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Abstract: Marine invertebrates constantly interact with a wide range of microorganisms in their
aquatic environment and possess an effective defense system that has enabled their existence for
millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine
animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival,
and thriving. The innate immune system of marine invertebrates includes various biologically active
compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these
peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains,
a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities
for the development of innovative drugs based on these compounds, which can act against bacteria,
fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene
expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for
the therapeutic use of antimicrobial peptides derived from marine invertebrates.
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1. Introduction

Marine invertebrates represent a vast variety of animals inhabiting salt water envi-
ronments. This diverse group encompasses various aquatic organisms, including sponges,
corals, cnidarians, polychaeta, mollusks, crustaceans, and echinoderms. A notable feature
of marine invertebrates is their remarkable defense mechanisms, developed during long-
term evolution in constant contact with pathogenic microorganisms. For instance, one
milliliter of sea water contains approximately one million bacteria, ten million viruses, and
around one thousand small protozoans and algae, also known as protists [1]. Over several
hundred million years, marine invertebrates have evolved robust defense mechanisms to
thrive in challenging environments [2]. Remarkably, microorganisms, including pathogens,
are more abundant in sea water compared to terrestrial environments [3]. In aggregate,
oceanic microorganisms harbor an extensive and untapped reserve of biological and ge-
netic diversity, surpassing any other known on Earth [1,4]. It is noteworthy that marine
organisms surpass terrestrial counterparts in terms of both biodiversity and biomass [5].
As a result, there is a prevailing belief that biologically active compounds found in marine
organisms far exceed those derived from terrestrial organisms [6].

Unlike vertebrates, marine invertebrates lack acquired immunity but possess effective
defensive strategies, which encompass the presence of integuments, such as shells, cuticles,
mucus, encapsulation, as well as cellular and humoral factors of innate immunity [7].
Cellular factors involve mobile phagocytic cells, such as hemocytes [8,9]. Innate immunity
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receptors presenting on the surface of these cells recognize pathogen-associated molecular
patterns (PAMPs), being common to diverse microorganism families. This recognition
triggers signaling pathways, leading to phagocytosis and the production of antimicrobial
substances [10]. Humoral factors encompass antimicrobial proteins and peptides dissolved
in coelomic fluid or hemolymph [11–14].

Antimicrobial peptides (AMPs) have gained the attention of researchers as natural com-
pounds possessing biological activities and significant potential for medical applications.
AMPs are crucial components of the innate immune system of marine organisms [15], and
now, they are considered not only as effectors of the innate immunity, but also as regulators
of proliferative activities and protective processes [16]. For this reason, the more specified
term “host defense peptides” is now commonly used along with “antimicrobial peptides”.
Initially, AMPs have implied evolutionarily conserved, gene-encoded short peptides com-
prising 12–45 amino acid residues and typically exhibiting a cationic nature [12,15–17].
As the concept of AMPs has since expanded, the current definition is primarily based on
physicochemical criteria (length less than 100 amino acids, amphipathic, cationic) and their
ability to kill microbes [18]. These amphipathic peptides serve to bolster the innate defense
mechanism by targeting the negatively charged membranes of microorganisms [19]. AMPs
have been regarded as a crucial class of natural antibiotics, exerting bactericidal, fungicidal,
and virucidal effects, and extensive research has been dedicated to the identification and
characterization of AMPs sourced from marine invertebrates, which constitute the largest
community of marine inhabitants. The significance of marine invertebrates as a source
of antimicrobial molecules lies in the fact that many of these compounds possess unique
structures and mechanisms of action and are promising candidates for the development
of new antibiotics. In view of the escalating challenge of antibiotic resistance in public
health, the quest for novel antimicrobial agents has gained paramount importance [20,21].
Marine invertebrate AMPs offer an advantage in overcoming this challenge, as their mode
of action on bacterial membranes makes resistance development more difficult compared
to conventional antibiotics.

2. Natural Origins and Structural Characteristics of Marine Invertebrate AMPs

To date, over 40 distinct families of AMPs have been characterized in marine inver-
tebrates [22,23]. The structural diversity of these peptides, including various isoforms, is
vast [24,25]. Usually, they are divided into five main classes:

(1) Cys-containing peptides stabilized by intramolecular disulfide bonds;
(2) β-hairpin peptides;
(3) Linear α-helical peptides;
(4) Linear peptides enriched in particular amino acid residues (e.g., Gly, Pro, Arg, Trp);
(5) Mixed-type peptides containing domains of different structures.

Brief data on the selected representatives of these families are grouped in Table 1.

Table 1. Brief description and structural characterization of AMPs from marine invertebrates.

Cys-Containing Peptides Stabilized by Disulfide Bonds

No. AMP/Family Origin Structure * Activities ** Additional Data References

1 Anti-LPS
factors (ALFs)

Hemocytes of the
Tachypleus

tridentatus and
Limulus polyphemus

horseshoe crabs

114–124 a.a.,
2Cys,

αββββαα

G+, G−, F, V

Several subfamilies
with different pI and
activity spectra; only
cationic ALFs exhibit
antimicrobial activity

[26]

2 Aurelin
Mesoglea of the

Aurelia aurita
jellyfish

40 a.a., 6Cys, αα G+, G−

Homologous to the
K+ channel blockers
from sea anemones

(BgK, ShK)

[27,28]
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Table 1. Cont.

3 Big defensins

Hemocytes of the
Tac-hypleus

tridentatus king
crab, mussels, and
the Branchiostoma
japonicum lancelet

79–94 a.a.,
two domains; the
first one is hydro-
phobic βααβ, the

second one
contains 6Cys,

βββαβ

G+, G−, F

The spatial structure
of the

C-terminal domain is
similar to that of
β-defensins of

vertebrates

[29,30]

4

Macins:
hydramacin,
neuromacin,
mytimacin,

thero- macin,
etc.

Entoderm of
cnidarians and

mesothelium and
nervous tissue of

mollusks and
oligochaetes

54–78 a.a.,
6/8/12Cys,

βααββ (knottin)
G+, G−

Neuromacin
participates in
regeneration of

nervous tissue of
leeches

[31]

5 Myticusins
Hemocytes of the
Mytilus coruscus

mussel
104 a.a., 10Cys G+, (G−, F) No homologs among

known AMPs [32,33]

6 Mytilins
Hemolymph of the

Mytilus edulis
mussel

32–34 a.a.,
8Cys, αββ G+, V, (G−)

The spatial structure
is similar to that of

Sαβ-defensins
[34,35]

7 Mytimycin
Hemocytes of the

Mytilus edulis
mussel

54 a.a., 12Cys F No homologs among
known AMPs [36]

8 Myticins

Hemocytes of the
Mytilus

galloprovincialis
mussel

40 a.a., 8Cys G+, V, (G−, F)
The spatial structure

has not yet been
solved

[8]

9 Tachystatins

Hemocytes of the
Tachypleus
tridentatus

horseshoe crab

41–44 a.a.,
6Cys, βββ

G+, G−,
F, (H)

Primary and spatial
structures and
chitin-binding

properties are similar
to those of the spider

agatoxins

[37,38]

10 Tachycitin

Hemocytes of the
Tachypleus
tridentatus

horseshoe crab

73 a.a., 10Cys,
C-terminal

amidation; two
domains:
βββ, ββα

G+, G−, F

The C-terminal
domain is

homologous to
chitin-binding

domains of
chitinases; amidation

is crucial for
antibacterial activity

[39]

β-Hairpin Peptides

No. AMP/Family Origin Structure * Activities ** Additional Data References

11 Arenicin-1 and
arenicin-2

Coelomocytes of
the Arenicola marina

polychaete
21 a.a., 2Cys, ββ G+, G−, F, H

Dimerization of
arenicin plays a key

role in the
cytotoxicity but not
in the antibacterial

activity

[40–43]
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Table 1. Cont.

12
Tachyplesins

and
polyphemusins

Hemocytes of the
Tachypleus

tridentatus and
Limulus Polyphemus

horseshoe crabs

17–18 a.a.,
4Cys, ββ

G+, G−,
F, V, P, T, H

Affinity to LPS and
chitin, strong

hemolytic effect
[44–47]

13 Capitellacin
The marine

polychaeta Capitella
teleta

20 a.a.,
4Cys, ββ G+, G−

A high homology
with tachyplesins

and polyphemusins
[48,49]

14 Alvinellacin

Coelomocytes of
the extremophile

marine polychaeta
Alvinella pompejana

22 a.a.,
4Cys, ββ G+, G− The first AMP from a

deep-sea organism [50]

15 Abarenicin
The marine
polychaeta

Abarenicola pacifica

21 a.a.,
4Cys, ββ G- A high antibiofilm

activity [51]

16 UuBRI-21
The marine

polychaeta Urechis
unicinctus

21 a.a.,
4Cys, ββ G- - [51]

Linear α-Helical Peptides

No. AMP/Family Origin Structure * Activities ** Additional Data References

17 Halocydin

Hemocytes of the
Halocynthia

aurantium sea
squirts

18 a.a. + 15 a.a.
(disulfide bond),

α+α
G+, G−

Covalent
heterodimer. The

Trp-Leu-Asn
N-terminal tripeptide

of the long chain
(18 a.a.) plays a
crucial role in
maintaining

antimicrobial activity

[52]

18 Hedistin

Coelomocytes of
the marine

polychaeta Nereis
diversicolor

22 a.a., α+α
(helix-turn-
helix motif)

G+, G−

Contains 2
bromotryptophan

residues and
C-terminal amidation

[53,54]

19 Dicynthaurin

Hemocytes of the
Halo- cynthia
aurantium sea

squirts

30 a.a. + 30 a.a.
(disulfide bond),

α+α
G+, G−

Covalent homodimer;
the activity of the

monomer is equal to
that of the full-size

molecule

[55]

20 Clavanins and
clavaspirin

Hemocytes of the
Styela clava sea

squirts

23 a.a., His-rich and
Phe-rich

(clavaspirin is
enriched with His),

C-terminal
amidation

G+, G−,
F, (H)

The precursor
protein is similar to
prepropeptides of
several amphibian

AMPs;
pH-dependent

mechanism of action;
clavaspirin is

characterized by
significant hemolytic
activity; Phe residues
have no effect on the

antimicrobial
properties

[56]
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Table 1. Cont.

