri. Phytochemistry 2017, 139, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.E.; Blobaum, K.R.; Park, Y.K.; Ehlers, S.J.; Lu, F.; Lee, J.Y. Lipid extract of Nostoc commune var. sphaeroides Kützing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. J. Nutr. 2008, 138, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Moreau, R.A.; Whitaker, B.D.; Hicks, K.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002, 41, 457–500. [Google Scholar] [CrossRef]
- Francavilla, M.; Colaianna, M.; Zotti, M.; Morgese, M.G.; Trotta, P.; Tucci, P.; Schiavone, S.; Cuomo, V.; Trabace, L. Extraction, Characterization and In Vivo Neuromodulatory Activity of Phytosterols from Microalga Dunaliella Tertiolecta. Curr. Med. Chem. 2012, 19, 3058–3067. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Ntanios, F.Y.; Raeini-Sarjaz, M.; Vanstone, C.A. Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men. Am. J. Clin. Nutr. 1999, 69, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Xue, L.; Zhang, L.; Wang, X.; Qi, X.; Jiang, J.; Yu, L.; Wang, X.; Zhang, W.; Zhang, Q.; et al. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 2019, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Benecol Limited. Benecol Products. Available online: https://benecol.co.uk/products/#/feed (accessed on 18 May 2021).
- Upfield. ProActiv Products. Available online: https://www.pro-activ.com/en-ie/products (accessed on 18 May 2021).
- Goodman Fielder. Logicol: Creating a Better Life Everyday. Available online: https://goodmanfielder.com/portfolio/logicol/ (accessed on 18 May 2021).
- ADM. CardioAid Plant Sterols: Protecting the Heart Using Nature. Available online: https://www.adm.com/products-services/health-wellness/product-solutions/nature-based-health-solutions/cardioaid (accessed on 18 May 2021).
- Cargill. CoroWiseTM Plant Sterols. Available online: https://www.cargill.com/food-bev/ap/corowise (accessed on 18 May 2021).
- The Lubrizol Corporation. LIPOPHYTOLTM Microcapsules. Available online: https://www.lipofoods.com/en/products/lipophytol.html (accessed on 18 May 2021).
- Francavilla, M.; Trotta, P.; Luque, R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A potentially novel industrial application. Bioresour. Technol. 2010, 101, 4144–4150. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols in microalgae. In Developments in Applied Phycology: The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer: Cham, Switzerland, 2016; pp. 485–505. [Google Scholar]
- Lopes, G.; Sousa, C.; Valentão, P.; Andrade, P.B. Sterols in Algae and Health; Hernández-Ledesma, B., Herrero, M., Eds.; John Wiley & Sons: Chicago, IL, USA, 2013; ISBN 9781118412893. [Google Scholar]
- Sasso, S.; Pohnert, G.; Lohr, M.; Mittag, M.; Hertweck, C. Microalgae in the postgenomic era: A blooming reservoir for new natural products. FEMS Microbiol. Rev. 2012, 36, 761–785. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Wagner, R. Sterols biosynthesis in algae. In Biosynthesis; Zepka, L.Q., Do Nascimento, T.C., Jacob-Lopes, E., Eds.; IntechOpen: London, UK, 2021; pp. 137–144. ISBN 9781626239777. [Google Scholar]
- Scodelaro Bilbao, P.G.; Garelli, A.; Díaz, M.; Salvador, G.A.; Leonardi, P.I. Crosstalk between sterol and neutral lipid metabolism in the alga Haematococcus pluvialis exposed to light stress. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158767. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, M.G.; Francavilla, M.; Intini, S.; Albenzio, M.; Marino, R.; Santillo, A.; Caroprese, M. Phytosterols from Dunaliella tertiolecta reduce cell proliferation in sheep fed flaxseed during post partum. Mar. Drugs 2017, 15, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroprese, M.; Albenzio, M.; Ciliberti, M.G.; Francavilla, M.; Sevi, A. A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet. Immunol. Immunopathol. 2012, 150, 27–35. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Samarakoon, K.W.; Lakmal, H.H.C.; Kim, E.A.; Kwon, O.N.; Dilshara, M.G.; Lee, J.B.; Jeon, Y.J. Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga nannochloropsis oculata. Algae 2016, 31, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jeon, Y.J.; Kim, J. Il In vitro and in vivo anti-inflammatory activities of a sterol-enriched fraction from freshwater green alga, spirogyra sp. Fish. Aquat. Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Francavilla, M.; Neglia, G.; Esposito, L.; Caroprese, M. Extracts from microalga Chlorella sorokiniana exert an anti-proliferative effect and modulate cytokines in sheep peripheral blood mononuclear cells. Animals 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagundes, M.B.; Alvarez-Rivera, G.; Mendiola, J.A.; Bueno, M.; Sánchez-Martínez, J.D.; Wagner, R.; Jacob-Lopes, E.; Zepka, L.Q.; Ibañez, E.; Cifuentes, A. Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. Algal Res. 2021, 55, 102264. [Google Scholar] [CrossRef]
