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Abstract: Alginate oligosaccharides (AOS) and their derivatives become popular due to their fa-
vorable biological activity, and the key to producing functional AOS is to find efficient alginate
lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was
predicted to have excellent industrial properties. Bioinformatics analysis and enzymatic properties
of recombinant TsAly7A (rTsAly7A) were investigated. TsAly7A belonged to the fifth subfamily of
polysaccharide lyase family 7 (PL7). The optimal temperature and pH of rTsAly7A was 30 ◦C and 9.1
in Glycine-NaOH buffer, respectively. The pH stability of rTsAly7A under alkaline conditions was
pretty good and it can remain at above 90% of the initial activity at pH 8.9 in Glycine-NaOH buffer for
12 h. In the presence of 100 mM NaCl, rTsAly7A showed the highest activity, while in the absence of
NaCl, 50% of the highest activity was observed. The rTsAly7A was an endo-type alginate lyase, and
its end-products of alginate degradation were unsaturated oligosaccharides (degree of polymerization
2–6). Collectively, the rTsAly7A may be a good industrial production tool for producing AOS with
high degree of polymerization.

Keywords: alginate lyase; endo-type; alkaliphilic; polyM-preferred; cold-adaption; high degree of
polymerization

1. Introduction

Alginate is a natural linear anionic polymer which consists of β-D-mannuronic acid
(M) and α-L-guluronic acid (G) linked by β-1,4-glycosidic bonds [1]. It is the only natu-
ral marine biological polysaccharide with one carboxyl in each sugar ring [2]. Alginate
polymer blocks arrange in three possible ways: poly-α-L-guluronic acid (polyG), poly-β-
D-mannuronic acid (polyM), and hetero-polymeric random sequences (polyMG). These
characteristics lead to the difference of their high-order structures, so polyM, polyG and
their derivatives display different activities [3]. In medical fields, alginates with different
arrangement and degree of polymerization (DP) have wide application prospects, including
drug delivery and tissue engineering [4–6]. Alginate oligosaccharides (AOS) and their
derivatives with different DPs are becoming popular due to their favorable biological activ-
ity and water solubility [1]. Most importantly, AOS have been found to play an important
role in anti-tumor [7], anti-inflammatory [8], neuroprotective [9], immune regulation [10],
anti-obesity [11], antibacterial [12], antioxidant [13,14], anti-diabetic [15] and other as-
pects [16,17]. These functions of AOS were mostly relevant to gut microbiota. For example,
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Zhang et al. proposed that fecal microbiota transplantation (FMT) from AOS-dosed mice
improved small intestine function by increasing beneficial microbes [8], and another study
showed that GV-971 could suppress neuroinflammation through inhibiting gut dysbiosis
to reduce phenylalanine/isoleucine accumulation [9]. In addition, Li et al. determined that
unsaturated alginate oligosaccharides (UAOS) obtained by enzyme degradation showed
significant anti-obesity effects in a high-fat diet (HFD) mouse model [18], and then they
determined that UAOS can attenuate the HFD-induced obesity through modulating gut
microbiota by selectively increasing the relative abundance of beneficial intestinal bacte-
ria and decreasing the abundance of inflammogenic bacteria [19]. The different types of
AOS had different functions in past studies, including the immuno-stimulatory activity of
guluronate oligosaccharide (GOS) [10], the hypoglycaemic and hypolipidaemic activities
of oligosaccharide from S. confusum (SCO) [15] and the neuroprotective activity of GV-971
(a sodium oligomannate) as mentioned above [9]. It is worth mentioning that UAOS per-
formed significant anti-obesity effects compared with saturated alginate oligosaccharides
(SAOS) [18,19].