21 Styelins Hemocytes of the
Styela clava ascidian

31–32 a.a., C-
amidated, Pherich,

6-bromotrypto-
phan,

dihydroxy-
arginine,

dihydroxylysine,
dihydroxy-

phenylalanine

G+, G−, H

Homologous to
cecropins of insects
and pleurocidin of

the Pseudopleuronectes
americanus winter

flounder; activity is
maintained at high

ionic strength

[56,57]

22 Nicomicins
The marine
polychaeta

Nicomache minor

33 a.a., combining
an amphipathic

N-terminal α-helix
and C-terminal

extended part with
a six-residue loop

stabilized by a
disulfide bridge

G+, T

Share similarities in
both primary and

secondary structure
with amphibian

AMPs

[58]

23 Centrocins

Coelomocytes of
the

Strongylocentrotus
droebachiensis green

sea urchin

12 a.a. + 30 a.a.,
(disulfide bond),

bromotryptophan
G+, G−, F Covalent

heterodimers [59]

24 Polaricin Amphitritides sp.

19 a.a.; one cysteine
(Cys10) engaged in
one intermolecular

disulfide bridge
(Cys10-Cys10)

V. alginolyticus
Forms the

non-covalent
homodimer

[60]

Linear Peptides Enriched in Particular Amino Acid Residues

No. AMP/Family Origin Structure * Activities ** Additional Data References

25 Antibacterial
6.5-kDa protein

Hemocytes of the
Carci- nus maenas

green crab
6.5 kDa, Gly-rich G+, G− – [61]

26 Astacidin-2

Hemocytes of the
Pacifastacus

leniusculus signal
crayfish

14 a.a.,
Gly-rich G+, G− – [62]

Mixed-Type Peptides Containing Domains of Different Structures

No. AMP/Family Origin Structure * Activities ** Additional Data References

27 Arasin 1
Hemocytes of the
Hyas araneus great

spider crab

37 a.a., two
domains: Pro-rich

and C-terminal
4Cys/Pro-rich

G+, G−, F

Deletion of the
Cys-containing

C-terminal domain
does not affect the

antimicrobial activity

[63]

28 Hyastatin
Hemocytes of the
Hyas araneus great

spider crab

114 a.a.,
C-terminal

amidation; three
domains: the first is

Gly-rich, the
second is

Pro/Arg-rich, and
the third contains 6

Cys

G+, G−, F – [64]
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Table 1. Cont.

29 Callinectin
Hemocytes of the
Callinectes sapidus

blue crab

32 a.a., 4Cys,
Pro-rich,

C-terminal
amidation, 3

variants of Trp
oxidative

modifications

G− Homologous to
arasin-1 [65]

30 Crustins (6–22
kDa)

Crustaceans
(penaeid shrimp,

freshwater prawns,
lobsters, crayfishes,

crabs, etc.)

56–201 a.a.,
1–3 domains:
conservative

C-terminal 12Cys
WAP-domain

(+optional WAP,
Gly-, Cys-,

Pro/Arg-, and
AAA-rich)

G+, G−, F

Several subfamilies
with different

domain
organizations;

inhibitors of protease
activities

[66]

31 Penaeidins Hemocytes of
penaeid shrimps

47–67 a.a.,
pGlu,

C-terminal
amidation; two

domains: the first is
Pro-rich and the
second contains

6Cys, α-helix

G+, F, (G−)

The C-terminal
domain is

homologous to plant
chitin-binding

proteins; the absence
of the C-terminal

amidation impairs
antibacterial activity

[67]

* The following elements of the primary and secondary structures are indicated: the number of amino acid residues
in a chain (a.a.), the number of cysteine residues (nCys), the number and positions of α-helixes and β-sheets, the
presence of the C-terminal amide (C-amide), N-terminal pyroglutamate (pGly), glycosylated residues of serine and
threonine (O-glyc), and clusters of aromatic amino acid residues (AAA). Designations of the structural elements,
which occur in only a part of the representatives of a family, are given in parentheses. ** The data on the activities
toward the following targets are given: Gram-positive bacteria (G+), Gram-negative bacteria (G−), fungi (F),
protozoa (P), viruses (V), tumor cells (T), and mammalian erythrocytes (H). Low or uncharacteristic activities for
most of the representatives of the concrete family toward the indicated group of targets are given in parentheses.

The main taxonomic groups of marine invertebrates include Porifera, Cnidaria, An-
nelida, Mollusca, Echinodermata, Arthropoda, and Chordata. Notably, these taxonomic
groups account for two-thirds of all marine animals [68].

2.1. Sponges

Sponges (the phylum Porifera) are the simplest and most primitive marine animals,
which possess a unique porous body structure. Sponges hold the distinction of being among
the oldest multicellular organisms, with over 8000 described species [69]. Notably, sponges
are renowned for their production of a wide array of bioactive compounds. Each year,
more than 5000 distinct bioactive substances are identified in sponges [70]. Among marine
invertebrates, sponges are considered one of the most abundant sources of AMPs [71].
These peptides exhibit antibacterial, antifungal, and antiviral activities. For instance, the
demosponge Suberites domuncula produces the peptide of the ASABF type, consisting of
64 amino acid residues, sharing significant similarity with nematode ASABFs (Ascaris suum
antibacterial factor-type peptides) and having a distant relation to defensins. This peptide
exhibits antibacterial and antifungal properties; in addition, it has been shown to lyse
human erythrocytes (Figure 1) [72].
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2.2. Cnidaria

Cnidaria is the phylum containing over 12,000 species of aquatic animals, predom-
inantly marine invertebrates (corals, jelly fish, sea anemones, hydra), which are more
complex than sponges [73]. A recent analysis of the mitochondrial genes of cnidarians
estimated their age to be around 741 million years old [74]. Aurelin, the 40-residue peptide,
exhibiting activity against Gram-positive and Gram-negative bacteria, was purified from
the mesoglea of a scyphoid jellyfish Aurelia aurita. Aurelin contains six cysteines and has
no structural homology with any previously identified AMPs, but reveals partial similar-
ity both with defensins and K+ channel-blocking toxins of sea anemones and belongs to
the ShKT domain family [27]. It is known that all members of the phylum Cnidaria are
venomous [75]. Aurelin represents a compact globule, enclosing one 310-helix and two
α-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid
(POPC/DOPG) vesicles even at physiological salt concentration; it does not interact with
zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with a moderate
affinity via two α-helical regions. Despite the structural homology of aurelin to the BgK and
ShK toxins of sea anemones, its surface does not possess the “functional dyad” required for
a high-affinity interaction with K+ channels [28].

2.3. Annelida

The phylum Annelida contains over 13,000 species [73], including polychaeta, which
are considered as the most primitive annelids [76]. Many polychaeta species inhabit all
oceans and seas—from the Arctic to the Antarctic. Marine polychaetes have been found to
produce several types of AMPs, including arenicins [40–43], capitellacins [48,49], alvinel-
lacin [50], abarenicin [51], UuBRI-21 [51], hedistin [53,54], nicomicins [58], polaricin [60],
and perinerin [76]. Each of these AMPs exhibits optimal bactericidal activity against the
bacteria commonly found in the habitat of the respective worm species [60]. Arenicins
from the lugworm Arenicola marina discovered in 2004 [40] have shown significant thera-
peutic potential [77,78]. Arenicins have demonstrated inhibitory effects on Gram-negative
bacteria such as Escherichia coli and Proteus mirabilis, as well as on Gram-positive bacteria,
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for example, on Staphylococcus aureus [79,80]. Furthermore, arenicin has been shown to
modulate the human complement system. At relatively low concentrations, the peptide
stimulates complement activation, whereas at higher concentrations, arenicin acts as a
complement inhibitor [81,82]. Capitellacins, derived from the marine polychaeta Capitella
teleta, exhibit a potent antimicrobial activity against a wide range of bacteria, including ex-
tensively drug-resistant strains, while showing a low cytotoxicity toward human cells [48].
Perinerin, an antimicrobial peptide isolated from the clamworm Perinereis aibuhitensis grube,
displays antibacterial activity against both Gram-positive and Gram-negative bacteria,
as well as against fungi [77]. Hedistin, isolated from the marine polychaeta Hediste di-
versicolor, is active against Gram-positive bacteria Micrococcus luteus, M. nishinomiyaensis,
and S. aureus as well as against the Gram-negative bacterium Vibrio alginolyticus [53,83,84].
Hedistin is constitutively produced by NK-like cells circulating in the body cavity of an-
nelids [53]. Nicomicins, isolated from the marine polychaeta Nicomache minor, exhibited
in vitro antimicrobial activity and possessed cytotoxicity against cancer cells [58].

2.4. Mollusca

Mollusca is the second most numerous phylum, after Artropoda, among invertebrates.
The number of known species exceeds 134,000 [73]. Mollusks, including clams, oysters,
and mussels, are recognized for their ability to produce AMPs, possessing inhibitory effects
against bacteria and fungi. Among mussels, an astonishing variety of AMPs have been
identified, including defensins, big defensins, myticins, mytilins, mytimacins, mytimycins,
myticusins, mytichitins, and myticalins [8,29,32,34–36,83–89]. These AMPs are constitu-
tively expressed in various tissues, particularly in the circulating hemocytes [90]. Their
precursors typically contain N-terminal signal peptides, and mature AMPs usually have
total positive net charge and a high proportion of cysteine [87]. Several putative activities
have been attributed to mussel-derived AMPs. A plasma peptidomic profiling of the
mollusk Crassostrea hongkongensis revealed thirty-five peptides, including six up-regulated
peptides (URPs). One of them, designated as URP20, exhibited a significant antibacterial
activity against the Gram-negative bacterium Vibrio parahaemolyticus. The peptide induced
bacterial cell aggregation and membrane permeabilization. URP20 also displayed an an-
tibacterial activity against Gram-positive and Gram-negative foodborne pathogens, as well
as against Candida albicans, without showing cytotoxicity to mammalian cells [91]. Myticin
C, expressed constitutively in mussel hemocytes and stored in cytoplasmic vesicles, has
demonstrated an antibacterial activity [92] and antiviral effects against fish rhabdovirus,
ostreid herpesvirus (OsHV-1), as well as against human herpes simplex viruses HSV-1
and HSV-2 [93,94]. Defensins from the oyster Crassostrea gigas, primarily active against
Gram-positive bacteria, bind to lipid II, the precursor of peptidoglycan [95]. The oyster
bactericidal/permeability-increasing protein (BPI), mainly effective against Gram-negative
bacteria, binds to lipopolysaccharide (LPS) [96], which is a component of the cell wall of all
Gram-negative bacteria [97–99]. Myticusin-beta, derived from the marine bivalve Mytilus
coruscus, exhibits antibacterial activity against both Gram-positive (Bacillus cereus, B. subtilis,
Clostridium perfringens, S. aureus, Streptococcus iniae) and Gram-negative bacteria (Escherichia
coli, Pseudomonas aeruginosa, Vibrio alginolyticus, Klebsiella pneumoniae). The peptide also
demonstrates antiprotozoal activity [33].