- Fini, M.; Giardino, R. In vitro and in vivo tests for the biological evaluation of candidate orthopedic materials: Benefits and limits. J. Appl. Biomater. Biomech. 2003, 1, 155–163. [Google Scholar] [CrossRef]
- Sydney, T.; Marshall-Thompson, J.A.; Kapoore, R.V.; Vaidyanathan, S.; Pandhal, J.; Fairclough, J.P.A. The effect of high-intensity ultraviolet light to elicit microalgal cell lysis and enhance lipid extraction. Metabolites 2018, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Barrado-Moreno, M.M.; Beltrán-Heredia, J.; Martín-Gallardo, J. Degradation of microalgae from freshwater by UV radiation. J. Ind. Eng. Chem. 2017, 48, 1–4. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, X.; Au, D.W.T.; Mao, X.; Yuan, K. The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere 2010, 78, 541–547. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Vonshak, A. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Piepho, M.; Martin-Creuzburg, D.; Wacker, A. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton. PLoS ONE 2010, 5, e15828. [Google Scholar] [CrossRef]
- Chen, M.; Bi, R.; Chen, X.; Ding, Y.; Zhang, H.; Li, L.; Zhao, M. Stoichiometric and sterol responses of dinoflagellates to changes in temperature, nutrient supply and growth phase. Algal Res. 2019, 42, 101609. [Google Scholar] [CrossRef]
- Jaramillo-Madrid, A.C.; Ashworth, J.; Ralph, P.J. Levels of diatom minor sterols respond to changes in temperature and salinity. J. Mar. Sci. Eng. 2020, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- da Costa, F.; Le Grand, F.; Quéré, C.; Bougaran, G.; Cadoret, J.P.; Robert, R.; Soudant, P. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea. Algal Res. 2017, 27, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Gifuni, I.; Pollio, A.; Safi, C.; Marzocchella, A.; Olivieri, G. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2019, 37, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Piepho, M.; Martin-Creuzburg, D.; Wacker, A. Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply: A study on three freshwater species. Eur. J. Phycol. 2012, 47, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, L.; Liu, T. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum. Bioresour. Technol. 2016, 214, 567–573. [Google Scholar] [CrossRef]
- Huang, J.J.H.; Cheung, P.C.K. +UVA treatment increases the degree of unsaturation in microalgal fatty acids and total carotenoid content in Nitzschia closterium (Bacillariophyceae) and Isochrysis zhangjiangensis (Chrysophyceae). Food Chem. 2011, 129, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Lamers, P.P.; Janssen, M.; De Vos, R.C.H.; Bino, R.J.; Wijffels, R.H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 2012, 162, 21–27. [Google Scholar] [CrossRef]
- Nethravathy, M.U.; Mehar, J.G.; Mudliar, S.N.; Shekh, A.Y. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar] [CrossRef] [Green Version]
- Masojídek, J.; Torzillo, G.; Koblížek, M. Photosynthesis in microalgae. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Richmond, A., Hu, Q., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 21–36. ISBN 9780470673898. [Google Scholar]
- Le Goff, M.; Le Ferrec, E.; Mayer, C.; Mimouni, V.; Lagadic-Gossmann, D.; Schoefs, B.; Ulmann, L. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie 2019, 167, 106–118. [Google Scholar] [CrossRef]
- Holtin, K.; Kuehnle, M.; Rehbein, J.; Schuler, P.; Nicholson, G.; Albert, K. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 1613–1622. [Google Scholar] [CrossRef]
- Global Market Insights Inc. Global Market Insights: Insights to Innovation. Available online: https://www.gminsights.com/ (accessed on 14 September 2021).
