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Abstract: The objective of this study was to isolate and characterize collagen and angiotensin-I-
converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius
litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields
of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders
using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/
1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5
and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC)
(216.6 residues/1000 residues). The sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated
that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated
from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified
as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6
and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity,
with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay
demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were −7.3, −10.9 and
−9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due
to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic
interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs
by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides
an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim
bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as
natural functional components in the development of health care products to control hypertension.

Keywords: monkfish (Lophius litulon); swim bladder; collagen; angiotensin-I-converting enzyme
(ACE); peptides; molecular docking analysis

1. Introduction

The output of global fish and fish-related supplements has reached approximately
179 million tons, in which the proportion from marine fishery accounts for approximately
84.4 million tons [1,2]. During the manufacturing process, approximately 30–50% of these
fish are processed into by-products, which leads to major economic and environmental prob-
lems [3,4]. Therefore, some functional components, such as collagen/gelatin, astaxanthin,
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polysaccharides, unsaturated fatty acids, protease and active peptides, are prepared from
fish by-products using some bioprocessing technologies to produce high-value functional
goods [5–7].

Collagen with a triple-helix structure is one of the most common types of protein
(accounting for about 30% of the body’s proteins) and serves as the primary building
block of the skin, cartilage, blood vessels, muscles, ligaments, bones, internal organs and
connective tissues of the human body [8,9]. As of the present, researchers have purified
and identified twenty-nine types of collagens (types I-XXIX), which differ depending on
the way the molecules, added cell components and used tissues are assembled. In addition,
a large number of collagens originating from mammalian by-products have been widely
used in foods, cosmetics, nourishment, photography and pharmaceutical/biomedical
materials [10,11]. However, mammalian collagens and their derivatives cause concern
and anxiety among consumers because of viral infectious diseases and ethnic dietary
restrictions; therefore, collagen producers actively develop alternative products [9,12]. Due
to the unique existence of marine life, collagen from marine organisms does not have the
same infectious disease problems as land-based collagen and can be widely consumed in
Muslim and Hindu countries [13]. Moreover, the demand for marine collagen is gradually
increasing among industrialists due to its unique physicochemical properties, abundant
resources and safe reliability [3,14]. Therefore, marine collagens have been widely extracted
from different fish by-products [13,15].

Due to their low proportion of imino acids, the thermal and structural stability of
marine collagens are inferior to those of mammal collagens, and they are more suit-
able for degradation by proteases to produce bioactive collagen hydrolysates and pep-
tides [16]. Compared with regular collagens, hydrolyzed collagens have high bioavail-
ability because they are easily dissolved in water and absorbed into the bloodstream.
Moreover, hydrolyzed marine collagens or peptides present multifarious biological func-
tions, such as antioxidant [17], UV damage resistance [18], iron-chelating [19], wound-
healing [20,21], osteoporosis-preventing [22], mucosa-pairing [23], antiaging [24], antifreez-
ing [25], immunity-enhancing [26], hepatoprotective [27] and ACE-inhibiting (ACEi) activ-
ity [28]. Therefore, the preparation of bioactive peptides using marine-derived collagen
and gelatin has been widely taken into consideration because of their significant functions
and promising applications [21].

As a common clinical disease, hypertension can affect the health of the body’s arter-
ies and becomes an enormous and latent risk factor for cardiovascular diseases (CVDs),
atherosclerosis, heart failure, etc. [29,30]. However, the World Health Organization (WHO)
reports that the number of people with hypertension will increase from 1.28 billion to
1.56 billion by 2030 [31]. ACE can modify angiotensin (Ang) I to active Ang II to up-
regulate blood pressure by inactivating the vasodilator bradykinin. In consequence, the in-
hibition of ACE activity is an important way to control systemic high blood pressure [29,30].
Chemosynthetic ACEi drugs, such as quinapril, captopril (Cap), lisinopril and ramipril,
have been used to reduce hypertension in clinical settings, but side effects seriously affect
the application of these ACEi drugs [32]. The search for safer ACEi drugs from animals
and plants can offer a viable alternative to chemosynthetic ACEi drugs for lowering high
blood pressure [33–35]. Therefore, the preparation of ACEi peptides from fish and fish
by-products has become a focal point for researchers, and some ACEi peptides have been
prepared from different marine organisms, such as Pacific cod [36], Takifugu bimaculatus [28],
Skipjack tuna [37,38], squilla [39], Alaska pollack [40], hybrid groupers [41], miiuy croakers [42],
Kuruma shrimp [31], Cobia [43] and Antarctic krill [44].

