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Abstract: Sepsis is a life-threatening complication of an infectious process that results from the
excessive and uncontrolled activation of the host’s pro-inflammatory immune response to a pathogen.
Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative
bacteria’s outer membrane, plays a key role in the development of Gram-negative sepsis and septic
shock in humans. To date, no specific and effective drug against sepsis has been developed. This
review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS
toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical
properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic
analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic
drugs are discussed.

Keywords: lipopolysaccharide (LPS, endotoxin); LPS-binding proteins/peptides; host defense
proteins/peptids; innate immune system; marine invertebrates; Gram-negative sepsis; endotoxic shock

1. Introduction

Lipopolysaccharide (LPS, endotoxin), the major structural component of the Gram-
negative bacteria’s outer membrane, serves as a physical barrier that protects bacteria from
the external environment and can be released into the surrounding medium during cell
division or death [1]. These molecules are the potent stimulators of the innate immune
system, playing an important role in the pathogenesis of Gram-negative infections in ani-
mals. When it enters the body of a warm-blooded host, LPS binds and activates the cellular
Toll-like receptor 4 (TLR4), which leads to the development of an inflammatory reaction
and, ultimately, as a result, to the death and elimination of the pathogen. However, the
accumulation of endotoxin in the bloodstream in large quantities (with Gram-negative
infection, invasive procedures, etc.) can cause the excessive activation of immunocom-
petent cells, inducing the overproduction of pro-inflammatory cytokines and a systemic
inflammatory response, which leads to sepsis and septic shock within a few days (Figure 1).
Lipid A, the predominantly lipophilic and most conserved fragment of the LPS molecule,
directly interacts with TLR4 and is responsible for most of the immunobiological and toxic
properties of endotoxin [1].

Gram-negative sepsis remains a serious unresolved problem in clinical medicine.
This type (according to the etiology of pathogens) of sepsis is clinically the most severe,
often accompanied by septic shock, and has a significantly higher mortality rate than
other types. The increasing use of new technologies in medical practice—cytostatic and
immunosuppressive therapy and transplantation and prosthetics—as well as the HIV and
COVID-19 pandemics and the increasing resistance of pathogens to antibiotics contribute
to the growth of septic complications in patients. The aging population, accompanied by an
increase in chronic diseases, also leads to an increase in the incidence of sepsis and septic
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shock. As a result, despite the great advances in antimicrobial chemotherapy, mortality rates
from septic shock remain the highest and do not decrease worldwide. The development
and introduction of new antibiotics into medical practice does not fundamentally solve the
problem; moreover, their use in some cases can lead to a deterioration in the condition of a
septic patient.

Figure 1. LPS-induced inflammatory response of the innate immune system and the anti-
inflammatory effect of LPS-binding peptides/proteins from marine invertebrates. Serum protein LBP
(LPS-binding protein) binds the monomer of LPS and delivers it to a CD14 molecule. CD14 transfers
LPS to the ectodomain of the TLR4/MD-2 receptor complex, which leads to homodimerization of
TLR4. This change in TLR4 conformation provides a binding site for adaptor molecule MyD88
(myeloid differentiation primary-response protein 88). The MyD88-dependent signaling pathway
leads to the activation of nuclear factor-κβ (NF-κβ), which regulates the expression of target genes
encoding pro-inflammatory mediators. The overproduction of pro-inflammatory cytokines may lead
to an uncontrolled inflammatory reaction and eventually to sepsis. The binding of ILBP to LPS blocks
CD14–LPS interaction and prevents the transfer of LPS to the TLR4/MD-2 complex, thus interfering
with TLR4 dimerization and downstream inflammatory responses.

Modern medicine does not have specific and effective anti-sepsis drugs whose molec-
ular target is LPS. Molecules that can selectively block TLR4, preventing endotoxin from
binding to receptor and the development of a systemic inflammatory response, may have
therapeutic potential for the treatment of sepsis. In particular, TLR-4 receptor antago-



Mar. Drugs 2023, 21, 581 3 of 23

nists are structural analogs of lipid A with low toxicity, including native lipid A from a
number of marine proteobacteria (Proteobacteria) [2,3]. Another approach to the endotoxin-
neutralizing drug design is based on the use of synthetic or natural substances that can
suppress the biological activity of LPS due to the formation of strong complexes with it
(Figure 1) [4]. Searching for such compounds among the host defense proteins of marine
invertebrates—which represent one of the most extensive and diverse groups of animals,
numbering 153,434 species—seems very promising (UN data for 2019).