2.5. Echinodermata

Members of the phylum Echinodermata, such as starfish, see cucumbers, and sea
urchins, have also been found to produce AMPs with a potent antimicrobial activity.
The 5-CC peptide derived from the sea urchin Paracentrotus lividus has been found to
exhibit antibiofilm properties against biofilms formed by S. epidermidis and S. aureus strains.
Interestingly, the sequence of the 5-CC peptide matches the fragment 9–41 of beta-thymosin
from P. lividus [100]. The peptide paracentrin 1 (SP1) has been chemically synthesized based
on the sea urchin beta-thymosin fragment sequence. SP1 demonstrated antibacterial and
antibiofilm activities against S. aureus and P. aeruginosa [101]. The sea cucumber Holothuria
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tubulosa produces AMPs called holothuroidin 1 (H1) and holothuroidin 2 (H2). These
peptides display antimicrobial activities against both free-living and biofilm forms of
Gram-negative and Gram-positive human pathogens. H1 and H2 are cationic peptides,
consisting of 12 and 14 amino acid residues, respectively. They share the same amino acid
sequence, except for two additional residues (alanine and serine) at the N-terminus of
H2. Both peptides effectively inhibit biofilms formed by staphylococcal and P. aeruginosa
strains [102].

2.6. Arthropoda
2.6.1. Crustacea

Members of the subphylum Crustacea of the phylum Arthropoda, including crabs,
shrimps, and lobsters, have been found to produce various AMPs, such as arasin-1,
hyastatin, callinectin, hyastatins, crustins, penaeidins, anti-lipopolysaccharide factors
(ALFs), and stylicins [63–66,103]. Penaeidins are small peptides with molecular masses
of 5–7 kDa. Each of their precursors consists of an N-terminal signal peptide region,
a proline-rich domain (PRD), and a C-terminal cysteine-rich domain (CRD) containing
six cysteine residues. Penaeidins exhibit activity against both Gram-positive and Gram-
negative bacteria [67,104,105]. Crustin, initially discovered in the hemolymph of the coastal
crab Carcinus maenas in 1999, has been subsequently found in other crabs, lobsters, and
shrimps [66,106–113]. Crustins are classified into four sub-groups based on their structure
and functional activities [66]. They possess antimicrobial activity against Gram-positive bac-
teria, Gram-negative bacteria, fungi, and viruses [106,114–117]. Some crustins specifically
target Gram-negative bacteria such as E. coli, Edwardsiella tarda, and A. hydrophila [118,119],
while others exhibit antibacterial activity against Gram-positive bacteria such as S. aureus,
Micrococcus luteus, and B. subtilis [106,120–122]. Knockdown of type II crustins has been
shown to increase mortality in animals infected with the bacterial pathogen V. penaeicida,
whereas there was no effect in response to the fungal pathogen Fusarium oxysporum [123].
Crustins also possess alternative properties such as agglutination, opsonization, and in-
hibition of protease activity, further confirming their diverse functions in anti-infective
defense [124–129]. A hemocyanin-derived peptide, isolated from the penaeid shrimp Litope-
naeus vannamei and designated as PvHCt, has been shown to be strictly antifungal, causing
the permeabilization of the fungal plasma membrane [130]. Paralithocins, derived from
the red king crab Paralithodes camtschaticus, do not display an antimicrobial activity against
E. coli, P. aeruginosa, or S. aureus, but they inhibit the growth of several marine bacterial
strains [131].

2.6.2. Chelicerata

Another subphylum Chelicerata of the phylum Arthropoda includes horseshoe crabs,
sea spiders, sea scorpions, etc. AMPs from the American horseshoe crab, Limulus polyphe-
mus, have been found to bind to LPS and exhibit activity against Gram-negative bacte-
ria [132]. Polyphemusin III, derived from the horseshoe crab Limulus polyphemus, has shown
a lower antimicrobial effect but a significantly higher cytotoxicity against human cancer
and transformed cells in vitro. It has been observed to induce the fast permeabilization of
the cytoplasmic membrane of human leukemia cells HL-60, leading to cell death that is
apparently unrelated to apoptosis [133]. Tachystatins A, B, C, and tachyplesins have been
identified from the hemocytes of the horseshoe crab Tachypleus tridentatus. Tachystatins
exhibit a broad spectrum of antimicrobial activity against Gram-negative bacteria, Gram-
positive bacteria, and fungi [37,38,134–136]. Tachyplesins, in addition to their antimicrobial
activity, exerts a cytotoxic activity toward human cancer cells, including non-small-cell lung
cancer cells, by inducing apoptosis [137–139]. Tachyplesins enhance the chemosensitivity
of cancer cells to cisplatin, reducing the active concentrations of cisplatin [138,139].
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2.7. Chordata
2.7.1. Tunicata

Members of the subphylum Tunicata of the phylum Chordata, commonly known
as tunicates, represent another significant source of AMPs. Among these are ascidians
(sea squirts), sea tulips, sea pork, sea livers, etc. A group of peptides, termed styelins,
has been identified in the ascidian tunicate Styela clava [57,58,140]. Styelins share a close
resemblance to the antimicrobial peptide cecropin found in the hemolymph of the silkworm
caterpillar Hyalophora cecropia [141]. These styelins exhibit antimicrobial activity against
both Gram-positive and Gram-negative bacteria and also possess hemolytic and cytotoxic
properties toward eukaryotic cells [58,142]. Halocidin, derived from hemocytes of the
tunicate Halocynthia aurantium, demonstrates antifungal activity against the Candida species,
including Candida-related oral infections [53,143,144]. Furthermore, halocidin congeners,
known as Khal, exhibit potent antibacterial effects against methicillin-resistant S. aureus
(MRSA), vancomycin-resistant Enterococcus (VRE), and various multidrug-resistant strains
of P. aeruginosa. Halocidin analogs have shown promising results in animal models of
Listeria monocytogenes infection [145]. Clavanin A, isolated from the hemocytes of the sea
squirt Styela clava, exhibits a robust antibacterial activity against Gram-positive bacteria,
including Enterococcus faecium and methicillin-resistant S. aureus strains, as well as against
Gram-negative bacteria, such as E. coli and P. aeruginosa [57,146–150]. Plicatamide, derived
from hemocytes of the sea squirt Styela plicata, demonstrates an antibacterial activity against
methicillin-resistant strains of S. aureus (MRSA) and a hemolytic activity toward human
erythrocytes [151]. Tunicates also serve as a source for peptides known as didemnins, which
possess antimicrobial activity against various pathogens and demonstrate cytotoxicity
toward human cancer cells [152–157].

2.7.2. Cephalochordata

Another subphylum Cephalochordata of the phylum Chordata is represented by
amphioxus, also known as lancelet. Amphioxus and tunicates, being the most primitive
chordates, belong to invertebrates. AMPs structurally related to large defensins from the the
amphioxus Branchiostoma japonicum (designated as Bjbd) have been identified in databases
using signal and propeptide sequences, which are typically significantly more conserved
than those of mature peptides [30,158]. The mature large defensin consists of 117 amino
acid residues and has the hydrophobic region GAAAVT(A)AA at the N-terminus and the
consensus pattern C-X6-C-X3-C-X13(14)-C-X4-CC at the C-terminus, as well as four α-
helices, four β-sheets, and three disulfide bridges (C1-C5, C2-C4, and C3-C6). Quantitative
real-time PCR analysis has revealed that Bjbd was constitutively expressed in most tissues
examined, and its expression significantly increased following incubation with LPS or LTAs,
as well as upon infection with Aeromonas hydrophila or S. aureus. Moreover, the recombinant
BjBD has been shown to inhibit the growth of S. aureus, E. coli, and A. hydrophila [30]. This
was the first large defensin gene ever identified in the Chordata phylum. Thus, in silico
approach integrating experimental study has revealed the existence of the novel AMP
and has allowed investigators to define its biological functions [30,158,159]. Several AMPs
have been designed by amino acid substitutions in the peptide mBjAMP1 isolated from
Branchiostoma japonicum, and their activities have been tested. It has been founded that some
analogs had the ability to kill Gram-negative Vibrio anguillarum, Pseudomonas mendocina,
Vibrio parahaemolyticus, and Gram-positive Micrococcus luteus and Listeria monocytogenes.
Additionally, all the four AMPs induced the permeabilization and depolarization of bacte-
rial cell membranes, increased intracellular reactive oxygen species (ROS) levels, and had
little or no mammalian cytotoxicity [159]. Other analogs of the Bjbd peptide designated as
ARR-Anal10 displayed not only the greatest antimicrobial and antibiofilm activities, but
also no toxicity toward human red blood cells or other mammalian cells. IARR-Anal10
had little or no effect on bacterial outer membrane permeability, membrane polarization,
or membrane integrity. Instead, IARR-Anal10 binds to bacterial DNA and kills bacteria
through an intracellular mechanism. It has been confirmed that IARR-Anal10 suppressed
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the virulence of K. pneumoniae to a degree similar to tigecycline, used to treat carbapenem-
resistant Enterobacteriaceae infections, and did not induce the development of resistance by
K. pneumoniae [160]. Notably, AMPs from amphioxus were discovered using bioinformatics
and systems biology, which integrate research data and serve as a basis for drug design
and novel AMPs [161,162]. It was found that the amphioxus ribosomal polypeptide RPS23,
designated as BjRPS23, acted not only as a pattern recognition receptor (PRR) capable of
identifying LPS, LTAs, and PGN, but also as an effector killing Gram-negative and Gram-
positive bacteria. BjRPS23 functions through the combined membrane-lytic mechanism,
including interaction with the LPS, LTAs, and PGN of the bacterial membrane, as well as
by membrane depolarization. BjRPS23 also stimulates the production of intracellular ROS
in bacteria and is not cytotoxic to mammalian cells, thereby being a promising molecule for
the development of new peptide antibiotics against bacteria [163].