The monkfish (Lophius litulon) belongs to the genus Lophius and is captured mainly in
northeast China and Asia, with the production of approximately 2 × 105 tons/year [45]. As
of the present, multifarious peptides have been purified from monkfish and its by-products
and have displayed significant physiological and biological activity. For example, peptides
from monkfish muscle could effectively ameliorate kidney damage in mice caused by a
high-fat diet (HFD) by improving antioxidant activity, decreasing inflammatory cytokine
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production and regulating intestinal dysbiosis [46]. Antioxidant peptides from swim
bladders as monkfish by-products could improve the treatment of nonalcoholic fatty liver
disease (NAFLD) by controlling oxidative stress and lipid accumulation via regulating
AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf2)
signal pathways [47,48]. Low-molecular-weight (MW) peptides from roes as monkfish
by-products could significantly promote immune response in immunosuppressed mice [49].
Antioxidant oligopeptides from monkfish muscle could enhance the protective ability of
HepG2 cells to avoid H2O2-induced damage [50]. Collagen peptides from monkfish skins
could ameliorate renal injury in HFD-induced mice by controlling the Nrf2 and NOD-like
receptor thermal protein domain associated protein 3 (NLRP3) signal pathways [51]. Low-
MW peptides from monkfish muscle and liver present an antifatigue effect [42–53]. The
swim bladder is a by-product of the processing of monkfish, but it is often discarded as
waste, resulting in resource waste and environmental pollution. The question of how to
use swim bladders efficiently is of great significance. Thus, the aim of this research is to
isolate and characterize collagens (ASC-M and PSC-M) from monkfish (L. litulon) swim
bladders and their derived ACEi peptides. In addition, the ACEi activity and mechanism
of the prepared peptides are also investigated.

2. Results and Discussion
2.1. Preparation and Characterization of Collagen from Swim Bladders of Monkfish (L. litulon)
2.1.1. Proximate Composition Analysis

The chemical compositions of the monkfish (L. litulon) swim bladders, ASC-M and
PSC-M are presented in Table 1. The protein content in monkfish swim bladders was
20.06 ± 1.09%, which was higher than that in the swim bladders of Miichthys miiuy
(19.17 ± 0.15%) [11], catla (Catla catla) (14.28%) [54] and yellowfin tuna (12.09%) [55].
Furthermore, the protein content on the dry weight basis of ASC-M and PSC-M was
93.68 ± 3.51% and 95.87 ± 2.89%, respectively, which was significantly higher than that in
monkfish swim bladders (p < 0.05). These results illustrated that noncollagenous proteins,
minerals, sugars, etc. were effectively cleared from monkfish swim bladders through the
presented extraction method.

Table 1. Chemical compositions of swim bladders, ASC-M and PSC-M from monkfish (L. litulon).

Sample
Proximate Compositions (% Dry Weight)

Yield on Dry Weight Basis (%)
Moisture Protein Fat Ash

Swim bladders 76.95 ± 3.68 a 20.06 ± 1.09 a 1.71 ± 0.14 a 0.32 ± 0.03 a

ASC-M 4.51 ± 0.19 b 93.68 ± 3.51 b 0.37 ± 0.05 b 1.02 ± 0.34 b 4.27 ± 0.22
PSC-M 4.49 ± 0.35 b 95.87 ± 2.89 b 0.34 ± 0.03 b 0.74 ± 0.26 c 9.54 ± 0.51

a–c Values with different letters indicate significant difference (p < 0.05).

As shown in Table 1, the yield of ASC-M was 4.27 ± 0.22%, which is significantly
higher than those of ACS from the swim bladders of miiuy croakers (1.33%) [11] and
yellowfin tuna (1.07%) [55]. In addition, the yield of PSC-M was 9.54 ± 0.51% and was
2.23-fold that of ASC-M. These data confirmed that more cross-linked collagens exist in
monkfish swim bladders. Therefore, the telopeptide region in the collagens was specifically
cleaved by pepsin, which made the collagen structure smaller and was more conducive to
its extraction from the fibril matrix [11].

2.1.2. Amino Acid Analysis of ASC-M and PSC-M

Table 2 shows that the amino acid compositions of ASC-M and PSC-M had a similar
pattern. ASC-M and PSC-M were rich in Gly (325.2 and 314.9 residues/1000 residues,
respectively), followed by Pro (105.2 and 102.9 residues/1000 residues, respectively), Ala
(99.3 and 97.6 residues/1000 residues, respectively) and Glu/Gln (88.6 and 87.1 residues/
1000 residues, respectively). Gly accounts for about 1/3 of the total amino acids, which is
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consistent with the literature reports that all types of collagens are typically characterized
by a repetitive domain of tripeptides (Gly-X-Y) involved in the formation of the triple-helix
structure [11,55]. In addition, Gly is the key amino acid in the three helix chains forming
the superhelix structure of collagen.

Table 2. Amino acid compositions of ASC-M and PSC-M from swim bladders of monkfish (L. litulon)
(residues/1000 residues).