At present, enzymatic degradation is the most common method to prepare AOS, so
the key to producing functional AOS is to find efficient alginate lyases [16,17]. According
to amino acid sequence, alginate lyases are divided into 12 polysaccharide lyase families
(PL5, 6, 7, 14, 15, 17, 18, 31, 32, 34, 36, 39, 41) in the CAZy database [20]. The PL7 family
(http://www.cazy.org/PL7.html, accessed on 11 February 2022) contains the most alginate
lyases and is further divided into six subfamilies [21,22]. In addition, based on substrate
specificity, it can be classified into polyG-specific, polyM-specific, bifunctional alginate lyase
and polyMG-specific alginate lyase [23–25]. Based on the different modes of action, it can
also be categorized into endo- and exo-type alginate lyases [26]. Endo-type alginate lyases
can cleave the glycosidic bonds in alginate polymer randomly and release unsaturated
oligosaccharides (disaccharides, trisaccharides and tetrasaccharides) as the main products.
Exo-type alginate lyases cut the alginate chains successively from non-reducing ends to
produce monosaccharides.

This study cloned and expressed a new PL7 alginate lyase-encoding gene, tsaly7A, from
Thalassomonas sp. LD5. The recombinant TsAly7A (rTsAly7A) exhibited good properties
such as pH stability under alkaline conditions, high activity under low temperature, and
wide range of product distribution. These characteristics make rTsAly7A a good industrial
production tool for producing AOS with high DPs.

2. Results
2.1. Sequence Analysis of TsAly7A

One predicted alginate lyase gene, tsaly7A, was detected and cloned from Thalas-
somonas sp. LD5, composed of 939 bp, encoding 312 amino acid residues. It only contained
a catalytic module (CM) as shown in Figure 1A. The original length of tsaly7A (OL-tsaly7A)
had a signal peptide (SP) at the N-terminal end with a length of 17 amino acid residues, a
carbohydrate binding module (CBM) at middle with a length of 161 amino acid residues
and a CM at C-terminal end (Figure 1A). The theoretical molecular weight of TsAly7A was
34.39 kDa and theoretical pI was 4.57. The sequence data were deposited in GenBank with
accession No. OM672104.1. According to the results of Protein BLAST search, the similarity
rate between TsAly7A and AlgMsp of PL7 family from Microbulbifer sp. 6532A [27] was
71%, indicating that TsAly7A was a new member of PL7. Further phylogenetic analysis
proved that TsAly7A belonged to the fifth subfamily of PL7 (Figure 1B).

http://www.cazy.org/PL7.html
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Figure 1. (A) Sequence analysis of TsAly7A. Domain structure of OL-tsaly7A. (B) Phylogenetic
tree analysis of TsAly7A. The unrooted phylogenetic tree was constructed by the Maximum Likeli-
hood method and JTT matrix-based model using MEGA X. Bootstrap analysis was computed with
1000 replicates, and bootstrap values below 50% were omitted. TsAly7A was marked with thickening
in blue box. Subfamily 1, the first subfamily of PL7.

2.2. Expression and Purification of rTsAly7A

The rTsAly7A was successfully constructed and then expressed in E. coli BL21(DE3).
By optimizing the induction conditions of rTsAly7A, the yield of rTsAly7A was highest at
18 ◦C and induced by 0.1 mM IPTG for 24 h (Figure 2A). After 1 L fermentation broth was
purified, 13.46 mg pure enzyme of rTsAly7A was finally obtained. Through purification,
the specific activity of rTsAly7A was 1536.36 U/mg, and the recovery rate was 31.41%. A
single band on SDS-PAGE gel showed the molecular weight of the rTsAly7A was estimated
to be about 40 kDa (Figure 2B).