Marine invertebrates only have an innate immune system, including a huge set of
defense proteins, which was formed during a long evolution and allowed them to survive
in the environment enriched with pathogenic microorganisms [5]. Host defense proteins
are traditionally referred to as antimicrobial peptides, although they have been shown to
be polyfunctional compounds. These proteins are constitutively expressed and rapidly
induced in various cells and tissues, interact directly with infectious agents, and/or activate
immune responses to eliminate pathogens. Defense proteins usually recognize and bind to
the surface of the pathogen the most conservative biopolymers that are common and vital
for a large group of microorganisms but not present in the host. These molecules, known
as pathogen-associated molecular patterns (PAMPs), trigger innate immune responses in
the host [6]. In Gram-negative bacteria, this PAMP is LPS.

Host defense proteins and peptides with lipopolysaccharide-binding capacity from
marine invertebrates (ILBPs, invertebrate lipopolysaccharide-binding proteins) may pos-
sess different biological properties depending on the structure and nature of the interaction
with endotoxins. With a high affinity for LPS, these proteins may have antimicrobial or
endotoxin-neutralizing activity, or both [4]. ILBPs that combine both of these properties are
considered today as the most effective potential drugs for the treatment of human sepsis.

This review summarizes data on host defense proteins (antimicrobial peptides) of
marine invertebrates that can recognize and bind LPS. Particular attention is focused on
the group of ILBPs and their synthetic analogs, which neutralizes endotoxin. The structure,
physicochemical properties, LPS-binding/neutralizing activities, and antimicrobial activi-
ties of these proteins are considered in detail as far as the sources for their isolation among
marine invertebrates. The structural basis of the endotoxin-neutralizing action of ILBPs
is discussed.

2. Anti-Lipopolysaccharide Factor (ALF)

A cationic protein that inhibited the LPS-induced activation of the crab hemolymph
coagulation system has been found in hemocyte lysates of Japanese (Tachypleus tridentatus)
and American (Limulus polyphemus) horseshoe crabs [7–9]. This protein, called the anti-
lipopolysaccharide factor (ALF), was able to bind LPS, neutralize its biological activity
(in vitro and in vivo), and inhibit the growth of R-type Gram-negative bacteria. The natural
and recombinant anti-LPS factor Limulus (ALF-L) also suppressed endotoxin-mediated
activation of cultured endothelial and B cells, reduced the concentration of endotoxin and
TNF-α in the blood serum of experimental animals, and protected them from death in the
late stages of endotoxemia and sepsis [10–14].

Numerous ALF homologues have been identified and characterized in different types
of crustaceans: shrimp, lobster, crabs, and crayfish [15–22]. The most extensively studied
ALFs are isolated from shrimp of the Penaeidae family, which includes many economically
important species that are of interest as objects of industrial fishing and breeding [23].

ALFs show a broad spectrum of antimicrobial activity against Gram-negative and
Gram-positive bacteria, fungi, human enveloped viruses (herpesvirus type 1, adenovirus),
and white spot syndrome virus (WSSV), which is widely distributed throughout the
world and considered as one of the most destructive and pathogenic viruses in shrimp
farms [24–26].

In crustaceans, one organism usually contains several isoforms of ALF, which are
either encoded by different genes or formed as a result of alternative mRNA splicing [27].
Thus, six isoforms were identified in the tiger shrimp Penaeus monodon, and seven isoforms
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were found in the Chinese shrimp Fenneropenaeus chinensis and the South Korean blue
crab Portunus trituberculatus [15,28–32]. The isoforms differed in tissue distribution and
antimicrobial properties. The wide diversity of ALF sequences within a species may provide
a synergistic enhancement of their protective action against bacterial infection.