Amino Acid ASC-M PSC-M Collagen from Calf Skins (CSC)

Hydroxyproline 87.3 85.7 95.1
Aspartic acid/asparagine 45.9 43.8 45.7

Threonine 23.6 24.9 18.4
Glycine 325.2 314.9 330.6

Glutamine/glutamic acid 88.6 87.1 75.9
Proline 105.2 102.9 121.5
Serine 25.9 26.3 33.2

Isoleucine 16.6 15.1 11.4
Alanine 99.3 97.6 119.7
Cysteine 0 0 0.0

Valine 23.7 26.5 21.5
Methionine 5.8 4.5 6.1

Arginine 47.8 52.3 51.0
Leucine 32.5 29.4 23.4
Tyrosine 4.5 6.6 3.7

Hydroxylysine 8.2 10.9 7.7
Tryptophan 0.0 0.0 0.0

Lysine 32.6 38.5 26.5
Histidine 7.5 9.4 5.3

Phenylalanine 19.8 23.6 3.3
Total 1000.0 1000.0 1000.0

Imino acid 192.5 188.6 216.6

The imino acid content of ASC-M and PSC-M was 192.5 and 188.6 residues/
1000 residues, respectively (Table 2), which was similar to that of collagens from the
swim bladders of sea bass (194 residues/1000 residues) [56] and Megalonibea fusca (195 and
199 residues/1000 residues) [57], but significantly lower than that of pig skin collagen and
calf skin collagen (CSC) (216.6 and 220 residues/1000 residues, respectively) [58]. Imino
acids are a critical factor in maintaining the structural and thermal integrity of collagens.
The pyrrolidine rings of Hyp and Pro can restrain changes in the secondary structure of
a polypeptide chain; therefore, the stability of the triple-helix structure is improved. In
addition, the hydroxyl group of Hyp can form interchain hydrogen bonds to stabilize the
collagen’s triple-stranded helix [9,59]. Therefore, the lower ratios of imino acids in ASC-M
and PSC-M resulted in their thermal and structural stability being weaker than that of
collagens from calf and pig skins.

2.1.3. Electrophoretic Patterns of ASC-M and PSC-M

Figure 1 shows that ASC-M and PSC-M showed similar SDS-PAGE patterns. Two
α-chains (α1 and α2, with MWs ranging from 110 to 120 kDa) were the major constituents
of ASC-M (lane 3) and PSC-M (lane 2), which was consistent with the protein pattern of
type I collagen ([α1]2α2) in CSC (lane 1). These results suggested that type I collagen was
the main component of ASC-M and PSC-M. According to the previous literature, we found
that collagens from the swim bladders of M. fusca [57], Lates calcarifer [56], Ctenopharyngodon
idella [60], Gulf corvina [61], miiuy croakers [11], Totoaba macdonaldi [62] and yellowfin
tuna [55] have similar SDS-PAGE patterns to ASC-M and PSC-M. In addition, the SDS-
PAGE patterns showed that ASC-M and PSC-M contained more low-MW bands compared
with CSC, which suggested that the high-MW components, including the β-chain and
γ-chain, were cleaved into low-MW peptides in the extraction process.
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Figure 1. SDS-PAGE patterns of ASC-M and PSC-M from swim bladders of monkfish (L. litulon).
Lane 1: CSC (type I collagen); lane 2: PSC-M; lane 3: ASC-M; lane 4: marker protein.

2.1.4. Ultraviolet (UV) Absorption Spectrums of ASC-M and PSC-M

Figure 2 shows that ASC-M, PSC-M and CSC had similar UV absorption peaks, ranging
from 225 to 230 nm, which was similar to reports for collagens extracted from the swim
bladders of Gulf corvina [61], M. miiuy [11] and M. fusca [57]. This maximum absorption at
220–240 is associated with the groups of carbonyl (C=O), carboxyl (–COOH) and amido
bonds (CONH2) in the polypeptide chains of ASC-M and PSC-M. Additionally, a small
absorption peak was detected at approximately 280 nm, which illustrated that ASC-M and
PSC-M were composed of low aromatic amino acid content, which agrees with the data
in Table 2.
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2.2. Preparation of ACEi Peptides from Collagen Hydrolysates of Monkfish Swim Bladders
2.2.1. Preparation of Collagen Hydrolysates of Monkfish Swim Bladders

ASC-M and PSC-M were separately hydrolyzed by alcalase, neutrase and a double-
enzyme system (alcalase + neutrase), and the ACEi activity of the generated hydrolysates at
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2.5 mg/mL is depicted in Figure 3. The ACEi activity of the PSC-M hydrolysate prepared via
a double-enzyme system (alcalase + neutrase) was 53.22 ± 2.63%, which was significantly
higher than the ACEi activity of the other collagen hydrolysates (p < 0.05). In addition,
Figure 3 shows that the ACEi activity of the PSC-M hydrolysates was better than that of
the ASC-M hydrolysates. Therefore, the PSC-M hydrolysate prepared via a double-enzyme
system (alcalase + neutrase) was named PSC-MH and chosen for follow-up experiments.
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2.2.2. Preparation of ACEi Peptides from PSC-MHs