2.3. Biochemical Characterization of the rTsAly7A

The optimum pH of rTsAly7A was 9.1 in Glycine-NaOH buffer (Figure 3A), while the
enzyme activity at pH 7.0 was less than 50% of the highest. The enzyme activity of rTsAly7A
remained above 80% after 12 h incubation in Na2HPO4-NaH2PO4 buffer (pH 7.0–8.0) and
was most stable at pH 8.9 in Glycine-NaOH buffer for 12 h (Figure 3B), indicating that it
was alkaliphilic.
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Figure 2. (A) Expression and purification of rTsAly7A. Relative enzyme activity of TsAly7A under
different induction conditions. (B) SDS-PAGE of rTsAly7A. Lane M, protein standard marker; lane 1,
crude enzyme; lane 2, flow-through; lane 3, elution by 0 mM imidazole; lane 4, elution by 25 mM
imidazole; lane 5, elution by 75 mM imidazole; lane 6, elution by 150 mM imidazole; lane 7, elution
by 300 mM imidazole, purified rTsAly7A.
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Figure 3. Biochemical properties of rTsAly7A. Optimal pH (A), pH stability (B), optimal temperature
(C), thermal stability (D) of the rTsAly7A. The relative activity of 100% in (A,C) was determined
at optimal condition. The original activity of 100% in (B,D) was determined before incubation at
optimal condition.

The optimum temperature of rTsAly7A was 30 ◦C, but the enzyme activity decreased
sharply over 30 ◦C (Figure 3C), whereas it exhibited 16% of highest activity at 0 ◦C. In
addition, after incubation for an hour at 20 ◦C, it maintained half of the enzyme activity
(Figure 3D). Therefore, rTsAly7A is a cold-adapted alginate lyase that can be used at room
temperature.

Only Fe3+ promoted the enzyme activity by 1.5 times as shown in Figure 4A. The
enzyme activity of rTsAly7A was significantly decreased with 1 mM Li+, Cu2+, Co2+, Ba2+,
Ca2+ and Ni2+ (Figure 4A). As for 1mM Zn2+, the enzyme activity of rTsAly7A was mostly
lost. In the presence of EDTA, the enzyme activity of rTsAly7A was even completely lost.
In addition, it is noteworthy that 1mM Na+, K+, NH4

+, Mg2+, Mn2+, Fe2+, and SDS had no
significant effect on rTsAly7A. As shown in Figure 4B, rTsAly7A maintained 50% activity
in the absence of NaCl and reached maximum activity in the presence of 100 mM NaCl.
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Figure 4. Effects of metal ions, chelator, and surfactant (1 mM) (A) and effects of NaCl concentrations
(0–1 M) (B) on the activity of rTsAly7A. The substrate specificity of rTsAly7A (C). The relative activity
of 100% was determined at optimal condition. **** for p < 0.0001, ** for p < 0.01, * for p < 0.05, ns for
not significant.

2.4. The Substrate Specificity of rTsAly7A

The 0.3% (w/v) substrate was prepared under the optimum pH 9.1 and NaCl (100 mM)
conditions, and the enzyme activity was determined by using substrate alginate, polyM
and polyG, respectively. The degradation ability of polyM was 76% of that of alginate, and
the degradation ability of polyG was weak, only 12% of that of alginate (Figure 4C).

2.5. Degradation Mode and End-Products of rTsAly7A

Size-Exclusion Chromatography (SEC) was used to reveal the time-course of alginate
degradation by rTsAly7A. At the beginning of the degradation reaction, a large number
of products with high DP appeared (Figure 5A). With the extension of degradation time,
these products gradually degraded into oligosaccharides with lower DPs. It indicated that
rTsAly7A was an endo-type alginate lyase, and some products with low DPs appeared at
the initial stage of degradation reaction, indicating that the initial enzymatic reaction speed
of the enzyme was very fast.

The SEC results of the final degradation products of rTsAly7A showed five UV absorp-
tion peaks at 12.6 mL, 13.2 mL, 13.9 mL, 14.7 mL and 15.6 mL, respectively, with a ratio of
0.24:1.07:1.78:1.16:1 (Figure 5B). The five peaks were collected and analyzed by ESI-MS. The
results of mass spectrometry analysis were shown in Figure 5C. There are several obvious
nuclear-to-mass ratio peaks in the mass spectrometry results, 351.06, 527.09, 703.12, 879.15
and 1055.18 m/z representing molecular peaks [∆DP2−H]−, [∆DP3−H]−, [∆DP4−H]−,
[∆DP5−H]−, and [∆DP6−H]−, respectively, which correspond to the molecular weights
of unsaturated alginate disaccharide, trisaccharide, tetrasaccharide, pentasaccharide and
hexasaccharide. Therefore, the final degradation product of rTsAly7A were unsaturated
oligosaccharides of DP 2–6.
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Figure 5. Degradation mode and end-products of rTsAly7A. The time-course of alginate degradation
by rTsAly7A (A). SEC analysis of end-products of rTsAly7A (B). Mass spectra analysis of final product
of rTsAly7A (C). ∆DP2, unsaturated alginate disaccharide.