ALFs are a group of small single-domain antimicrobial proteins consisting of 97–124
amino acid residues with a relatively short 16–28 residue signal sequence. The molecular
weight of the mature protein is about 11 kDa: ALFs from L. polyphemus and shrimp of
various species have masses of 11.8 and 10.74 to 12.23 kDa, respectively [9,33]. According
to the values of the isoelectric points (pI), ALFs were classified as cationic peptides, but
more and more data are emerging on the existence of anionic proteins among them [33–35].
The theoretical pI values of mature shrimp ALFs range from 5.02 to 10.29 [33]. Typically,
ALF molecules have a highly hydrophobic N-terminal region and conserved cluster of
positively charged and hydrophobic amino acid residues within a loop fixed by a disulfide
bond between two conserved cysteine residues, which is commonly referred to as the
LPS-binding domain [36]. This amphipathic loop is an important functional molecule
moiety, which is responsible for the biological activity of ALFs. Indeed, synthetic peptides
corresponding to this fragment from various ALFs have shown antimicrobial activity, the
ability to inhibit WSSV virus replication, and a protective effect in sepsis [20,37–39].

Despite the large number of registered ALFs (more than 300 proteins of this class
from crustaceans were isolated and characterized until 2021), only one crystal structure of
them has been established to date. The X-ray structure of recombinant ALF-L consists of
three α-helices (one at the N-terminus and two at the C-terminus) packed against a four-
stranded β-sheet, giving rise to a wedge-shaped molecule [36]. The potential LPS-binding
domain includes an amphipathic β-hairpin formed by the longest β-strands S2 and S3 of the
β-sheet and stabilized by the single disulfide bond (Cys31–Cys52). The positively charged
residues within the β-hairpin of ALF-L are supposed to interact with the negatively charged
phosphate groups of lipid A. However, the lipid A binding site on ALF remains poorly
understood to date. Later, the spatial ALF structure from the shrimp P. monodon, expressed
in yeast cells, rALFPm3, was determined using NMR (Figure 2) [40]. The structure of rALF-
Pm3, like ALF-L, is composed of three α-helices, a four-stranded β-sheet, and contains a
β-hairpin formed by S2 and S3 β-strands closely linked via a Cys34-Cys55 disulfide bond.
A Comparison of the 3D structures of these proteins revealed highly similar clusters of
positively charged and hydrophobic residues on the β-sheet surface. This suggests that
ALF-L and ALFPm3 have a similar LPS binding site, which is located on the β-sheet and
mainly consists of 5–6 positively charged and several hydrophobic residues capable of
binding lipid A through electrostatic and hydrophobic interactions.
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A series of peptides of various lengths, including cyclic ones, derived from the ALF-L
sequence, were synthesized [41]. These peptides demonstrated high endotoxin-binding
and neutralizing activities, comparable with those of the parent recombinant protein, and
were non-toxic for erythrocytes or cultured human monocytes. A new class of peptides
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based on the LPS-binding domain of ALF-L or part of it with significant changes in length
and primary sequence calculated for optimal lipid A binding was also designed [42]. A
preclinical study revealed that these peptides have high selectivity for LPS, as well as
high LPS-neutralizing activity in vitro and the ability to protect against sepsis in vivo.
An analysis of the obtained data showed that the endotoxin-neutralizing activity of the
peptides is closely related to their affinity for LPS and the ability to incorporate into LPS
aggregates with changes in their structure. The authors highly appreciate the potential of
synthetic peptides as drugs for the treatment of endotoxemia and sepsis.

3. β-Hairpin Peptides
3.1. Arenicins

Several antimicrobial peptides were isolated from the coelomocytes of marine poly-
chaeta lugworm Arenicola marina called arenicins-1, -2, and -3 [43,44]. Arenicin molecules
consist of 21 amino acid residues and have the amphipathic β-hairpin structure, formed
by the two-stranded antiparallel β-sheet stabilized by one (arenicin-1,-2) or two disulfide
(arenicin-3) bridges (Figure 3a).