3. Biosynthesis and Gene Expression Regulation of AMPs in Marine Invertebrates

The biosynthesis of AMPs in animals involves the transcription and subsequent trans-
lation of the genes of the corresponding precursor proteins, containing the N-terminal
secretory signal sequence [164]. Sometimes, AMP precursors feature a prodomain (or
propeptide) positioned between the signal and mature peptide sequences or occupying the
molecule’s C-terminal region. These prodomains usually have chaperone-like properties
that counteract the membrane activity and aggregation propensity of the mature peptide,
protecting the producer organism from its action (Figure 2). Some of them are short anionic
polypeptides (15–30 amino acid residues) that neutralize the positive charge of mature
peptides, such as the propeptides of centrocins and strongylocins of sea urchins [165].
Another example is BRICHOS, a sequence of about 100 residues found within the pre-
cursors of the β-hairpin AMPs of marine polychaetes: arenicins, alvinellacin, nicomicins,
capitellacin, and abarenicins [40,48–51]. The BRICHOS domain, which has also been found
in several human proteins, displays a notable degree of evolutionary conservation at the
level of overall domain architecture, while the primary structure undergoes significant
changes [166]. A distinct group of AMPs are “encrypted” peptides, which are parts of
larger proteins that have an independent physiological function. They are formed as a
result of partial proteolysis of these proteins and play an important role in host immunity.
The best known representatives of this group of AMPs are histone derivatives from fish
and amphibians, but in marine invertebrates, hemocyanin is the main source of known
peptides of this group [167–169].
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The signal peptide directs the precursor protein to the endoplasmic reticulum (ER),
where it undergoes processing and, in some cases, post-translational modifications. Finally,
the mature AMPs are transported to the site of infection, where they exert their antimicrobial
activity by disrupting microbial membranes or interfering with intracellular processes.

The genes of AMP precursors are often found in the genomes in clusters encoding
natural libraries of bioactive peptides. For example, genes for 37 antimicrobial peptides
were identified in the American lobster Homarus americanus genome, including nine ALFs,
23 crustins/carcinins, and five β-defensin-like panusins [170]. The evolution of gene clus-
ters involves such events as gene duplication, changes in gene copy number, recombination,
and allelic polymorphisms, although the evolutionary factors responsible for shaping the di-
versity of AMPs remain mostly unknown [171]. The expression of AMPs is highly variable
in tissues, with some being produced constitutively, accumulating in granules of immune
system cells, whereas the synthesis of others is induced by pathogens. A number of studies
have reported that AMP genes exhibit different expression patterns in response to different
environmental stimuli and conditions such as microorganism species, type of pathogen-
associated molecules, the temperature of the environment, and the developmental stage of
the organism [67,172–174].

When a microbe infects an invertebrate, pattern recognition receptors (PRRs) on the
surface of immune cells recognize conservative pathogen-associated molecular patterns
(PAMPs) displayed by the invading microorganism [9,10]. These include bacterial peptido-
glycans, LPS, teichoic acids, and flagellin; fungal mannans, glucans, chitin, and ergosterols;
and double-stranded RNA of viruses. This recognition event triggers a signaling cascade
that activates transcription factors. These transcription factors then bind to the promoter
region of AMP genes, initiating the process of transcription [66]. The regulation mech-
anisms of invertebrates’ immune response have been extensively studied in the model
organism Drosophila melanogaster [175]. The main signaling pathways providing the in-
duction of the synthesis of protective factors in this insect are the Toll and Imd pathways,
which activate two NF-κB transcription factors, Dif/Dorsal and Relish, respectively. This
in turn leads to the activation of κB-containing promoters of genes associated with the
innate immune system. A similar regulatory system was found in cultured shrimps, crabs,
crayfish, and lobsters whose host defense mechanisms have been deeply investigated
over the last 20 years due to the high importance of these crustaceans to the economies
of Southeast Asian countries [176,177]. Numerous homologs of proteins responsible for
PAMP recognition and signal transduction in Drosophila were found in marine crustaceans:
Toll [178] and Imd [179] receptors, Spätzle [180], MyD88 [181], Tube [182], Pelle [183], Dor-
sal [184], Relish [185], and others. However, the mechanisms of signal transduction may
differ from those observed in insects. For example, in contrast to the Drosophila Toll, which
recognizes PAMPs through binding to Spätzle, shrimp Tolls, similar to mammalian coun-
terparts, can directly bind to the pathogen-associated motifs [186]. While Drosophila Toll
signaling pathway is activated by Gram-positive bacteria and fungi, and IMD is activated
by Gram-negative bacteria [187], no such specialization of the two signaling systems was
found in shrimp [169]. Gene expression of penaeidins, crustins, and ALFs can be activated
through both signaling pathways. In addition, some other signaling pathways, such as
JAK-STAT, may be involved in the regulation of the biosynthesis of crustins and ALFs [188].

Thus, the regulation of AMP gene expression is a complex process involving the
interplay of multiple signaling pathways and transcription factors. It was found that out
of the several dozen AMP genes that may be present in the genome, only a few show
high expression levels, e.g., a transcriptome profiling of the red king crab Paralithodes
camtschaticus revealed that among 27 AMP genes, only paralithocin 1 and crustin 3 genes
yield a physiologically relevant amount of expression product [189]. The conservation of
natural peptide libraries during phylogeny fits well with the “screening hypothesis”: the
ability to cost-effectively generate diverse libraries of metabolites (only a small fraction of
which will be active under given habitat conditions) is an important evolutionary advantage
that allows a species to readily occupy new ecological niches [190].
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The expression of AMP genes in marine invertebrates is regulated not only by mi-
crobial infection, but also by the developmental stage and environmental cues such as
temperature, pH, and nutrient availability [60,191]. Some AMPs are specifically expressed
during certain developmental stages, while others are induced in response to specific
environmental signals [60]. For example, crustins from penaeid shrimps Litopenaeus van-
namei have been detected in all stages of development, from fertilized eggs to larval and
postlarval stages [65].

In summary, the biosynthesis and regulation of the gene expression of AMPs in marine
invertebrates are complex and dynamic processes that enable these organisms to effectively
defend against microbial infections of different etiologies during all stages of ontogenesis
and under various environmental conditions [59].

4. Structural Characteristics of AMPs in Marine Invertebrates

AMPs of marine invertebrates exhibit a remarkable diversity in terms of structure,
charge, and hydrophobicity profiles, which contributes to their broad-spectrum protection
against various pathogens (Figures 3 and 4). Most of them share common features of
membranotropic AMP: they are enriched in lysine and arginine residues, which provide
them with a positive charge, and also contain a high proportion of hydrophobic residues.
The spatial segregation and clusterization of hydrophobic and hydrophilic residues often
observed in these peptides provides them with pronounced amphiphilic properties and an
affinity to biological membranes.

The molecules of marine invertebrate AMPs are composed mostly of unmodified
residues of proteinogenic L-amino acids. The most common type of post-translational
modification is the formation of disulfide bonds that stabilize the spatial structure of cystein-
containing peptides. Intramolecular disulfide bonds increase the resistance of peptides
to proteolysis in physiological media. In some cases, their presence is a prerequisite for
antimicrobial activity. For example, the reduced myticin C loses its antibacterial activity at
neutral pH values, although it retains chemotactic properties [192]. In contrast, for beta-
hairpin AMPs, such as arenicins and tachyplesins, disulfide bonds do not play such a crucial
role [135,193,194]. The stabilization of these molecules can be achieved by hydrophobic
and cation–π interactions between the opposite residues of two β-strands [193].

Another type of a post-translational modification of AMPs is the amidation of the
C-terminal amino acid residue catalyzed by a bifunctional enzyme: peptidylglycine α-
amidating monooxygenase [195]. The peptide precursor must thus contain an additional
C-terminal glycine residue, which is oxidized during the reaction. The amidation of the
C-terminal residue is found, in particular, in β-hairpin peptides from horseshoe crab hemo-
cytes, tachyplesins, and polyphemusins [45]. This modification increases the net positive
charge of the molecule by +1, increasing its affinity for negatively charged components
of microbial membranes. In addition, it increases the half-life of the peptide in biologi-
cal media, making it resistant to the action of carboxypeptidases [196]. The N-terminal
glutamine residue can be cyclized to form pyrrolidone carboxylic (pyroglutamic or pGlu)
acid, as observed in peneidin-3a from the whiteleg shrimp Penaeus vannamei [197] and
the light chain of EeCentrocin 2 from sea urchin Echinus esculentus [198]. Some marine
AMPs contain hydroxytryptophan [86], dihydroxylysin, dihydroxyarginine, and dihydrox-
yphenylalanine [57]. A modification highly specific to marine peptides is the bromination
of tryptophan residues observed in centrocins and strongylocins [59,165,198], styelin D [57],
and hedistin [53]. These modifications generally do not affect antimicrobial activity and
are likely intended to enhance the proteolytic resistance of the peptides [24]. At least one
exception is known: a synthetic analog of stiellin D, which does not contain modifications,
loses the salt tolerance inherent in the natural peptide [57].
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Figure 3. Amino acid sequence alignments of several families of marine invertebrate HDPs. Ar1,
Ar2, Ar3—arenicins-1, -2, -3 from Arenicola marina (lugworm); Tach1, Tach2—tachyplesins I and II
from Tachypleus tridentatus (Japanese horseshoe crab); Poly1, Poly2—polyphemusins 1 and 2 from
Limulus polyphemus (Atlantic horseshoe crab); ClavA, ClavC, ClavS, StyC, StyD, StyE—clavanins
A, C, clavaspirin, and styelins C, D, E from Styela clava (Sea squirt); MytA, MytB—mytilins A and
B from Mytilus edulis (Blue mussel); MtcA, MtcB—myticins A and B from Mytilus galloprovincialis
(Mediterranean mussel); TstatA1, TstatB1, TstatC—tachystatins from T. tridentatus; PvPen1, PvPen2a,
PvPen4a—penaeidins 1, 2a, 4a from Penaeus vannamei (Whiteleg shrimp). Basic residues (HKR) are
shown in blue; acidic (D)—in red; highly hydrophobic (FILVWY)—in yellow; cysteine residues—in
green. The arrangement of disulfide bonds and the amidated C-terminal residues (*) are shown.
Other modifications, such as hydroxylated and brominated residues, are not shown in the figure.