3. Discussion

In this study, we characterized an endo-acting, cold-adapted and polyM-preferred
alginate lyase TsAly7A from Thalassomonas sp. LD5. Notably, different from our previous
work on TsAly7B [28], which produced unsaturated oligosaccharides of DP 2–4 as its final
products, TsAly7A released DP 2–6 from alginate.

The results reflected that rTsAly7A had a lower optimal temperature (30 ◦C) and
maintained 16% of highest activity at 0 ◦C, which indicates that rTsAly7A is one cold-
adapted alginate lyase. The cold-adapted character of rTsAly7A reveals its adaptation to
marine environment in that TsAly7A was cloned from marine bacterium Thalassomonas
sp. LD5 [29], which was found in the coastal sediments with a temperature of 5 ◦C. Some
cold-adapted alginate lyases had been characterized, but rTsAly7A had some excellent
properties in other aspects. For example, AlyS02 from Flavobacterium sp. S02, AlyPM from
Pseudoalteromonas sp. SM0524 and AlgSH17 from Microbulbifer sp. SH-1 were all cold-
adapted and polyM-preferred alginate lyases [30–32], but AlyS02 and AlyPM could only
release the oligosaccharides of DP 2, 3, and their optimal pH was 7.6 and 8.5, respectively.
AlgSH17 could release the oligosaccharides of DP 2–6, but it was not really stable as
rTsAly7A under alkaline conditions. TsAly7A released unsaturated oligosaccharides of DP
2–6 from alginate and had the highest activity in pH 9.1. In addition, rTsAly7A was stable
under alkaline conditions as shown in Figure 3B.

The alkali suitability is one good property in alginate lyase application and alginate
oligosaccharide production. Several studies have reported some robust alginate lyase;
Alyw203 from Vibrio sp. W2 showed outstanding pH stability with a highest activity under
alkaline conditions of pH 10.0 [29] and Aly08 from Vibrio sp. SY01 held above 80% of its orig-
inal activity in pH 4.0–10.0 [33]. Similarly, the rTsAly7A showed outstanding pH stability
under alkaline conditions, which made it an excellent tool in strict industrial condition.



Mar. Drugs 2023, 21, 6 7 of 10

This study also demonstrated that rTsAly7A had a wide substrate utilization range
with a preference for polyM as most alginate lyase from PL7. Similarly, AlyPM and AlgSH17
also preferably degraded polyM [31,32] while AlyS02 preferably degraded polyG [30].

The study of the effect of ions has shown that only Fe3+ promoted enzyme activity.
However, Li+, Cu2+, Co2+, Ba2+, Ca2+ and Ni2+ inhibited the enzyme activity of rTsAly7A,
which means that it cannot be used with these conditions. Additionally, Zn2+ and EDTA
showed remarkable inhibitory effects on rTsAly7A, and yet rTsAly7A remained at 89% ac-
tivity in the presence of SDS, which indicates it may have more extensive use in application.
In addition, Na+, K+, NH4

+, Mg2+, Mn2+ and Fe2+ had no effect on rTsAly7A. The enzyme
activity of rTsAly7A was the highest in the 100 mM NaCl condition and rTsAly7A can
maintain a 50% activity without NaCl, which means it would not easily cause equipment
corrosion in subsequent industrial production applications without using NaCl.