Mar. Drugs 2023, 21, x FOR PEER REVIEW 5 of 24 
 

 

based on the LPS-binding domain of ALF-L or part of it with significant changes in length 
and primary sequence calculated for optimal lipid A binding was also designed [42]. A 
preclinical study revealed that these peptides have high selectivity for LPS, as well as high 
LPS-neutralizing activity in vitro and the ability to protect against sepsis in vivo. An anal-
ysis of the obtained data showed that the endotoxin-neutralizing activity of the peptides 
is closely related to their affinity for LPS and the ability to incorporate into LPS aggregates 
with changes in their structure. The authors highly appreciate the potential of synthetic 
peptides as drugs for the treatment of endotoxemia and sepsis. 

3. β-Hairpin Peptides 
3.1. Arenicins 

Several antimicrobial peptides were isolated from the coelomocytes of marine poly-
chaeta lugworm Arenicola marina called arenicins-1, -2, and -3 [43,44]. Arenicin molecules 
consist of 21 amino acid residues and have the amphipathic β-hairpin structure, formed 
by the two-stranded antiparallel β-sheet stabilized by one (arenicin-1,-2) or two disulfide 
(arenicin-3) bridges (Figure 3a). 

 
Figure 3. Structure of β-hairpin peptides. (a) Arenicin-3 (pdb, 5v0y), (b) tachyplesin-1 (pdb,1wo0), 
and (c) polyphemusin-1 (pdb, 1rkk). 

Conformational analysis via NMR spectroscopy revealed that the β-sheet in arenicins 
had a marked right-handed twist in an aqueous solution. This distortion effectively 
shields the hydrophobic side of the β-sheet from contacts with polar solvent, thus reduc-
ing the peptide surface amphipathicity [45,46]. When interacting with membranes or in 
membrane-mimetic environments, arenicins, form dimers stabilized by hydrogen bonds 
between parallel N-terminal β-strands in two neighboring molecules. Dimerization in-
duces a substantial conformational change so that the molecules adopt almost planar am-
phipathic β-sheet structures [47,48]. A significant decrease in the twist of the β-hairpin as 
a result of arenicin dimerization leads to an increase in its amphiphilicity and stability. 
Natural arenicins exhibit pronounced antimicrobial activity against a broad spectrum of 
Gram-positive and Gram-negative bacteria, pathogenic fungi, and yeasts even under 
high-ionic-strength conditions [43,49]. Mode-of-action studies strongly suggest that the 
antibacterial activity of arenicins is consistent with their ability to disrupt the integrity of 
bacterial membranes. 

More recently, arenicin-3, a member of the arenicin family, was discovered by the 
pharmaceutical company Adenium Biotech ApS, which develops novel antibiotics for the 
treatment of Gram-negative bacterial infections [44]. This peptide is very attractive due to 
its potent broad-spectrum antibacterial activity, even against multidrug-resistant clinical 
isolates, and its ability to bind LPS. However, arenicin-3 is toxic to mammalian cells and 
causes hemolysis of human erythrocytes. To solve the problem of toxicity, the structural 
analogs of arenicin-3 were designed by changing the number of disulfide bonds, 

Figure 3. Structure of β-hairpin peptides. (a) Arenicin-3 (pdb, 5v0y), (b) tachyplesin-1 (pdb,1wo0),
and (c) polyphemusin-1 (pdb, 1rkk).

Conformational analysis via NMR spectroscopy revealed that the β-sheet in arenicins
had a marked right-handed twist in an aqueous solution. This distortion effectively shields
the hydrophobic side of the β-sheet from contacts with polar solvent, thus reducing the
peptide surface amphipathicity [45,46]. When interacting with membranes or in membrane-
mimetic environments, arenicins, form dimers stabilized by hydrogen bonds between paral-
lel N-terminal β-strands in two neighboring molecules. Dimerization induces a substantial
conformational change so that the molecules adopt almost planar amphipathic β-sheet
structures [47,48]. A significant decrease in the twist of the β-hairpin as a result of arenicin
dimerization leads to an increase in its amphiphilicity and stability. Natural arenicins
exhibit pronounced antimicrobial activity against a broad spectrum of Gram-positive and
Gram-negative bacteria, pathogenic fungi, and yeasts even under high-ionic-strength con-
ditions [43,49]. Mode-of-action studies strongly suggest that the antibacterial activity of
arenicins is consistent with their ability to disrupt the integrity of bacterial membranes.