- Saini, R.K.; Keum, Y.S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. J. Ind. Microbiol. Biotechnol. 2019, 46, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panis, G.; Carreon, J.R. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016, 18, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.J.; Sung, Y.J.; Lee, J.S.; Yu, B.S.; Sim, S.J. Robust cyst germination induction in Haematococcus pluvialis to enhance astaxanthin productivity in a semi-continuous outdoor culture system using power plant flue gas. Bioresour. Technol. 2021, 338, 125533. [Google Scholar] [CrossRef]
- Recht, L.; Töpfer, N.; Batushansky, A.; Sikron, N.; Gibon, Y.; Fait, A.; Nikoloski, Z.; Boussiba, S.; Zarka, A. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. J. Biol. Chem. 2014, 289, 30387–30403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chekanov, K.; Schastnaya, E.; Solovchenko, A.; Lobakova, E. Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. J. Photochem. Photobiol. B Biol. 2017, 171, 58–66. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, Z.; Hou, Y.; Liu, C.; Gao, F.; Zheng, Y.; Chen, F. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzyme Microb. Technol. 2015, 78, 10–17. [Google Scholar] [CrossRef]
- Yu, C.; Wang, H.P.; Qiao, T.; Zhao, Y.; Yu, X. A fed-batch feeding with succinic acid strategy for astaxanthin and lipid hyper-production in Haematococcus pluviualis. Bioresour. Technol. 2021, 340, 125648. [Google Scholar] [CrossRef]
- Yu, C.; Li, X.; Han, B.; Zhao, Y.; Geng, S.; Ning, D.; Ma, T.; Yu, X. Simultaneous improvement of astaxanthin and lipid production of Haematococcus pluvialis by using walnut shell extracts. Algal Res. 2021, 54, 102171. [Google Scholar] [CrossRef]
- Yabuzaki, J. Carotenoids Database. Available online: http://carotenoiddb.jp/ (accessed on 8 October 2021).
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsanti, L.; Gualtieri, P. Chapter 1 General Overview. In Algae: Anatomy, Biochemistry, and Biotechnology; Barsanti, L., Gualtieri, P., Eds.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 1–6. ISBN 9780849314674. [Google Scholar]
- Jo, S.W.; Hong, J.W.; Do, J.M.; Na, H.; Kim, J.J.; Park, S.I.; Kim, Y.S.; Kim, I.S.; Yoon, H.S. Nitrogen deficiency-dependent abiotic stress enhances carotenoid production in indigenous green microalga Scenedesmus rubescens KNUA042, for use as a potential resource of high value products. Sustain. 2020, 12, 5445. [Google Scholar] [CrossRef]
- Fu, W.; Paglia, G.; Magnúsdóttir, M.; Steinarsdóttir, E.A.; Gudmundsson, S.; Palsson, B.T.; Andrésson, Ó.S.; Brynjólfsson, S. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Fact. 2014, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paliwal, C.; Pancha, I.; Ghosh, T.; Maurya, R.; Chokshi, K.; Vamsi Bharadwaj, S.V.; Ram, S.; Mishra, S. Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresour. Technol. 2015, 197, 363–368. [Google Scholar] [CrossRef]
- Fernandes, T.; Fernandes, I.; Andrade, C.A.P.; Cordeiro, N. Marine microalgae growth and carbon partitioning as a function of nutrient availability. Bioresour. Technol. 2016, 214, 541–547. [Google Scholar] [CrossRef]
- Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef]
- Martin, A.C.; Pawlus, A.D.; Jewett, E.M.; Wyse, D.L.; Angerhofer, C.K.; Hegeman, A.D. Evaluating solvent extraction systems using metabolomics approaches. RSC Adv. 2014, 4, 26325–26334. [Google Scholar] [CrossRef]
- Fernandes, T.; Martel, A.; Cordeiro, N. Exploring Pavlova pinguis chemical diversity: A potentially novel source of high value compounds. Sci. Rep. 2020, 10, 339. [Google Scholar] [CrossRef]