Through three ultrafiltration membranes, four fractions, namely MH-I, MH-II, MH-III
and MH-IV, were separated from PSC-MH. Moreover, the activity of MH-I was 62.75 ± 1.89%
at 2.5 mg/mL, which was significantly higher than those of PSC-MH (53.22 ± 2.63%), MH-II
(54.73 ± 2.19%), MH-III (42.67 ± 2.03%) and MH-IV (35.69 ± 1.87%) (p < 0.05) (Figure 4).
Ultrafiltration is a popular technique for concentrating target fractions from protein hy-
drolysates according to their molecular size [6]. After ultrafiltration, MH-I enriched more
low-MW peptides, which have a higher chance of combining with ACE [63]. Similarly, low-
MW peptide fractions from hydrolysates of Takifugu bimaculatus [28], tuna dark muscle [37],
Mytilus edulis [30,32], hybrid groupers [41], Pacific cod [36] and miiuy croakers [42] also
showed high ACEi activity. Therefore, MH-I was subsequently analyzed using chromato-
graphic methods.
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MW is one of the key elements to be focused during the purification process of
bioactive peptides [10,64]. Thus, MH-I was further divided into three components (MH-Ia,
MH-1b and MH-Ic) with a Sephadex G-25 column (Figure 5A). The ACEi activity of MH-1b
was 76.81 ± 2.76%, which was significantly higher than those of PSC-MH (53.22 ± 2.63%),
MH-I (62.75 ± 1.89%), MH-Ia (63.39 ± 3.06%) and MH-Ic (42.77 ± 2.38) (p < 0.05) (Figure 5B).
Gel filtration is an efficient technology for separating bioactive substances with different
MWs and is widely used to purify ACEi peptides from different hydrolysates of marine
proteins, such as Skipjack tuna roes [34], Ulva prolifera [65], Kuruma shrimp [66], Ruditapes
philippinarum [67], pearl oyster [68], squilla [39], hybrid groupers [41], etc. Although MH-1b
presented the highest ACEi activity, its MW was not the lowest among the three peptide
components. This finding illustrated that other properties besides MW, such as composition
and sequence of amino acids, hydrophilicity/hydrophobicity and spatial structure, also
greatly influence the ACEi activity of peptides.
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MH-1b was finally separated using RP-HPLC (Figure 5C). According to the elution
chromatogram of MH-1b at 220 nm, twelve ACEi peptides with retention times (RTs)
of 7.03 (MHP1), 8.21 (MHP2), 8.99 (MHP3), 9.17 (MHP4), 9.76 (MHP5), 10.08 (MHP6),
12.68 (MHP7), 13.73 (MHP8), 14.91 (MHP9), 15.92 (MHP10), 17.03 (MHP11) and 19.81 min
(MHP12) were isolated and collected. The ACEi activity values of MHP6, MHP7 and MHP9
at 1.5 mg/mL were 86.34 ± 3.25%, 84.99 ± 2.34% and 85.39 ± 3.46%, respectively, which



Mar. Drugs 2023, 21, 516 8 of 18

were significantly higher than the activity values of the other nine prepared ACEi peptides
(p < 0.05) (Figure 5D).

RP-HPLC is an extremely efficient technology for isolating ACEi peptides according to
their RT, and the RT of separated ACEi peptides can be modulated by adjusting the ratio of
polar solvent (such as trifluoroacetic acid (TFA), methanol, ethyl alcohol and acetonitrile) in
the mobile phase [30,32,64]. Therefore, ACEi peptides have been separated using RP-HPLC
from protein hydrolysates of T. bimaculatus [28], R. philippinarum [67], Skipjack tuna roes [31],
M. edulis [30], Kuruma shrimp [66], pearl oyster [68], Pyropia pseudolinearis [69], squilla [39],
hybrid groupers [41], Arthrospira platensis [70], etc.

2.3. Sequences and MW Determination of MHP6, MHP7 and MHP9

MHP6, MHP7 and MHP9 were analyzed using a protein/peptide sequencer and their
sequences were identified as Ser-Glu-Gly-Pro-Lys (SEGPK), Phe-Asp-Gly-Pro-Tyr (FDGPY)
and Ser-Pro-Gly-Leu-Trp (SPGPW), respectively. The MWs of MHP6, MHP7 and MHP9
were measured as 516.5, 597.6 and 542.6 Da, respectively, and the data agreed with the
theoretical MWs of MHP6, MHP7 and MHP9 (Figure 6, Table 3).
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Table 3. Amino acid sequences, MWs, ACEi activity and affinities with ACE of MHP6, MHP7 and
MHP9 from PSC-MH.

RT (min) Amino Acid
Sequence

Observed MW/Theoretical
MW (Da)

ACEi Activity
(IC50, mg/mL)

Affinity
(kcal/mol)