The structure diversity of marine invertebrate AMPs was previously classified into
four main types, as proposed by Semreen and Bertrand: peptides adopting a β-hairpin or
helical/β-sheet structure stabilized by intramolecular disulfide bonding (cyclic peptides),
linear α-helical peptides, and helical or non-helical peptides with an abundance of a specific
amino acid [23,199]. This list can be supplemented by a group of mixed-type peptides
containing domains of different structures, such as arasin 1, crustins, and penaeidins. With
regard to the general structural organization of peptide molecules, it is worth noting that,
compared to land animals, the AMP repertoire of marine invertebrates is characterized
by a higher content of cysteine. The proportion of linear molecules that do not contain
disulfide-bonded rings is relatively small. Some examples of linear α-helical peptides
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are hedistin from polychaeta Nereis diversicolor, clavanins, styelins, and clavaspirin from
ascidian Styela clava. Dicyntharin and halocidin from ascidian Halocynthia aurantium [52,55]
and centrocins from sea urchins [165], which are formally assigned to the group of linear
helical peptides, are unusual in that they are formed by combining fragments of different
polypeptide chains via single disulfide bonding.
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Figure 4. Primary and NMR solution structure of representative AMPs of marine invertebrates:
clavanin A (PDB 6C41) from the tunicate Styela clava; defensin MGD-1 (PDB 1FJN) and mytilin B
(PDB 2EEM) from the mussel Mytilus galloprovincialis; nicomicin (PDB 6HN9) from the polychaeta
Nicomache minor; penaeidin-3 (PDB 1UEO) from the shrimp Litopenaeus vannamei; tachyplesin I (PDB
1WO0) and “big defensin” (PDB 2RNG) from the horseshoe crab Tachypleus tridentatus; anti-LPS factor
ALF-Pm3 (PDB 2JOB) from the shrimp Penaeus monodon; N- and C-terminal residues are labeled,
amidated C-terminal residues are shown with an asterisk. The regions of the primary structures
adopting the α-helical and β-sheet conformation are highlighted in red and yellow, respectively.
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Defensins are the most widely distributed and conserved cysteine-containing AMPs
found in all kingdoms of eukaryotic organisms. The first classical defensin isolated from
marine invertebrates was MGD-1 from the mussel Mytilus galloprovincialis [200]. The three-
dimensional solution structure of MGD-1 established using NMR consists of an α-helical
N-terminal part and two antiparallel β-strands forming a common cystine-stabilized αβ-
motif (CSαβ) often found in scorpion toxins and defensins of Chelicerata and ancient
orders of insects. The pattern of cysteine residues, as well as the arrangement of disulfide
bonds and secondary structure, distinguish invertebrate defensins from vertebrate α- and
β-defensins. Unlike most animal defensins, MGD-1 contains eight (instead of six) cysteine
residues and forms four intramolecular disulfide bonds—this structural feature makes it
similar to plant defensins. Defensin-like AMPs include mytilins from mussel and “big
defensins” found in hemocytes of the horseshoe crab Tachypleus tridentatus, several species
of bivalve mollusks, and a lancelet [29,30,201,202]. “Big defensin” from T. tridentatus
consists of two functional domains with different spectra of antimicrobial activity encoded
by two separate exons. According to NMR data, the more hydrophobic and weakly basic
N-terminal domain forms a globule in solution, while in the lipid environment, it adopts
an elongated α-helical conformation [203]. The C-terminal domain is similar to vertebrate
β-defensins in terms of disulfide bond arrangement and spatial structure, which suggests
their evolutionary relationship [204].

As has been shown for CSαβ-containing peptides, the same molecular scaffold can be
found in peptides with different biological activities. Conserved cysteine motifs present
in AMPs are sometimes identified in peptides and protein domains belonging to other
functional classes. Another example, aurelin from the mesoglea of the Aurelia aurita jellyfish,
shares similarities with potassium channel-blocking toxins from marine anemones at the
level of the primary and spatial structure, which includes two crossed α-helices [28].

Among the most active antibiotic molecules of marine animals are β-hairpin peptides—
small (~2.5 kDa) peptides formed by two twisted antiparallel β-strands joined by β-turn.
Most members of the family (tachyplesins, polyphemusins, alvinellacin, nicomicins, capitel-
lacin, abarenicins) contain two disulfide bonds. The exceptions are arenicins-1 and -2
containing a single disulfide bridge that forms a large 18-residue ring [40].

During the last several years, the intensive study of the innate immunity of decapod
crustaceans has led to an explosive growth in the number of known representatives of
three families of cysteine-containing AMPs: ALFs, crustins, and penaeidins. ALFs are
small proteins with a molecular mass of 10–12 kDa, containing three α-helices adjacent to
a β-folded region consisting of four β-strands [205]. The second and third β-strands are
connected by the only disulfide bond present in the molecule, forming an LPS-binding
domain enriched with charged amino acid residues. ALFs have an amphiphilic structure
with a strongly hydrophobic N-terminal region. Although some ALFs are anionic peptides,
antimicrobial activity has been found only in those members of the family that have a net
positive charge.

Penaeidins, AMPs from shrimp hemocytes, consist of a proline-rich N-terminal part
and a conserved C-terminal fragment containing six cysteine residues that form disulfide
bonds in the order 1–3, 2–5, 4–6. The middle part of the C-terminal domain has the
conformation of an amphiphilic α-helix closely bound to the preceding and following
regions of the polypeptide chain [206]. There is a similarity between the primary structure
of the C-terminal fragment of penaeidins and the chitin-binding domains of plant proteins.

Compared to other AMPs, crustins have a more complex domain architecture. The
first member to be discovered was carcinin (crustin Cm1), isolated from the hemolymph
of the green crab Carcinus maenas. The peptide has a molecular mass of 11.5 kDa and
contains 12 cysteine residues [207]. Common to all crustins is a cationic C-terminal WAP
domain (Whey Acidic Protein) containing twelve cysteine residues. The WAP domain
has previously been found in mammals as part of some protease inhibitors as well as
antimicrobial proteins. The N-terminal region of the crustin molecule may contain glycine-
rich, proline/arginine-rich, or cysteine-rich domains, a second WAP domain, or a region
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enriched in aromatic amino acids. The domain composition of the molecule became the
basis for the classification of crustins, according to which they are subdivided into seven
groups [208].

Here, we have briefly summarized the main features of only some of the most repre-
sentative and well-studied families among the great diversity of marine invertebrate AMPs.
At the same time, it is clear that only a fraction of the AMPs present in marine invertebrates
have been identified thus far, indicating that these organisms hold great potential as a vast
resource for researchers to discover biologically active molecules [11,23,209,210].

5. Spectrum of Biological Activities of Marine Invertebrate AMPs

AMPs derived from marine invertebrates exhibit a broad spectrum of biological
activities, making them important components of the innate immune system. They possess
antibacterial, antifungal, and antiviral properties, collectively contributing to the defense
against various pathogens encountered in marine environments. An antibacterial activity
of AMPs enables them to target and eliminate a wide range of bacterial species, including
both Gram-positive and Gram-negative bacteria. By disrupting the integrity of bacterial cell
membranes or interfering with intracellular targets, AMPs can effectively inhibit bacterial
growth and proliferation. Furthermore, AMPs from marine invertebrates display potent
antifungal activity, enabling them to combat fungal pathogens. These peptides can disrupt
fungal cell membranes, inhibit fungal growth, and prevent the spread of fungal infections.
Additionally, certain AMPs derived from marine invertebrates possess antiviral properties,
allowing them to directly target and inhibit the replication of viruses. They can interfere
with viral entry into host cells, disrupt viral envelopes, or inhibit viral protein synthesis,
thus exerting antiviral effects.

The diverse biological activities of AMPs from marine invertebrates underline their
crucial role in the innate immune defense of these organisms. By providing protection
against bacterial, fungal, and viral infections, these peptides contribute to the overall health
and survival of marine invertebrate species in their natural habitats. Given below are some
examples of biological activities of marine invertebrate AMPs.

5.1. Antibacterial Activity

AMPs derived from marine invertebrates exhibit a broad-spectrum antibacterial activ-
ity against both Gram-positive and Gram-negative bacteria (Table 1). Some AMPs display a
specific activity, while others possess antibacterial properties against both types of bacteria.
For instance, arenicins from the marine polychaeta Arenicola marina and halocidin from the
tunicate Halocynthia aurantium have demonstrated effectiveness against Gram-positive bac-
teria S. aureus, B. subtilis, and L. monocytogenes, as well as against Gram-negative pathogens
E. coli and P. aeruginosa [40,211–213]. Marine mollusk-derived AMPs, such as mytilins,
myticins, mytimacin, mytimycin, myticusins, mytichitins, myticalins, and big defensin,
have putative antibacterial activity against both Gram-positive and Gram-negative bacte-
ria [8,9,32,36,87–89]. It is worth noting that marine organisms possess a diverse variety of
AMPs that specifically target harmful bacteria prevalent in their respective environments.
Antibiofilm activities of abarenicin from the polychaete Abarenicola pacifica, paracentrin 1
and 5-CC peptides from the sea urchin Paracentrotus lividus, and holothuroidin from the sea
cucumber Holothuria tubulosa predetermine their future topical application [51,100–103].

5.2. Antifungal Activity

AMPs derived from marine invertebrates have demonstrated a significant antifungal
activity against various fungal pathogens. Mytimycin from the blue mussel Mytilus edulis
inhibits the growth of Neurospora crassa and Fusarium culmorum [36,214]. Tachystatins A, B,
and C, derived from hemocytes of the horseshoe crab Tachypleus tridentatus, have induced
morphological changes in budding yeast [37,38]. Halocidin isolated from hemocytes of
the Halocynthia aurantium sea squirts has shown a pronounced activity against Candida
even after short-term incubation. Furthermore, it has demonstrated a significant reduction
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in fungal burden in a mouse model of oral candidiasis, without being absorbed into
the bloodstream [144]. The histidine-rich antimicrobial peptide PvHCt derived from the
penaeid shrimp Litopenaeus vannamei possesses an antifungal activity via selective binding
to Fusarium oxysporum cells and permeabilizing them [130].