- Arora, N.; Pienkos, P.T.; Pruthi, V.; Poluri, K.M.; Guarnieri, M.T. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol. Adv. 2018, 36, 1274–1292. [Google Scholar] [CrossRef]
- Aguilera-Sáez, L.M.; Abreu, A.C.; Camacho-Rodríguez, J.; González-López, C.V.; Del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool to Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis galbana. J. Agric. Food Chem. 2019, 67, 3879–3889. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, E.; Silva, J.; Mendonça, S.H.; Abreu, M.H.; Domingues, M.R. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs 2016, 14, 101. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Thakur, R.S.; Reddy, C.R.K.; Jha, B. Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv. 2013, 3, 7037–7047. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Ramli, A.; Kee, L.M. A Review on Methods Used in Analysis of Microalgae Lipid Composition. J. Japan Inst. Energy 2017, 96, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.; Tao, X.; Sun, H.; Chen, J.; Li, L.; Wang, Y. Analysis of polyphenols in apple pomace using gas chromatography-mass spectrometry with derivatization. Int. J. Food Prop. 2014, 17, 1818–1827. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Abreu, M.H.; Rocha, S.M.; Silvestre, A.J.D. Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chem. 2015, 183, 122–128. [Google Scholar] [CrossRef] [PubMed]
Microalga | Strain | Factors Used | Biomass | Lipid | PUFA Content | Notes | Ref. |
---|---|---|---|---|---|---|---|
Chlamydomonas reinhardtii | CC124 | Phosphorus supplementation under nitrogen deficiency | PUFA: 17.15–45.23 µg mg−1; DHA: 0.09–0.17 µg mg−1 | [76] | |||
Chlamydomonas reinhardtii | CC124 | Acetate input (1, 2, and 4 g L−1 sodium acetate) | 1.08–2.49 g L−1 | PUFA: 28.84–51.58 µg mg−1; DHA: 0.03–0.09 µg mg−1 | [76] | ||
Heterochlorella luteoviridis | BE002 | Temperature (22, 27 and 32 °C) and NaNO3 content (12, 24, 36, 48 or 60 mg L−1 of N-NO3) | 0.48 g L−1 d−1 | 82.5–99.1 mg g−1 | PUFA: 34.4–40.7% TFA | Biomass productivity obtained at higher nitrogen conditions | [77] |
Nannochloropsis oceanica | IMET1 | Nitrogen-deficiency stress (60, 120, and 2200 µmol L−1 NO32−) | 319.10–897.10 mg L−1 | 34.04–56.17% dw | EPA: 1.77–2.62% dw | The highest EPA amount was observed at 2200 µmol L−1 NO32−, in contrast to the lipid content | [74] |
Tetraselmis subcordiformis | SHOU-S05 | Nitrogen supplementation (0, 0.22, 0.44, 0.88 and 1.76 mmol N·L−1) | 13.40–29.77% | PUFA: 57.97–62.59% TFA EPA: 2.92–3.85% TFA | The highest values of PUFA and EPA were obtained at 0.22 mmol N L−1 | [71] | |
Nannochloropsis oculata | SHOU-S14 | 22.5–35.85% | PUFA: 46.10–53.69% TFA EPA: 29.34–35.51% TFA | The highest values of PUFA and EPA were obtained at 1.76 mmol N L−1 | [71] | ||
Pavlova viridis | SHOU-S16 | 26.45–32.10% | PUFA: 26.94–41.28% TFA EPA: 9.52–15.71% TFA DHA: 2.39–7.17% TFA | The highest values of PUFA and EPA were obtained at 1.76 mmol N L−1 | [71] | ||
Nannochloropsis gaditana | CCNM1032 | Salinity (20, 30, 35, and 40 g L−1), light intensity (60 and 150 μmol photons m−2 s−1), and photoperiod (24/0, 18/6, 12/12, 6/18 and 0/24 light/dark hour) | 45.01 mg L−1 d−1 | 14.63 mg L−1 d−1 | EPA: 19.13–37.83% TFA | Biomass and lipid productivities were obtained at a salinity gradient of 20 g L−1 | [73] |
Phaeodactylum tricornutum | CS-29C | Nitrogen source (nitrate, ammonium, and urea) and ultraviolet (UV) radiation (UV-A: 315–400 nm; UV-B: 280–315 nm) | PUFA: 34.89–48.85% TFA EPA: 18.86–23.42% TFA DHA: 1.49–2.52% TFA | [78] | |||