MHP6 10.08 SEGPK 516.5/516.6 0.63 −7.3
MHP7 12.68 FDGPY 597.6/597.6 0.94 −10.9
MHP9 14.91 SPGPW 542.6/542.6 0.71 −9.4

2.4. IC50 Values and Molecular Docking Analysis of MHP6, MHP7 and MHP9

As shown in Table 3, the IC50 value of MHP6 on ACE was 0.63 mg/mL, which was
lower than those of MHP7 and MHP9 (0.94 and 0.71 mg/mL, respectively). To illustrate the
ACEi mechanism of MHP6, MHP7 and MHP9, a molecular docking assay was conducted
(Figure 7), and the affinities of MHP6, MHP7 and MHP9 with ACE were −7.3, −10.9
and −9.4 kcal/mol, respectively, which were similar to those of ACEi peptides from
miiuy croakers (IKSW: −9.3 kcal/mol) [31], M. edulis (LSFR: −8.5 kcal/mol) [30], rice
bran (YSK: −7.9 kcal/mol) [71], tuna milts (YEGDP: −8.8 kcal/mol) [32] and soybean
(LVLL: −8.6 kcal/mol) [72].
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Figure 7. Molecular docking results of MHP6 (SEGPK) (A), MHP7 (FDGPY) (B) and MHP9 (SPGPW)
(C) with ACE. (A1,A2): Two- and three-dimensional details of ACE and MHP6 (SEGPK) interaction;
(B1,B2): Two- and three-dimensional details of ACE and MHP7 (FDGPY) interaction; (C1,C2): Two-
and three-dimensional details of ACE and MHP9 (SPGPW) interaction.

Figure 7A proves that MHP6 (SEGPK) could combine with the Tyr62, Arg522, Ala356,
Ala354 (S1), Tyr523 (S1) and His513 (S2) residues of ACE via hydrogen bonds. In addition,
MHP6 (SEGPK) had a hydrophobic effect on the Trp357 residue of ACE. Figure 7B indicates
that MHP7 (FDGPY) could form hydrogen bonds with the Arg124, Asn70, Glu143, Glu384
(S1), Try523 (S1), His516 and His353 (S2) residues of ACE. Aside from this, MHP7 (FDGPY)
could establish interactions with the Tyr523 (S1), Leu139, Leu140 and Val518 residues of



Mar. Drugs 2023, 21, 516 10 of 18

ACE via the hydrophobic effect. Figure 7C indicates that MHP9 (SPGPW) could form
hydrogen bonds with the His387, Glu411, Arg522, Ala356, Ser516 and Asn66 residues of
ACE. Besides this, MHP9 (SPGPW) could interact with ACE’s Phe391, His410, Leu139
and Trp357 residues via the hydrophobic effect, and could make contact with the Glu143
residue of ACE through electrostatic force. The ACEi activity of MHP6 and MHP7 is related
to the combination with ACE’s S1 and S2 pockets, and their inhibitory effect on ACE is a
competitive inhibition mode. However, MHP9 has a noncompetitive mode of inhibition
because it does not bind with the S1 or S2 pockets.

2.5. Effects of MHP6, MHP7 and MHP9 on HUVECs
2.5.1. Effects of MHP6, MHP7 and MHP9 on Viability of HUVECs

The viability of HUVECs treated with MHP6, MHP7 and MHP9 at 100–400 µM are
depicted in Figure 8A. The cell viability values of the MHP6, MHP7 and MHP9 groups at
400 µM were 91.27 ± 2.64%, 90.39 ± 3.19% and 91.76 ± 3.22%, respectively, which were
significantly lower than the cell viability values of the control and other concentration
groups of MHP6, MHP7 and MHP9 (p < 0.05). These results indicated that MHP6, MHP7
and MHP9 at 400 µM might lead to some adverse harm to the function of HUVECs.
Therefore, MHP6, MHP7 and MHP9 at 100, 200 and 300 µM were set for the follow-up
experiments.
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2.5.2. Effects of MHP6, MHP7 and MHP9 on Production of NO and ET-1

Figure 8B shows that the NO level was markedly increased from 35.01 ± 1.38 µM
to 56.18 ± 2.58 µM after HUVECs were treated by Cap, but significantly decreased to
21.34 ± 1.24 µM after HUVECs were treated by NE (p < 0.001). Moreover, the NO content
in HUVECs was significantly increased by treatment with MHP6, MHP7 and MHP9. At
300 µM, the NO production levels in HUVECs incubated with MHP6, MHP7 and MHP9
increased to 51.68 ± 2.38, 48.91 ± 2.35 and 49.83 ± 0.96 µM, respectively. Furthermore,
the NO content reversely descended by NE could be separately raised to 31.24 ± 1.29,
26.31 ± 1.22 and 29.87 ± 1.34 µM after being dealt with using MHP6, MHP7 and MHP9,
respectively, at 300 µM (p < 0.001). The present findings manifest that MHP6, MHP7 and
MHP9 could significantly promote the NO generation in HUVECs and make up for the
loss of NO content caused by NE.

As depicted in Figure 8C, Cap at 1.0 µM could significantly reduce the ET-1 level in
HUVECs from 54.87 ± 2.57 to 32.25 ± 1.26 pg/mL. Conversely, NE at 0.5 µM could increase
the ET-1 content to 69.58 ± 3.11 pg/mL (p < 0.001). Furthermore, MHP6, MHP7 and MHP9
could significantly reduce the ET-1 content in HUVECs at 100–300 µM (p < 0.001), and the
ET-1 content in MHP6, MHP7 and MHP9 groups dropped to 40.35 ± 1.96, 43.87 ± 1.73 and
42.18 ± 2.09 pg/mL, respectively, at 300 µM. Moreover, the increased ET-1 content caused
by NE was partially reduced through MHP6, MHP7 and MHP9 treatment and lowered
to 57.62 ± 1.95, 61.23 ± 1.89 and 58.44 ± 2.34 pg/mL, respectively, at 300 µM (p < 0.001).
These findings indicated that MHP6, MHP7 and MHP9 had great ability to reduce the ET-1
secretion in HUVECs.