Therefore, as mentioned above, rTsAly7A is a tool to produce high degree of poly-
merization oligosaccharides. Studies by Chen et al. showed that the oligosaccharides
of DP 5 released by alginate lyase had a remarkable inhibitory effect on the growth of
osteosarcoma cells, while DP 2, 3 and 4 had no inhibitory effect [34]. The most common
products of alginate lyase were DP 2–4 [30,35,36]. In other words, the oligosaccharides of
DP 2–6 released by rTsAly7A may have more new properties can be studied.

4. Materials and Methods
4.1. Strains, Media, Plasmids, and Reagents

Escherichia coli strains BL21 (DE3) and DH5α from TaKaRa (Dalian, China) were culti-
vated in Luria–Bertani (LB) medium containing Kanamycin (50 µg/mL) when necessary.
For the expression of recombinant proteins, plasmid pET-24a (+) was used. The DNA
polymerase and DNA Restriction enzyme were from TaKaRa (Dalian, China). TIANamp
Bacteria DNA Kit was purchased from TIANGEN BIOTECH (Beijing, China). ClonExpress
II One Step Cloning Kit was purchased from Vazyme (Nanjing, China). Qingdao Gather
Great Ocean Algae Industry Group Co., Ltd. (Qingdao, China) provided Alginate and
polyM, polyG were from Qingdao HEHAI Biotech Co., Ltd. (Qingdao, China).

4.2. Identification, Cloning and Sequence Analysis of TsAly7A

Genomic DNA used as template was extracted from Thalassomonas sp. LD5 using
TIANamp Bacteria DNA Kit. PCR primers (TsAly7A-F: taagaaggagatatacatatgGTGGT-
TAATCACTGTGGTGAACTTG, TsAly7A-R: gtggtggtggtggtgctcgagATAGTTATAGCCG-
GTATGTGAATTGTC) were designed according to the genomic sequence of Thalassomonas
sp. LD5 to obtain gene Tsaly7A without signal peptide and stop codon. The vector pET-24a
(+) was linearized by restriction enzyme Nde I and Xho I. Then, the gene Tsaly7A was
ligated into pET-24a (+) by ClonExpress II One Step Cloning Kit using primers above. The
SignalP-5.0 server (http://www.cbs.dtu.dk/services/SignalP/, accessed on 9 December
2020) was used to predict Signal peptide [37]. The recombinant plasmids rTsAly7A were
transformed into the E. coli DH5α. Theoretical molecular weight and pI were determined
using the ProtParam tool (https://web.expasy.org/protparam/, accessed on 9 December
2020) [38]. Multiple sequence alignments and phylogenetic tree construction of TsAly7A
were performed using MAGA-X [39–42].

4.3. Expression and Purification of rTsAly7A

According to Zhang et al. [28], protein expression was conducted in E. coli BL21
(DE3) strains induced until OD600 reached 0.6 with 0.1 mM IPTG for 24 h. The cells were
collected, resuspended, and broken up, and then the crude enzymes were extracted from
the supernatants according to Zhang et al. [28]. One 1 mL HisTrapTM HP Column (GE
healthcare, Stanford, USA) was then used to separate the recombinant proteins from the
crude enzyme. SDS-PAGE on a 10% (w/v) resolving gel was used to detect the purity
and molecular mass of recombinant TsAly7A, and the NCM BCA protein assay kit (NCM
Biotech, Suzhou, China) was used to measure the protein content.

http://www.cbs.dtu.dk/services/SignalP/
https://web.expasy.org/protparam/
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4.4. Activity Assay of rTsAly7A

Alginate lyase activity was determined by UV spectrophotometry for its change at
235 nm. Briefly, 900 µL of 0.3% (w/v) of alginate substrate (50 mM PB, 100 mM NaCl, pH 9.1)
was incubated at 30 ◦C for 5 min, and then 100 µL of enzyme solution was added. Enzyme
boiled at 100 ◦C for 10 min was used as the control. The A235 value was detected by UH5300
UV–visible spectrophotometer (HITACHI, Tokyo, Japan) after being incubated at 30 ◦C
for 10 min. An enzyme activity unit (U) was defined as the amount of enzyme required to
increase 0.1 units of UV absorption per minute. These results were repeated 3 times and
the average values were indicated along with a standard deviation.