More recently, arenicin-3, a member of the arenicin family, was discovered by the
pharmaceutical company Adenium Biotech ApS, which develops novel antibiotics for
the treatment of Gram-negative bacterial infections [44]. This peptide is very attractive
due to its potent broad-spectrum antibacterial activity, even against multidrug-resistant
clinical isolates, and its ability to bind LPS. However, arenicin-3 is toxic to mammalian
cells and causes hemolysis of human erythrocytes. To solve the problem of toxicity, the
structural analogs of arenicin-3 were designed by changing the number of disulfide bonds,
hydrophobicity, or charge of the molecule [50,51]. As a result, peptides were synthesized
with low cytotoxicity while maintaining antibacterial properties. The optimized synthetic
arenicin-3 derivatives, which retained the β-hairpin structure stabilized by one or two
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disulfide bonds, were found to be the most active against Gram-negative bacteria. These
peptides have demonstrated the ability to bind LPS with higher affinity than polymyxin
B and neutralize its toxic effects. Also, these synthetic analogs increased the survival
of mice during LPS-induced peritonitis and sepsis, protected from lethal LPS challenge
in vivo, endotoxin-induced lung injury, and death caused by bacterial infection (E. coli
and S. enteritidis) and also inhibited the production of proinflammatory cytokines. At the
same time, they had low hemolytic activity and cytotoxicity, as well as higher antimicrobial
activity than the natural peptide. According to the researchers, these optimized arenicin-3
analogs may be potential candidates for the creation of dual-acting drugs with antibacte-
rial and anti-endotoxin activities. Currently, one of the obtained variants is undergoing
preclinical trials [52].

3.2. Tachyplesins and Polyphemusins

In horseshoe crab hemocytes, in addition to ALF, another group of antimicrobial LPS-
binding peptides was found. These relatively short and structurally closely related peptides,
known as polyphemusins I and II and tachyplesins I–III, were isolated from L. polyphemus
and T. tridentatus, Tachypleus gigas, and Carcinoscorpius rotundicauda, respectively [53–55].

Their concentration in hemocytes is extremely high, up to 10 mg in the total hemolymph
of an individual horseshoe crab [56]. These peptides are 17–18 amino acid residues in length
and have an amidated C-terminal arginine residue and a net positive charge. The spatial
structure of the peptides in aqueous solutions is an amphiphilic, antiparallel β-hairpin
connected by a β-turn and stabilized by two disulfide bonds (Figure 3b,c) [57–60]. The
peptide structure is highly stable and is preserved when samples are heated to 100 ◦C in
neutral pH buffers and kept at low pH [55]. This stability seems to be due to the rigid
structure imposed by the two disulfide linkages. In the presence of dodecylphosphocholine
micelles, conformational changes in tachyplesin structure occur, which are accompanied by
an increase in the amphiphilicity of the molecule and the formation of a contiguous well-
defined hydrophobic surface [58]. The ability of peptides to adopt distinct conformations
in solution and upon membrane association appears to be partly responsible for their wide
range of biological activities, including antimicrobial, antitumor, and anti-inflammatory.
So far, for these peptides, the relationships between their structures and functions are not
well understood.

These peptides recognize and bind LPS and quickly integrate into LPS monolayers.
They are able to displace divalent cations from their binding sites with LPS and penetrate
into the outer membrane of bacteria and also demonstrate resistance to inhibition from
these cations of incorporation into LPS monolayers [61–63]. The recognition site for the
peptide on the LPS molecule is the lipid A moiety. The peptides were found to show higher
(280-fold for tachyplesin I) affinity for LPS compared with acidic phospholipids. When
tachyplesin interacts with LPS, slight changes in its secondary structure are observed: the
β-sheet is elongated and twisted, and the whole structure is stabilized. A twisting β-sheet
structure may be important for tachyplesin to recognize LPS. According to the proposed
model of the complex of tachyplesin I with LPS, the peptide lies across two D-glucosamine
residues of lipid A, and its cationic and aromatic residues interact with phosphate groups
and acyl chains of lipid A moiety, respectively [62].