NO is the most potent vascular endothelium-derived vasodilator and performs a vital
function in preventing CVDs [31]. In addition, ET-1 is a known vasoconstriction factor,
similar to Ang II, that can result in endothelial dysfunction associated with high blood
pressure and atherosclerosis [30]. WGESF and WSPGF from tuna roes could significantly
bring down ET-1 secretion and improve the NO generation in HUVECs, but also reverse
negative influences of NE on the levels of NO and ET-1 [31]. IVTNWDDMEK and VGPAG-
PRG could regulate NO and ET-1 production in a concentration-dependent manner and
positively regulate the expression levels of Nrf2 and heme oxygenase-1 (HO-1) proteins
to protect HUVECs against oxidative damage [73]. ACEi peptides from T. bimaculatus
skins (FNLRMQ) [28], tuna milts (ICY, LSFR and IYSP) [32], yak milk casein (KYIPIQ) [74],
M. edulis (YEGDP and WF) [30], Isochrysis zhanjiangensis (EMFGTSSET) [75] and miiuy
croaker swim bladders (SHGEY and SPYGF) [42] showed similar regulatory function to
that of the functional factors that protect HUVECs and oxidation-damaged HUVECs. The
present results indicate that MHP6, MHP7 and MHP9 had a great ability to regulate the
secretion of NO and ET-1 in HUVECs, which has positive effects on the protection of
vascular endothelial cells and the treatment of high blood pressure.

3. Materials and Methods
3.1. Chemicals and Reagents

Monkfish swim bladders were provided by Zhejiang Hailisheng Group Co., Ltd.
(Zhoushan, China). High-MW markers were bought from the Shanghai Institute of Bio-
chemistry (Shanghai, China). Porcine pepsin and CSC were obtained from Sigma-Aldrich
(Shanghai, China) Trading Co., Ltd. (Shanghai, China). Human umbilical vein endothelial
cells (HUVECs) were purchased from the Cell Bank of Type Culture Collection of the
Chinese Academy of Sciences (Shanghai, China). Endothelin-1(ET-1) and nitric oxide (NO)
kits were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Alcalase, Dulbecco’s modified eagle’s medium (DMEM), norepinephrine (NE), neutrase,
captopril (Cap), 3-(4,5-Dimethylthiazol-2yl)-2,5-dip-henyltetrazolium bromide (MTT), fetal
bovine serum (FBS) and trifluoroacetic acid (TFA) were purchased from Beijing Solarbio
Science & Technology Co., Ltd. (Beijing, China). ACEi peptides (purity > 95%) of SEGPK
(MHP6), FDGPY (MHP7) and SPGPW (MHP9) were synthesized in Shanghai Apeptide
Co., Ltd. (Shanghai, China).
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3.2. Extraction of Collagens from Monkfish Swim Bladders

The swim bladder collagens (ASC-M and PSC-M) of monkfish were extracted accord-
ing to the previous method [11]. Noncollagenous proteins were cleared up from monkfish
swim bladders using 0.15 M NaOH at a sample/solution ratio of 1:12 (w/v) for 18 h at 4 ◦C.
The NaOH solution was replaced every 3 h. After that, swim bladders were washed with
distilled water (DW) and defatted with normal butanol (15%) with a sample/solution ratio
of 1:18 for 32 h, and the solution was replaced every 8 h. Defatted monkfish swim bladders
were washed three times with a 10-fold volume of cold DW.

Defatted swim bladder powder was dispersed in 0.5 M acetic acid at a swim blad-
der/solvent ratio of 1:15 (w/v) and stirred for extraction at 4 ◦C. After 48 h, the mixture was
filtered with cheesecloth, and NaCl with a final concentration of 2.5 M was added into the
filtered solution to precipitate collagen. The precipitate was collected via centrifugation at
16,000× g (TGL-16G, Shanghai, China) for 25 min at 4 ◦C. The solid precipitate was dialyzed
with a 12-fold volume of acetic acid solution (0.1 M) at 4 ◦C. After 12 h, the dialysate was
further dialyzed with a 20-fold volume of DW for 42 h, with the DW replaced every 6 h.
The prepared dialysate was freeze-dried and named ASC-M.

The solid residue produced from the ASC-M preparation was subsequently mixed in
a 10-fold volume of acetic acid solution (0.5 M). After the mixture was thoroughly stirred,
porcine pepsin was added in the solution according to the dose of 20 U/g residues. The
mixtures were sustained and stirred for extraction at 4 ◦C. After 48 h, PSC-M was prepared
using the same preparation method as ASC-M. The yields of ASC-M and PSC-M were
calculated based on the weight of the collagen extract according to the percentage of the
total weight of the dried swim bladders.