Chaetoceros muelleri | CS-176 | PUFA: 29.26–36.76% TFA EPA: 9.61–14.23% TFA DHA: 0.75–1.42% TFA | [78] | ||||
Pavlova lutheri | SMBA60 | CO2 concentrations (0–2% v/v), light intensity (75 and 120 µmol photons m−2 s−1) and cultivation mode (batch and continuous) | 0.900 g L−1 | 132.5 mg L−1 | EPA: 3.61 mg L−1 d−1 DHA: 1.29 mg L−1 d−1 | Values obtained at 0.5% (v/v) CO2, a dilution rate of 0.297 d−1, and a light intensity of 120 µmol photons m−2 s−1 | [75] |
Manufacturer | Brand | Products | Source | Ref. |
---|---|---|---|---|
Raisio group | Benecol | Soft cheese Yoghurt drinks Yoghurts Spreads | Plant phytostanol esters | [88] |
Upfield | Flora ProActiv | Spreads Drinks | Plant sterols | [89] |
Goodman Fielder | Logicol | Spread | Plant sterols | [90] |
Archer Daniels Midland (ADM) | CardioAid | Powder Paste soluble in oils and fats | Plant sterols | [91] |
Cargill | CoroWise | Dietary foods * Beverages Supplements | Plant sterols (phytosterols and steryl esters) | [92] |
Lipofoods | Lipophytol | Water-dispersible powder | Plant sterols (from soy or pine tree origin) | [93] |
Microalga | Variables Studied | Total Sterols | Major Sterols | Observations | Ref. |
---|---|---|---|---|---|
Diacronema lutheri (syn. Pavlova lutheri) | UV-C radiation (50–250 mJ m−2) Hydrogen Peroxide (H2O2: 1–500 µM) | 9.9–20.3 mg g−1 dw 19.5–30.9 mg g−1 dw | Poriferasterol Clionasterol 4-α-methylporiferast-22-enol Methylpavlovol Epicampesterol | ↑TS was found at 100 mJ cm−2 No significant increase of TS due to H2O2 | [82] |
Combined effects of sampling days (2, 4, 6, 12, 14, and 16), and salinity (15, 25, 35, and 45‰) | 20.29–51.86 mg g-−1 dw | Significant differences were observed between sampling days but not for the different salinities | [79] | ||
Dunaliella salina | Salinity (0.6, 1.4 and 2.1 M NaCl) | 0.89% dw | 7-Dehydroporiferasterol Ergosterol | Good yields of TS were found at lower salt concentrations (0.6 M) | [94] |
Dunaliella tertiolecta | 1.3% dw | ||||
Scenedesmus quadricauda | Combined effects of light intensity (30, 60, 140, 230, and 490 µmol photons m−2 s−1), and phosphorus (1–50 µM) | 8–13 µg mg C−1 | Fungisterol Chondrillasterol 22-Dihydrochondrillasterol | In the high-P TS increased with light intensity | [111] |
Cryptomonas ovata | 7–8 µg mg C−1 | Epibrassicasterol Stigmasterol | No significant changes in TS | ||
Cycotella meneghiniana SAG 1020-1a | 5–8 µg mg C−1 | 24-Methylene-cholesterol 22-Dihydrobrassicasterol | |||
Chlamydomonas globosa | 3–4 µg mg C−1 | Ergosterol Fungisterol | |||
Prorocentrum donghaiense | Temperature (15, 20, and 25 °C) N:P supply (10:1, 24:1, and 63:1 molar ratios) Growth phase (exponential and stationary growth phases) | Brassicasterol: 0.03–0.12 pg cell−1 Dinosterol: 0.15–1.54 pg cell−1 | Brassicasterol Dinosterol | Growth phase changes showed the most pronounced effects, while temperature and nutrient deficiency had moderate effects on sterol contents | [112] |
Prorocentrum minimum | Brassicasterol: 0.04–0.20 pg cell−1 Dinosterol: 0.28–1.83 pg cell−1 | ||||
Karenia mikimotoi | Brassicasterol: 0.07–1.56 pg cell−1 Dinosterol: 0.20–1.30 pg cell−1 | ||||
Thalassiosira pseudonana CCMP1335 | Rapid cooling (18 to 4 °C) Salinity (10, 17, 25, 30, 39, 47, 53 and 61‰) | 24-Methylenecholesta-5,24(24’)-dien-3β-ol Fucosterol Isofucosterol Cholesterol | [113] | ||
Phaeodactylum tricornutum CCMP632 | 24-Methylenechol esta-5,24(24’)-dienol Fucosterol Isofucosterol Cholesterol | Shifts its sterol content at a reduced temperature | |||