The binding of peptides to LPS is accompanied by the neutralization of its toxic ef-
fect on the macroorganism. Polyphemusins inhibit the production of pro-inflammatory
cytokines TNF-α and IL-6 through LPS-stimulated macrophages, protect mice from endo-
toxemia, and block the development of endotoxin shock in an animal model. The structural
analog study of polyphemusins and tachyplesins made it possible to establish that the
antiendotoxin activity of peptides increases with an increase in their binding affinity to LPS
and the amphiphilicity of the molecule [63].

Tachyplesins and polyphemusins show pronounced activity against a wide range of
microorganisms and, along with arenicins, are considered the most active antimicrobial
peptides of animal origin. They inhibit the growth of both Gram-positive and Gram-
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negative bacteria, as well as some fungi at sub-micromolar and micromolar
concentrations [53,63–65].

Despite the commonality of the beta-hairpin fold stabilized by disulfide bonds and a
wide spectrum of activity against both Gram-negative and Gram-positive bacteria, tachy-
plesins/polyphemusins and arenicins have a rather low degree of amino acid sequence
similarity (up to 35%) [66] and differ in the mechanism of antimicrobial action. Tachyplesins
and polyphemusins have been shown to translocate across membranes without significant
disruption of lipid bilayers [67], while arenicins disrupt the cell membrane through the
formation of higher oligomeric states [46].

4. Big Defensins

Big defensins were first discovered in horseshoe crabs. A novel defensin-like protein
was isolated from T. tridentatus hemocytes, which contained 79 amino acid residues and
was named “big defensin” (BigDef). This protein had a pronounced ability to bind LPS, as
well as to inhibit the growth of Gram-positive and Gram-negative bacteria and fungi [68].
The BigDef molecule consists of a highly hydrophobic N-terminal domain and a cationic
C-terminal domain containing six cysteine residues involved in three internal disulfide
bridges. These two different domains are connected via a flexible linker. The spatial struc-
ture of the C-terminal domain is a twisted three-stranded antiparallel β-sheet, stabilized
by three disulfide bonds, and the N-terminal domain adopts a conformation formed by
parallel β-sheet and two α-helices, which in the lipid environment are transformed into an
elongated single α-helix (Figure 4a) [69,70].

The C-terminal domain is structurally similar to human β-defensins, HβD-2 and
HβD-3 [71] and differs from invertebrate defensins. Trypsin cleaves BigDef at the Arg-37
residue to form two peptide fragments that have diverse activities. The N-terminal hy-
drophobic peptide acts predominantly against Gram-positive bacteria, while the
C-terminal cationic peptide is more active against Gram-negative bacteria. Both gener-
ated peptides showed weak LPS-binding activity, whereas the activity of intact full-length
BigDef was significant compared with that of anti-LPS factor ALF peptide from T. tridentatus
hemocytes. Thus, binding to LPS requires the native conformation of the entire molecule.
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Phylogenetic analysis of all currently known sequences of the BigDef genes showed
that these proteins form a group predominantly represented in marine invertebrates, mainly
in mollusks [72–74] and, to a much lesser extent, in horseshoe crabs and lancelets [75]. The
spatial structure of the big defensin from the Pacific oyster Crassostrea gigas (Cg-BigDef1)
was recently determined (Figure 4b) [76]. This is the second currently known structure
for a protein from the BigDef family. NMR spectroscopy revealed that oyster Cg-BigDef1,
like horseshoe crab Tt-BigDef, possesses two structural domains. Cg-BigDef differs from
Tt-BigDef in the orientation of the N- and C-terminal domains, the length of the linker
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sequence, and, as a result, surface properties. The big defensin overall structure from the
oyster is mainly hydrophobic, while that from the horseshoe crab is amphiphilic. This sug-
gests that Cg-BigDef1 binding to bacterial membranes occurs through hydrophobic rather
than electrostatic interactions and is not impaired at high salt concentrations. Cg-BigDef1
exhibited salt-stable activity against both Gram-positive and Gram-negative bacteria and
fungi. Genes encoding homologous proteins from two other mollusk species, Venerupis
philippinarum and Argopecten irradians, have been cloned and expressed, and the obtained
recombinant proteins have been characterized [77,78]. These molecules are cationic pep-
tides with a molecular weight of 8–11 kDa and an isoelectric point of 8.6–9.2. They exhibit
antibacterial and antifungal activities. The ability of these proteins to bind LPS has not
been studied.