3.3. Characterization of ASC-M and PSC-M
3.3.1. Proximate and Amino Acid Analysis

The protein content of the swim bladders, ASC-M and PSC-M was determined by
employing the Kjeldahl method. The fat, ash and moisture content in monkfish (L. litulon)
swim bladders, ASC-M and PSC-M was determined using the AOAC method, with the
numbers 960.39 (a), 950.46B and 920.153, respectively. Amino acid composition of ASC-M,
PSC-M and CSC was measured according to the previous method [76].

3.3.2. SDS-PAGE Patterns of ASC-M and PSC-M

SDS-PAGE patterns of ASC-M, PSC-M and CSC were determined using the previous
method [77]. In brief, a 7.5% resolving gel and 4% stacking gel were employed in the
electrophoresis experiment, and a high-MW protein marker was applied to determine the
MWs of proteins.

3.3.3. UV Absorption Analysis

A UV-1800 spectrophotometer was employed to record the UV adsorption spectrums
of ASC-M, PSC-M and CSC from 200 to 400 nm. The ASC-M, PSC-M and CSC were sepa-
rately dissolved in 0.5 M acetic acid solution with a collagen/solution ratio of 1:1000 (w/v).

3.4. Preparation of Hydrolysates of ASC-M and PSC-M

The preparation of a hydrolysate of PSC-M was carried out in accordance with the
previous method [31,38]. The dispersions (1%, w/v) of ASC-M and PSC-M were separately
degraded with alcalase (55 ◦C, pH 8.5, 4 h), neutrase (55 ◦C, pH 7.0, 4 H) and a double-
enzyme system (alcalase (2 h) + neutrase (2 h)). The enzyme dose was designed as 2% (w/w).
After the hydrolysis reaction, the proteases in the hydrolysate solution were inactivated
in boiling water for 10 min. The prepared hydrolysates were centrifuged at 9000× g for
25 min, and the supernatants were freeze-dried and their ACEi ability was detected. The
hydrolysate of PSC-M generated via the double-enzyme system displayed the highest ACEi
ability value and was named PSC-MH.
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3.5. Preparation of ACEi Peptides from PSC-MH

PSC-MH (100.0 mg/mL) was ultrafiltered with 1, 3.5 and 5 kDa MW cutoff membranes,
and four peptide components, namely MH-I (MW < 1 kDa), MH-II (1 kDa < MW < 3.5 kDa),
MH-III (3.5 kDa < MW < 5 kDa) and MH-IV (MW > 5 kDa), were prepared.

MH-I (5.0 mL, 60.0 mg/mL) was separated using a gel permeation chromatography
column of Sephadex G-25 (2.6 × 150 cm). DW with a flow rate of 1.0 mL/min was used
as the moving phase. The UV absorption of each collected eluate (3.0 mL) at 220 nm was
analyzed. Lastly, three subfractions (MH-Ia, MH-Ib and MH-Ic) were isolated from MH-I.

Finally, MH-Ib (25 µL, 80.0 µg/mL) was purified with a Zorbax 300SB-C18 column
(9.4 × 250 mm, 5 µm) in the RP-HPLC system. The column was eluted by a linear gradient
of acetonitrile (containing 0.05% TFA) at 1.0 mL/min. The acetonitrile content was increased
from 10% to 50% in 30 min. The UV absorption of the eluate at 220 nm was analyzed and
twelve ACEi peptides (MHP1 to MHP12) were purified from MH-Ib, and their ACEi activity
was measured.

3.6. Determination of ACEi Activity

The ACEi activity of PSC-MH, fractions and peptides (MHP1-MHP12) was determined
by using FAPGG as a substrate [44]. Briefly, the initial volume was made up of a 50 µL
volume of FAPGG (3 mM), ACE (1.25 mU) and the sample solution, respectively. These
solutions were first preheated at 37 ◦C for 0.5 h for ash, and mixed and incubated for
an additional 0.5 h. After that, 150 µL of glacial acetic acid was added to the solution
to inactivate ACE. After that, the content of hippuric acid (HA) in the reaction mixture
produced from the substrate reactions catalyzed by ACE was determined using HPLC at
228 nm. In short, using an isocratic system (pH 3.0) made up of 12.5% (v/v) acetonitrile in
deionized water, the amount of free HA was evaluated using an HPLC system (Agilent
1200, Agilent Ltd., Santa Clara, CA, USA) on a Zorbax SB C-18 column (4.6 × 250 mm,
5 µm). The sample (10 µL) was eluted at a flow rate of 1.0 mL/min, and the absorbance at
228 nm was monitored to obtain the measurement [44]. A total of 50 µL of PBS buffer, used
as the sample substitute, was added into the control reaction mixture. ACEi activity was
calculated as follows:

ACEi activity (%) = [(HA control − HA sample)/HA control] × 100% (1)

3.7. Sequence Identification of MHP6, MHP7 and MHP9

The amino acid sequences of MHP6, MHP7 and MHP9 were determined using a
protein sequencer (Applied Biosystems 494, Perkin Elmer Co. Ltd. Foster City, CA, USA).
The MWs of MHP6, MHP7 and MHP9 were measured using an ESI-Q-TOF-MS (Micromass,
Waters, Milford, MA, USA) [78].