AMPs, which exhibit both antibacterial and antifungal activity, are of particular inter-
est to researchers. A peptidomic profiling of the mollusk Crassostrea hongkongensis plasma
revealed thirty-five up-regulated peptides (URPs) when infected with the Gram-negative
bacterium Vibrio parahaemolyticus. The URP20 peptide had a significant antibacterial activity
and triggered the aggregation of bacterial cells, accompanied by the permeabilization of
their membranes. URP20 has been found to be active against Gram-positive and Gram-
negative foodborne pathogens, as well as against Candida albicans, with no cytotoxicity to
mammalian cells [91,215]. The rEsDWD polypeptide from the Chinese mitten crab Eriocheir
sinensis has shown an antimicrobial activity against the Gram-negative bacteria V. anguil-
larum, as well as against the yeast P. pastoris GS115 strain and Candida parapsilosis [117].
These findings highlight the potential of marine invertebrate-derived AMPs as effective
antifungal agents with therapeutic implications.

5.3. Antiviral Activity

Marine invertebrate AMPs have demonstrated a notable activity against various
viruses, including herpes simplex virus, human immunodeficiency virus, influenza virus,
hepatitis C virus (HCV), or SARS-CoV-2 [216]. Depsipeptides from the sponges Theonella
mirabilis has shown an immediate virucidal effect of the human immunodeficiency virus 1
(HIV-1) inhibition through a viral membrane-targeting mechanism resulting in the subse-
quent viral membrane disruption and viral inactivation [217].

Notably, tachyplesin from the Tachypleus tridentatus horseshoe crab has exhibited
a potent antiviral activity against herpes simplex virus [218]. Myticin C, derived from
hemocytes of the Mytilus galloprovincialis mussel, has shown an antiviral action against fish
rhabdovirus, ostreid herpesvirus, and human herpes simplex viruses 1 and 2, affecting the
intracellular phase of viral replication [92,93].

5.4. Cytotoxicity

Structural characteristics of AMPs from marine invertebrates, such as a total positive
charge and amphiphilicity, provide the ability to target negatively charged lipid components
of bacterial membranes and display a potent cytotoxicity [17]. Mammalian cell membranes
contain zwitterionic phospholipids and cholesterol, which are thought to be protected
against the effects of AMPs. The selectivity of AMPs toward bacterial cells is an important
advantage. However, not all AMPs from marine invertebrates exhibit such a selectivity, and
the hemolytic activity and cytotoxicity of AMPs toward human cells are some of the main
barriers to their widespread usage. For instance, nicomicins from the polychaeta Nicomache
minor possess cytotoxicity against cancer cells (HeLa) and human erythrocytes [58].

A search for analogs with a pronounced antibacterial activity and a low cytotoxicity is
underway. In particular, a comparison of biological activities of arenicin-1 from the marine
polychaete Arenicola marina and its analog Ar-1[V8R] revealed that Ar-1[V8R] exhibited
a significantly reduced cytotoxicity toward mammalian cells compared to the wild-type
arenicin-1 while maintaining the antibacterial activity. Moreover, a comparative NMR
analysis of the peptides’ spatial structures showed that Ar-1[V8R], unlike arenicin, has a
significantly lower dimerization propensity [43]. On the other hand, the cytotoxicity of
AMPs is supposed to be used to combat transformed and virus-infected cells. For instance,
the cytotoxicity of tachyplesins toward human cancer cells, including non-small-cell lung
cancer and cisplatin-resistant A549/DDP cells, enhances the chemosensitivity to cisplatin
and has a promising potential as an antitumor drug [137–139]. Carriers and drug delivery
methods are being developed to target tumor and HIV-infected cells [217,218].
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6. Mechanisms of Antimicrobial Action of AMPs in Marine Invertebrates

AMPs derived from invertebrates employ various mechanisms to effectively kill or
inhibit the growth of microorganisms. These mechanisms can be broadly categorized into
membrane disruption, intracellular targeting, and immune modulation. Several models
have been proposed to elucidate the mechanisms of direct action of AMPs, including
the barrel-stave model, toroidal pore model, carpet model, aggregation model, molecular
electroporation model, and sinking raft model. These models describe different ways
in which AMPs can disrupt the cell membrane, which is crucial for the survival of mi-
croorganisms [219–221]. Regardless of the molecular target and mechanism of action of
AMPs, the process begins with the adsorption on the surface of the microorganism cell,
provided by the electrostatic attraction of the cationic peptide to the negatively charged
components of the membrane and cell wall. An increase in the ionic strength of the so-
lution usually inhibits this interaction and reduces the activity of AMPs. However, a
number of marine invertebrate peptides are partially resistant to the presence of salts in the
medium [57,207,222,223]. The next step is the insertion of the peptide molecules into the
layer of charged phospholipid heads and then into the hydrophobic part of the lipid bilayer.
This stage is usually associated with an increase in membrane permeability and a complete
or partial loss of its barrier function. The efficiency of membrane lysis is often dependent on
the ability of the peptide to aggregate and form oligomeric complexes. Depending on the
involvement of lipid molecules, barrel-stave pores (whose inner surface is lined exclusively
with peptide molecules) or toroidal pores (lined with charged phospholipid heads alter-
nating with peptide molecules) are formed. In some cases, when high concentrations of
peptides are involved, instead of the stable pores formation, a detergent-like lysis through
the so-called carpet mechanism occurs. The above mechanisms, proposed at the dawn of
the AMP research era, are to a greater or lesser extent common to all families of cationic
AMPs possessing an amphiphilic structure or are capable of acquiring such a structure
upon contact with the lipid bilayer. However, in each particular case, specific interactions
of AMPs with receptor molecules on the surface of the target cell, and sometimes inside it,
may occur.

Thus, cysteine-containing AMPs of the defensin family were initially considered to be
membrane-active agents that increase the permeability of the lipid bilayer and induce a
transmembrane ion current detrimental to the target cell. However, in 2010, it was shown
that the main mechanism of action of many defensins is the inhibition of peptidoglycan
biosynthesis through the binding to lipid II [222–224]. In particular, this is the mechanism
of action of three oyster defensins (Cg-Defh1, Cg-Defh2, and Cg-Defm) [95]. In contrast to
vertebrate defensins, which have a broad spectrum of activity, invertebrate defensins have
no affinity for LPS, but have a higher affinity for lipid II, which explains their selectivity
against Gram-positive bacteria. Therefore, antibacterial defensins share a common target
with some lantibiotics (such as nisin), the glycopeptide antibiotic vancomycin, and the
depsipeptide antibiotic teixobactin. Defensins do not induce cross-resistance with van-
comycin, which binds to the D-Ala-D-Ala fragment, since their target is another more
conserved site, containing pyrophosphate moiety. The binding is irreversible and occurs
in a 1:1 stoichiometric ratio. The key determinants of binding to lipid II are most likely
the evolutionary conserved residues Phe-2, Gly-3, Cys-4, and Cys-25 [95]. Antibacterial
specificity of different peptide isoforms evolves under diversifying selection by a redistri-
bution of positively charged residues exposed on the surface of the molecule. Remarkably,
at concentrations 10 times higher than their MICs, oyster defensins do not cause the de-
polarization of Staphylococcus aureus membrane [95]. However, it cannot be excluded that
other members of the defensin family may simultaneously inhibit peptidoglycan synthesis
and disrupt membrane permeability.

Penaeidins and AMPs from the horseshoe crab Tachypleus tridentatus are known to
have the ability to bind chitin. It has been observed that affinity to chitin correlates with
antifungal activity: tachyplesins and tachystatins, which bind to chitin more strongly
than “big defensin” and tachycytin, show their effect against Candida albicans and Pichia
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pastoris at much lower concentrations [37]. Since the animals producing these AMPs are
themselves covered with a chitin shell, it is possible that they not only provide protection
against fungal pathogens, but also participate in the assembly and regeneration of the chitin
exoskeleton [225].

For many cationic peptides which penetrate microbial cells, nucleic acids may be a
potential target. Binding to them inhibits replication and transcription processes. Although
the main mechanism of action of the β-hairpin AMP tachyplesin I is currently considered
to be membrane depolarization due to the formation of toroidal pores [226], one of the
first reports showed its ability to bind to the minor groove of DNA [227]. According to
more recent studies, tachyplesin may kill bacteria by targeting intracellular enzymes [228],
particularly FabG, the conserved 3-ketoacyl carrier protein reductase in the unsaturated
fatty acid biosynthesis pathway [229]. Another well-known target of this versatile AMP is
lipopolysaccharide (LPS) of Gram-negative bacteria. It was shown via NMR spectroscopy
that the majority of positively charged (R4, R7, R11, and R13) and aromatic residues
participate in the interaction of the cysteine-deleted analog of tachyplesin-1 with LPS. In
particular, there may be ionic interactions between guanidinium groups of residues R7 and
R13 with di-phosphate groups of the lipid A moiety [230].

The antibacterial action of arenicin-1, another β-hairpin AMP, has been explained by
the oligomerization in the lipid bilayer with the formation of toroidal pores, or by action
via a carpet-like mechanism [42,231]. Amino acid substitutions in the non-polar face of the
molecule with hydrophilic residues can reduce the propensity of the peptide to dimerize,
thereby reducing the hemolytic activity without affecting its antimicrobial activity [43].
The fungicidal action of this peptide against Candida is associated with the generation of
reactive oxygen species and the induction of apoptosis [232].