Chaetoceros muelleri CCMP1316 | Brassicasterol Campesterol Cholesterol | Rapid cooling did not significantly change sterols relative abundance |
Induction Stage | ||||||
---|---|---|---|---|---|---|
Strain | Medium | Green-Phase Cells | Red-Phase Cells | Factors Studied | Observations | Ref. |
H. pluvialis Flotow 1844em. Wille K-0084 | mBG-11 | N-replete 5 days 75 μmol photons m−2 s−1 | N-free 2 × 105 cells ml−1 350 μmol photons m−2 s−1 48 or 96 h | High light intensity time exposure: 48 h—0, 6, 12, 24, 36, 48 h 96 h—0, 24, 48, 72, 96 h | Astaxanthin dominated carotenoid composition: 92.6% Car and 97.7% Car, after 24 and 48 h respectively | [129] |
H. pluvialis IPPAS H-2018 (former BM1) | BG-11 | N-replete 40 μmol photons m−2 s−1 60 μmol photons m−2 s−1 | N-free 480 μmol photons m−2 s−1 | Green-phase cells: CO2 concentrations (5, 10, 20%); Growth phase (exponential and stationary). Red-phase cells: CO2 concentrations (5, 10, 20%) | 5% CO2 resulted in a higher astaxanthin productivity. | [130] |
H. pluvialis NIES 14 | BG-11 | N-replete | N-free | Organic carbon: 0.5% (v/v) of methanol, ethanol, glycol, acetaldehyde, isopropanol, and glycerol Ethanol treatment: 1, 2, 3 and 5% (v/v) Light Intensity: low (25 μmol photons m−2 s−1) and high (150 μmol photons m−2 s−1) | Astaxanthin productivity reached 11.26 mg L−1 d−1at 3% (v/v) ethanol | [131] |
H. pluvialis LUGU (KM115647.1) | BG-11 | N-replete 30 μmol photons m−2 s−1 | N-free 250 μmol photons m−2 s−1 | Cultivation mode (batch and batch-fed) Concentration of SA (0.25, 0.5, 1.0, 2.0 and 4.0 mM) on fed-batch operation (7, 9, and 11 days) | Maximum values of astaxanthin (35.88 mg g−1) and lipid (54.79%) contents were obtained after supplementation of SA on day 7 | [132] |
H. pluvialis NIES-144 | NIES-C | 50 μmol photons m−2 s−1 | 250 μmol photons m−2 s−1 | Cultivation mode (batch and semi-continuous Large-scale cultivation | Induction stage lasted 8 and 20 days; For semi-continuous cultivation light intensity was constant (250 μmol photons m−2 s−1); Semi-continuous process produced 700.4 mg L−1 of astaxanthin over 60 days | [128] |
H. pluvialis LUGU | BG-11 | N-replete 30 μmol photons m−2 s−1 | N-free 250 μmol photons m−2 s−1 | Walnut shell extracts (WSE) concentrations (10, 15, and 20%) | The highest astaxanthin (29.53 mg g−1) and lipid (51.75%) occurred with 15% of WSE | [133] |
Phylum | Carotenoids | Xantophylls |
---|---|---|
Cyanobacteria | β-carotene | Myxoxanthin, zeaxanthin |
Prochlorophyta | β-carotene | Zeaxanthin |
Glaucophyta | β-carotene | Zeaxanthin |
Rhodophyta | α- and β-carotene | Lutein |
Cryptophyta | α-, β-, and ε-carotene | Alloxanthin |
Ocrophyta | α-, β-, and ε-carotene | Fucoxanthin, violaxanthin |
Haptophyta | α- and β-carotene | Fucoxanthin |
Dinophyta | β-carotene | Peridinin, fucoxanthin, diadinoxanthin, dinoxanthin, gyroxanthin |
Euglenophyta | β- and Ƴ- carotene | Diadinoxanthin |
Chlorarachniophyta | absent | Lutein, neoxanthin, violaxanthin |
Chlorophyta | absent | Lutein, prasinoxanthin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2021, 19, 573. https://doi.org/10.3390/md19100573
Fernandes T, Cordeiro N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Marine Drugs. 2021; 19(10):573. https://doi.org/10.3390/md19100573
Chicago/Turabian StyleFernandes, Tomásia, and Nereida Cordeiro. 2021. "Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications" Marine Drugs 19, no. 10: 573. https://doi.org/10.3390/md19100573
APA StyleFernandes, T., & Cordeiro, N. (2021). Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Marine Drugs, 19(10), 573. https://doi.org/10.3390/md19100573