3.8. Molecular Docking Experiments on MHP6, MHP7 and MHP9

Molecular docking experiments were carried out according to the previous method [31].
The position and size of the binding pocket was confirmed with Chimera software (UCSF
Chimera-1.15, San Francisco, CA, USA) through analyzing the interaction of the ACEi
peptide (MHP6, MHP7 or MHP9) and ACE. Molecular docking and free energy calculation
were carried out with the Autodock Vina. The best-ranked docking poses of MHP6, MHP7
and MHP9 in ACE were captured in accordance with the binding-energy scores.

3.9. Effects of MHP6, MHP7 and MHP9 on HUVECs

HUVECs were cultured in DMEM at 37 ◦C in a humidified 5% CO2 atmosphere, and
the DMEM contained penicillin (100 U/mL), FBS (10%, v/v) and streptomycin (100 g/mL).
After 24 h, the cells were used for follow-up experiments.

The MTT method was employed to detect the viability of HUVECs incubated with
MHP6, MHP7 and MHP9 [38]. In brief, HUVECs were seeded in 96-well plates and cultured
for 24 h. Subsequently, HUVECs were separately treated with MHP6, MHP7 and MHP9



Mar. Drugs 2023, 21, 516 14 of 18

(100, 200, 300 or 400 µM) at 37 ◦C. After 24 h, MTT was added into the cell culture to
reach a final concentration of 2 mg/mL. After 4 h, DMSO was added into each well and
the absorbance at 490 nm was determined. Cell viability was calculated according to the
following formula:

Cell viability (%) = (Asample/Acontrol) × 100 (2)

After treatment with ACEi peptides (MHP6, MHP7 and MHP9, respectively) for 24 h,
the NO and ET-1 content in the HUVECs was separately determined according to their
assay kits as per manufacturers’ protocol.

3.10. Statistical Analysis

Statistical analysis was carried out using SPSS 19.0 software. Experimental data were
expressed as the mean ± standard deviations (SDs, n = 3) and were statistically analyzed
using an ANOVA test. Duncan’s multiple range test was used to analyze the significant
differences in each group (p < 0.05, 0.01 or 0.001).

4. Conclusions

In this study, collagens (ASC-M and PSC-M) were extracted from monkfish (L. litulon)
swim bladders using acid and enzymatic methods. Their physicochemical properties
indicated that ASC-M and PSC-M are similar to type I collagen. Moreover, three peptides
with significant ACEi ability were separated from PSC-MH generated via a double-enzyme
system and identified as SEGPK, FDGPY and SPGPW, respectively. SEGPK, FDGPY and
SPGPW displayed remarkable hypotensive effects through their ACEi activity and through
controlling NO and ET-1 generation in HUVECs. The ACEi activity of SEGPK, FDGPY and
SPGPW was closely related to the interaction with the ACE’s active sites/pockets. Therefore,
this work not only provides effective technology for the manufacture of collagens and novel
ACEi peptides from monkfish swim bladders, but also helps to solve the pollution problem
induced by fish by-products. More importantly, SEGPK, FDGPY and SPGPW could serve as
safe functional substances for manufacturing significant blood pressure-lowering products,
thereby controlling hypertension and CVDs.

Author Contributions: Y.-D.H. and Q.-H.X.: conceptualization, data curation, formal analysis, in-
vestigation, methodology and validation. J.K. and Y.-Q.Z.: investigation, methodology, valida-
tion and writing—original draft. C.-F.C.: resources, supervision and writing—review and editing.
B.W.: conceptualization, funding acquisition, resources, supervision and writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (no. 82073764),
the Ten-thousand Talents Plan of Zhejiang Province (no. 2019R52026) and the Innovation and
Entrepreneurship Training Program for College Students of China (no. 202210340034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACE, angiotensin-I-converting enzyme; ACEi, angiotensin-I-converting enzyme-inhibitory; ASC-
M, acid-soluble collagen; PSC-M, pepsin-soluble collagen; CSC, collagen from calf skins; DW, distilled
water; SDS-PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis; UV, ultraviolet;
MHP6, Ser-Glu-Gly-Pro-Lys (SEGPK); MHP7, Phe-Asp-Gly-Pro-Tyr (FDGPY); MHP9, Ser-Pro-Gly-
Pro-Trp (SPGPW); IC50, half-maximal inhibitory concentration; HUVECs, human umbilical vein
endothelial cells; NO, nitric oxide; ET-1, endothelin-1; CVDs, cardiovascular diseases; WHO, World
Health Organization; Ang I, angiotensin I; Ang II, angiotensin II; Cap, captopril; HFD, high-fat diet;



Mar. Drugs 2023, 21, 516 15 of 18

NAFLD, nonalcoholic fatty liver disease; AMPK, AMP-activated protein kinase; Nrf2, NF-E2-related
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