The target for cationic ALFs, as their name suggests, is LPS. The main functional
region of ALFs is the LPS-binding domain (LPS-BD or LBD)—a β-hairpin, stabilized by the
disulfide bridge. The positively charged residues of LPS-BD bind in an exothermic reaction
with the negative charges of lipid A moiety, and then the interaction of the β-hairpin with
the LPS acyl chains takes place [233,234]. Both the opening of the disulfide bridge and
replacing the cationic residues with neutral ones diminished the antibacterial effects [235].
However, the spectrum of activity of these compounds is much broader and also includes
Gram-positive bacteria, fungi, and viruses [236]. The mechanism of action of ALFs against
non-bacterial pathogens remains to be elucidated, but it has been shown that lipoteichoic
acids (LTAs) serve as a molecular target when acting on Gram-positive bacteria. Binding to
LPS and LTAs ultimately leads to the destabilization of bacterial membranes. The same is
also true for crustins. Crustins bind to cell wall components such as peptidoglycan, LTAs,
and LPS. It has been observed that at least two molecules of crustins interact with one LTAs
or LPS molecule [105]. Furthermore, the antimicrobial activity of crustins correlates with
their specificity for binding to bacterial cell wall components [106].

Summarizing the above, we can conclude that many AMPs seem to exert their antimi-
crobial action through different parallel mechanisms. The prevalence of one or another
mechanism may depend on peptide concentration and environmental conditions. This
makes it very difficult to identify the causes of death or the growth inhibition of the
target microorganism.

7. Marine Invertebrate AMPs as Molecular Factors of Innate Immunity

AMPs derived from marine invertebrates play a vital role in their innate immune
system, which provides a rapid and non-specific response to invading pathogens. Pro-
duced by various cell types such as epithelial cells, hemocytes, and granulocytes, AMPs
act as natural antibiotics, effectively killing or inhibiting the growth of a wide range of
microorganisms. Upon infection or injury, marine invertebrates induce the production of
AMPs, which can be secreted into the extracellular environment to protect the organism
against pathogens. Molecular mechanisms through which AMPs exert their antimicrobial
effects are diverse. They can disrupt the bacterial cell membrane, inhibit DNA, RNA, or



Mar. Drugs 2023, 21, 503 21 of 37

protein biosynthesis, and interfere with enzyme functions. This broad-spectrum activity
enables AMPs to act against bacteria, fungi, viruses, and protozoans. In response to specific
pathogens, marine invertebrates activate various intracellular pathways to mount an ade-
quate immune response. For instance, in clams and oysters, viral infections trigger RNA
interference (RNAi) and an IFN-like pathway. The RNAi pathway involves the protein
Dicer-2, which is known to activate innate immune pathways and cleaves viral double-
stranded RNA (dsRNA) into small interfering RNAs (siRNAs). These siRNAs then bind to
the RNA-induced silencing complex (RISC), which targets and binds complementary viral
mRNA. Additionally, the JAK-STAT pathway is activated by cytokines called Upd, which
bind to the Dome receptor, leading to the activation of JAK, STAT, and vir-1. The JAK-STAT
pathway also activates PI3K and Akt, which mediate TOR signaling and induce autophagy
in virus-infected cells. The Imd and Toll pathways, including proteins such as dMyD88,
Tube, and Pelle, activate NF-κB effector genes, regulating cytokine levels and other tran-
scriptional responses [218,237,238]. Upon bacterial infections, interaction between bacteria
and pattern recognition receptors (PRRs) triggers the activation of multiple intracellular
pathways, including NF-κB, PI3K, and Caspase, on the cell surface. This activation leads
to the production of AMPs, hydrolases, proteases, as well as causes cytoskeleton remodel-
ing, vesicle trafficking, and an increased expression of PRRs [239,240]. These intracellular
responses contribute to host defense against bacterial pathogens.

8. Immunomodulatory Activity

Apart from their direct antimicrobial properties, AMPs from marine invertebrates pos-
sess immunomodulatory effects. They have the ability to stimulate host immune response
against pathogens, thereby aiding in the defense against infections. These immunomod-
ulatory properties make AMPs valuable therapeutic candidates for enhancing the innate
immune system ability to combat microbial invasions.

Invertebrates utilize AMPs not only to eliminate microorganisms, but also to modulate
their immune response. Certain AMPs have the ability to stimulate the production of
cytokines or chemokines, which attract immune cells to the site of infection [241]. Other
AMPs can bind to microbial molecules or surface receptors, leading to the activation of
immune cells and the generation of reactive oxygen species (ROS) or nitric oxide (NO).
For instance, crustins, widely distributed among different marine crustaceans, exemplify
AMPs with immune modulatory functions [106,115].

Several antimicrobial peptides from marine invertebrates have demonstrated the abil-
ity to inhibit the production of pro-inflammatory cytokines. Clavanin A and clavanin-MO
derived from the tunicate Styela clava were found to possess immunomodulatory activity in
a mouse model by suppressing the inflammatory response associated with sepsis, affecting
immune system components and influencing cytokine modulation through the down-
regulation of IL-12 and TNF-α and up-regulation of GM-CSF, IFN-γ, and MCP-1 [242]. The
suppression of TNF-α production has also been demonstrated with polyphemusin. Zhang
et al. have shown that the horseshoe crab polyphemusine and its analogs inhibited the
binding of LPS to LPS-binding protein and thereby suppress the LPS-induced production
of TNF-α by macrophages [243]. Mytilin, found in the mollusk Mytilus edulis, has been
shown to enhance phagocytosis by transporting through hemocytes to target bacteria [214].
Myticin C has been shown to potentially influence the course of infection by inducing
hemocyte chemotaxis and modulating the expression of other immune genes (Figure 5) [93].

It is important to note that the precise mechanisms by which these peptides inhibit
the production of pro-inflammatory cytokines are not fully understood and may vary
depending on the specific peptide and cell type involved.

Certain AMPs from marine invertebrates have also demonstrated effects on lympho-
cytes. Tachyplesin II, the 18-residue peptide isolated from the horseshoe crab Tachypleus
tridentatus, inhibits T cell line-tropic (T-tropic) HIV-1 infection through its specific binding
to the chemokine receptor CXCR4, which serves as a co-receptor for the entry of T-tropic
HIV-1 strains. Thus, Tachyplesin II exhibits potent anti-HIV activity [244].
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9. The Role of Marine Invertebrate AMPs in the Regulation of Interaction between
Innate and Acquired Immunity Systems in Mammals

Invertebrates do not have T and B cells, clonally derived immunoglobulins, or a
system of complement which form an acquired immunity [245]. However, AMPs from
marine invertebrates introduced into the mammals may play a crucial role in mediating
the interaction between innate and acquired immune systems. While the innate immune
system provides a rapid and generalized response to pathogens, the acquired immune
system offers a specific and adaptive response. AMPs, as a part of the innate immune
system, act as an initial defense mechanism against invading pathogens. Beyond their
direct antimicrobial properties, AMPs also possess immunomodulatory effects. They can
activate immune cells, prompting the production of cytokines and chemokines that recruit
and activate other immune cells at the site of infection. This immune cell activation plays a
role in initiating acquired immunity. In addition, AMPs can influence the activity of cells
involved in acquired immunity, such as T and B cells. Some AMPs act as chemoattractants
for T cells, enhancing their activation and participation in the immune response [95].
Recombinant expression in a fish cell line of antimicrobial peptide myticin C (Myt C) from
the mussel Mytilus galloprovincialis has conferred the protection of fish cells against two
different fish viruses (enveloped and non-enveloped ones). Myt C was considered not only
as an AMP, but also as the first chemokine/cytokine-like molecule identified in bivalves
and one of the few examples among invertebrates [95].
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AMPs interact with molecules involved in immune response regulation in mammals,
such as lipopolysaccharide, lipoteichoic acid, peptidoglycan, and glucan, that are recog-
nized by specific receptors of innate immunity and modify an immune response [127].
AMPs can bind to TLRs, modulating their activity and subsequently activating signal-
ing pathways that lead to cytokine and chemokine production, facilitating immune cell
recruitment and activation [95]. Oyster peptides in immunosuppressed mice by cyclophos-
phamide restored the indexes of the thymus, spleen, and liver, stimulated cytokines secre-
tion, and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4, and
IL-10) and the NF-κB signaling pathway [246].

Furthermore, AMPs can serve as adjuvants, enhancing vaccine efficacy. Adjuvants
stimulate the immune system, boosting the immune response to vaccines. Some AMPs
have demonstrated the ability to enhance antibody production in response to vaccines
targeting bacterial pathogens [247]. Marine invertebrates are a great source of molecules
with a wide range of activities, including adjuvanticity [23].

Despite the lack of adaptive immunity in marine invertebrates, there is a growing
evidence of their immune memory based on cellular and humoral factors. In particular, an
increased expression of antilipopolysaccharide factors after primary stimulation has been
found, which provides a long-term humoral protection in the crab Eriocheir sinensis [248].

In addition, the role of arenicin from the marine polychaete Arenicola marina in the
modulation of the complement system has been shown [81,82,249,250].

The role of AMPs in regulating the interplay between innate and acquired immunity
in mammals is complex and diverse. They strengthen the innate immune response and
modulate the activity of cells involved in acquired immunity. Understanding the under-
lying mechanisms of AMPs’ immunomodulatory effects in marine invertebrates holds
significant potential for the development of novel therapies and vaccines against infectious
diseases [247,251].

Marine invertebrates are considered as promising sources of bioactive molecules and
drugs, and AMPs are considered as deserving more attention [24,25].

10. Alternative Functional Properties of AMPs Derived from Marine Invertebrates

In addition to their well-known antimicrobial properties, AMPs in marine inverte-
brates exhibit a diverse range of alternative functional properties, thereby expanding their
potential roles beyond antimicrobial defense. One such alternative function of AMPs is
their capacity to act as signaling molecules. For instance, tachyplesin have been demon-
strated to regulate cell proliferation, differentiation, and apoptosis [139]. In some cases,
these signaling effects may be linked to their antimicrobial properties, such as the ability of
hydralysins from Cnidaria to disrupt bacterial membranes [252]. However, in other cases,
these signaling effects appear to be independent of HPD antimicrobial activity.

AMPs also possess the ability to bind to bacteria. It has been shown that the crustin
SpCrus5 from the mud crab Scylla paramamosain, containing a typical cysteine-rich do-
main at the N-terminus, a conserved WAP domain in the center, and a special GRR at
the C-terminus, participate in antibacterial immune responses [114,115]. Crustins have
been shown to enhance phagocytosis through bacteria opsonization, thereby providing
protection in vivo [127].