4.5. Biochemical Characterization of rTsAly7A

The enzyme activity was determined at 10–60 ◦C to find the optimum temperature
of rTsAly7A. To determine the thermal stability, the residual activity of the enzyme was
determined after incubation at 0–80 ◦C for 1 h. The substrate was prepared with 50 mM
buffers at different pH [Na2HPO4-citric acid (pH 2.2–8.0), Na2HPO4-NaH2PO4 (pH 5.8–8.0),
Tris-HCl (pH 7.1–8.9), Glycine-NaOH (pH 8.6–10.6)], and the enzyme activity was measured
at the optimum temperature to study the optimum pH value of rTsAly7A. To study its
pH stability, the enzyme was incubated in different pH at 0 ◦C for 12 h, and then its
residual activity was determined. As for the effect of sodium chloride on rTsAly7A activity,
0.3% (w/v) alginate substrate (50 mM glycine-NaOH, pH 9.1) was prepared by adding
different concentrations (0–1 M) of NaCl. To determine the effects of different metal ions
and surfactants on TsAly7A, the enzyme activity of rTsAly7A was measured by adding
1 mM different metal ions and SDS at optimal temperature and pH. To determine the
substrate specificity of rTsAly7A, 0.3% (w/v) of different substrate (polyM, polyG, and
alginate) solutions were used to determine the activity of it.

4.6. Degradation Mode and End-Products of rTsAly7A

To clarify the degradation mode of action of rTsAly7A, 1 mL (50 U) enzyme was put
in 9 mL alginate substrate [0.3% (w/v), 50 mM PB, 100 mM NaCl, pH 9.1] and incubated at
30 ◦C with progressive time (0, 1, 5, 10, 20, 30 and 60 min, respectively). The reaction was
ended by boiling for 10 min. Subsequently, the degradation mode was further detected by
fast protein liquid chromatography (FPLC) with a Superdex peptide 10/300 GL column
(GE Healthcare, Boston, MA, USA) for separation, 200 mM NH4HCO3 at a flow rate of
0.2 mL/min was used as the mobile phase, and UV detector was used to detect A235.

To obtain the final product, rTsAly7A was put in 0.3% (w/v) alginate solution to
produce a final concentration of 100 U/mL, and then incubated for 12 h at 30 ◦C. The
obtained sample was investigated by gel filtration on Superdex peptide 10/300 GL column.
The detection wavelength was 235 nm, the flow rate of the mobile phase (0.2 M NH4HCO3)
was 0.2 mL/min. In addition, each peak of the final product was collected, and then mixed
with acetonitrile 1:1 (v/v). After that, its molecular weight was detected by negative-ion
electrospray ionization-mass spectrometry (ESI-MS) in the range of 100–2000 m/z.

5. Conclusions

In this study, an endo-acting, cold-adapted, and polyM-preferred alginate lyase rT-
sAly7A from Thalassomonas sp. LD5 was detailed. rTsAly7A had a low optimal temperature
(30 ◦C) and remained at 16% of highest activity at 0 ◦C, which indicated that rTsAly7A is
one cold-adapted alginate lyase. Compared with other characterized alginate lyases, its
pH stability under alkaline conditions was pretty good in that it can remain at above 90%
of activity after incubation at pH 8.9 in Glycine-NaOH buffer for 12 h. rTsAly7A shared
the highest activity in the presence of 100 mM and maintained 50% of the highest activity
in the absence of NaCl. The SEC results showed rTsAly7A was an endo-type alginate
lyase, and its end-products were unsaturated oligosaccharides (degree of polymerization
2–6). Overall, due to the good characteristics, rTsAly7A can be used as a tool enzyme for
producing AOS with high degree of polymerization.
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