Furthermore, AMPs derived from marine invertebrates have been found to possess
wound healing properties. These AMPs promote cell migration, proliferation, angiogenesis,
and tissue regeneration. For instance, myticin C, a cationic peptide, found in the marine
mussel Mytilus galloprovinciali, has been shown to accelerate re-epithelialization and angio-
genesis, thereby promoting skin wound healing in mice [90]. Halocidin from the tunicate
Halocynthia aurantium has been investigated as a potential topical antibiotic in a mouse
model of surgical wound infected with methicillin-resistant S. aureus. Results indicated
that topically administered halocidin successfully penetrated the dermis at the infection
site, exerting its antimicrobial effects [253].
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As already mentioned above, AMPs also exhibit immunomodulatory properties. They
are capable of modulating the activity of immune cells in mammals, including macrophages,
dendritic cells, and T cells. Some AMPs, for example, clavanines and polyphemusines, have
been shown to down-regulate the production of cytokines, such as IL-12 and TNF-α, which
promote inflammation and an increase in IFN-γ, enhancing antiviral immunity [239,240].
This ability of clavanines to reduce inflammation and induce antiviral protection may be
very important in the treatment of viral diseases. Additionally, the ability of AMPs to
activate or inhibit the complement system in vitro has been demonstrated; moreover, these
effects have been shown to be concentration-dependent [81,82].

It is noteworthy that marine invertebrates produce AMPs not only for their own
protection, but also for safeguarding symbiotic bacteria, which can constitute a significant
proportion of their mass, reaching up to 37%. Symbiotic bacteria are believed to produce
substances with a cytotoxic activity to defend against predators such as fish or sea urchins
and prevent colonization by macroorganisms [254].

Another alternative function of AMPs in marine invertebrates is their potential as
anticancer agents. Some AMPs have displayed a selective cytotoxicity against cancer cells
while sparing normal cells, making them potential candidates for cancer therapeutics.
Polyphemusin III has exhibited cytotoxic effects on human leukemia cells (HL-60) by
permeabilizing the cell membrane [133]. Others are cytotoxic for cancer and normal
cells. For example, nicomicins from the marine polychaeta Nicomache minor possessed
cytotoxicity against cancer cells (HeLa) and normal adherent cells as well as toward human
erythrocyte [58]. Tachyplesins have been found to be toxic toward human non-small-cell
lung cancer cells and normal cells [137–139]. Backbone cyclized analogs of tachyplesin 1
had increased selectivity toward melanoma cells and its analog has shown an ability to
enter cells with a high efficacy and a low toxicity [255].

In summary, the alternative functional properties of AMPs in marine invertebrates
extend beyond their antimicrobial defense role and encompass signaling, immunomodula-
tion, wound healing, and potential anticancer applications. Advancing our understanding
of mechanisms underlying these alternative effects of AMPs holds promise for the develop-
ment of novel therapies for treatments of various diseases.

11. Prospects for the Therapeutic Use of Marine Invertebrate AMPs

AMPs derived from marine invertebrates offer a significant potential for therapeutic
applications due to their broad-spectrum antimicrobial activities, a low toxicity, and versa-
tile functional properties. The following are some potential prospects and applications for
the therapeutic use of AMPs:

11.1. Anti-Infective Agents

AMPs have demonstrated a promising efficacy against various pathogenic microorgan-
isms, including bacteria, viruses, fungi, and protozoans. Their broad-spectrum activities
and a low propensity for resistance development make them attractive candidates for
novel antimicrobial therapeutics [68,256]. By modifying naturally occurring AMPs, such as
holothuroidin 2 from the Mediterranean sea cucumber, more potent synthetic peptides, ex-
emplified by their enhanced activity against Listeria monocytogenes, have been created [100].
Effective antibiotics against Listeria monocytogenes, which has a high mortality rate and
forms biofilms on diverse surfaces, would have a significant clinical impact [257,258]. The
complex mechanism of action mediated by various molecular targets coupled with the
ability to rapidly destroy pathogen cells prevent the formation of effective mechanisms for
the development of resistance to AMPs. These compounds may be useful in the treatment
of chronic infections because they are able to destroy persistent cells and penetrate the
biofilm matrix [259]. Although microorganisms are able to develop resistance to AMPs
by decreasing transmembrane potential, through the covalent modification of membrane
lipids, LPS, LTAs, and through the secretion of proteases, etc. [260], the removal of the
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peptides from the medium usually leads to the rapid restoration of their sensitivity, which
may indicate a high fitness cost of such a resistance [261].

11.2. Antibiofilm Activity

A wide range of AMPs from marine invertebrates and their analogs have an antibiofilm
activity against Gram-positive and Gram-negative bacteria, in particular, abarenicin from
Abarenicola pacifica and its analog Ap9, the 5-CC peptide from the sea urchin Paracentrotus
lividus, and its analog paracentrin 1 [51,100–102]. Their ability to prevent biofilm formation,
including biofilms formed by drug-resistant strains, can increase the effectiveness of in-
terventions in surgery, dentistry, and endoprosthetics. Effective antibiotics against Listeria
monocytogenes, which has a high mortality rate and forms biofilms on diverse surfaces,
would have a significant clinical impact [257,258].

11.3. Wound Healing Agents

AMPs have shown the ability to expedite wound healing in animal models, potentially
by stimulating angiogenesis and tissue regeneration. The development of AMP-based ther-
apies could hold great promise in the treatment of chronic wounds and tissue injuries [92].

11.4. Immunomodulatory Agents

AMPs possess immunomodulatory properties, including the activation of immune
cells and the promotion of cytokine production. These characteristics indicate that AMPs
could serve as adjuvants for vaccines or immune-modulating therapies for patients diag-
nosed with cancer, autoimmune diseases, and allergies.

11.5. Anticancer Agents

Some AMPs exhibit a selective cytotoxicity toward cancer cells while sparing healthy
cells. This suggests that AMPs may serve as novel anticancer therapeutics, either alone or
in combination with existing drugs. For instance, halocyamines, tetrapeptides derived from
the morula cells of the solitary ascidian Halocynthia roretzi, have displayed a pronounced
activity against mouse neuroblastoma N-18 cells and human hepatoma Hep-G2 cells [262].

11.6. Food Preservatives

Certain AMPs have demonstrated an antimicrobial activity against foodborne pathogens
and spoilage organisms. Using AMPs as food preservatives, it is possible to prolong the
shelf life of food products and mitigate the risk of foodborne illnesses.

11.7. Agricultural Applications

AMPs hold promise for potential applications in agriculture as biopesticides, as they
can selectively target pathogens while displaying low toxicity toward non-target organisms.
Additionally, the evaluation of AMP structures enables the possibility of the development of
transgenic aquacultures of economically significant marine invertebrates, such as mussels
and crustaceans. Given the decline in these species due to emerging diseases, largely
influenced by climate change, this knowledge could aid in maintaining biodiversity and
economic stability for human well-being.

Despite many advantages and potential applications, the commercialization of ma-
rine invertebrate AMPs as next-generation antibiotics faces several challenges: a rela-
tively high toxicity, a low resistance to proteolytic degradation, binding to plasma pro-
teins, a low bioavailability, and a high cost of chemically synthesized and recombinant
drugs [220,263–266]. The arguments pro- and contra-AMPs as therapeutic agents are sum-
marized in Table 2.



Mar. Drugs 2023, 21, 503 26 of 37

Table 2. Marine invertebrate AMPs as therapeutic agents: the pros and cons.

Strengths Weaknesses

Effective against microorganisms resistant to
conventional antibiotics Low proteolytic stability

Broad activity range Activity against host cell membranes

No toxic metabolism by-products Still prone to resistance development

High fitness cost of acquired resistance Impaired pharmacokinetics

No cross-resistance with conventional antibiotics High production cost

To date, most of the above points are under development. A considerable decrease in
the cost of AMP production will stimulate scientists to move from fundamental studies to
preclinical and clinical trials. Undoubtedly, the first anti-infective marine AMP-based agent
will be introduced into the world’s medical practice over the next ten years.

12. Conclusions

Antimicrobial activities of marine invertebrate AMPs encompass a variety of mecha-
nisms, highlighting the evolutionary adaptations of these organisms in countering diverse
microbial threats. The complexity of these mechanisms underscores the potential thera-
peutic value of AMPs from marine invertebrates across a broad spectrum of applications,
including anti-infective agents, wound healing, and anticancer therapy.

Mechanisms of antimicrobial activities exhibited by AMPs in marine invertebrates are
diverse and intricate, representing remarkable evolutionary adaptations of these animals to
a wide range of microbial threats. The multifaceted nature of marine invertebrate AMPs
enables them to combat pathogens through various mechanisms, including membrane
disruption, cell penetration, and interference with intracellular molecular targets. Moreover,
the alternative functional properties of AMPs, such as their immunomodulatory effects
and wound healing capabilities, further enhance their therapeutic potential.

The therapeutic use of AMPs from marine invertebrates holds great promise to ad-
dress pressing healthcare challenges. As antimicrobial resistance continues to rise, a
broad-spectrum activity and a low propensity for resistance development exhibited by
AMPs make them attractive candidates for the development of novel anti-infective agents.
Furthermore, their ability to promote wound healing and tissue regeneration suggests their
potential application in chronic wound management and regenerative medicine.

In the field of anticancer therapy, a selective cytotoxicity of certain AMPs against
cancer cells offers a promising avenue for the development of targeted anticancer agents.
Combining the unique properties of AMPs with existing treatment modalities may lead to
the development of more effective and personalized anticancer therapies.

While the therapeutic potential of AMPs from marine invertebrates is evident, further
research is essential to unlock their full capabilities. Molecular insights into mechanisms of
their action, optimizing their efficacy, and ensuring their safety profile are crucial steps in
harnessing the therapeutic potential of these molecules. Additionally, exploring the vast
biodiversity of marine invertebrates and their associated microbiomes can unveil novel
AMPs with unique properties and therapeutic applications.

Leveraging their remarkable antimicrobial and alternative functional properties will
allow us to address significant global health challenges. Continued research and develop-
ment efforts in this area hold tremendous promise for the future of medicine, where AMPs
may play a pivotal role in combating infections, promoting wound healing, and advancing
personalized therapies. However, further research is essential to gain a comprehensive un-
derstanding of underlying mechanisms of action and to maximize the therapeutic potential
of AMPs in these contexts.
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