5. Factor C

Factor C is a unique LPS-binding protein found in horseshoe crabs. It is a trypsin-like
serine protease zymogen. The zymogen is activated by picogram amounts of LPS and
is the initiator of the coagulation cascade, which the horseshoe crab uses as one of the
defense mechanisms against pathogens [79]. It can specifically bind LPS on the surface of
hemocytes and directly recognize Gram-negative bacteria in an LPS-dependent manner,
acting as a pattern-recognizing receptor [80]. Recombinant Factor C (rFC) interacts at
extremely high affinity with LPS and lipid A: the dissociation constant (KD) of its complex
with lipid A is 7.6 × 10−10 M [81]. Due to high specificity and sensitivity to LPS, it is widely
used by pharmaceutical companies to detect endotoxin contamination of parenteral drug
products and medical devices (Limulus Amoebocyte Lysate (LAL) test and rFC test) [82].
Recombinant factor C has been shown to effectively inhibit LPS-induced production of
TNF-α and IL-8 via human macrophages and is therefore a potential LPS-neutralizing
agent [83]. Furthermore, rFC is non-toxic to human monocytes and HeLa cells. In horseshoe
crab amoebocyte lysate, Factor C was found in two molecular species: in a single-chain
form and a two-chain form, which consists of heavy and light chains linked by (a) disulfide
bond(s) [84]. Both molecules have the same molecular mass. A single-chain form is
transformed into a two-chain form as a result of the LPS-mediated activation of Factor
C [85,86]. It is believed that molecular reorganization may occur during the isolation and
purification of Factor C due to the presence of LPS trace impurities.

Factor C is a glycoprotein and, depending on the source of isolation, L. polyphemus
and T. tridentatus hemocytes or Carcinoscorpius rotundicauda hemocytes, has a molecular
weight of 120 or 132 kDa with heavy and light chain sizes of 80 and 43 or 80 and 52 kDa,
respectively [86,87]. The Factor C molecule consists of domains that are structurally related
to proteins of the mammalian complement system [88]. Along with the typical serine
protease domain at the C-terminus, Factor C also includes a cysteine-rich (Cys) region; a
domain homologous to epidermal growth factor (EGF); five complement control protein
(CCP) modules, also known as Sushi domains; an LCCL segment (a fragment common to
a number of proteins such as Coch-5b2 and Lg11 [89]); and a domain similar to a C-type
lectin (Figure 5).
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The CCP module consists of approximately 60 amino acid residues, including four
cysteine residues, forming two internal conserved disulfide bonds, and has a β-sandwich
spatial structure with a compact hydrophobic core. One face of the β-sandwich is made up
of three β-strands linked by hydrogen bonds, and the other face formed by two separate
β-strands [90]. The regions of the polypeptide chain between the β-strands are composed
of both well-defined turns and less well-defined loops. An analysis of CCP sequence
alignments reveals a high degree of conservation among residues of obvious structural
importance, while almost all insertions, deletions, or substitutions are found in the region of
the loops. This suggests that the structure of the 16th CCP module from human complement
factor H (Figure 6a) gives sufficient understanding of the structure of these modules in the
Factor C molecule.
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The EGF-like domains are about 50 amino acid residues in length and contain six
cysteine residues that form disulfide bonds, resulting in a very compact configuration [91,92].
The secondary structure of these polypeptides in water contains two antiparallel β-sheets
and several β-turns. Figure 6b shows the crystal structure of human EGF (hEGF), which
consists of an N region and a C region [93]. The N region has an irregular N-terminal
peptide segment and an anti-parallel β-sheet. The C region contains a short anti-parallel
β-sheet and a C-terminal segment, which are probably disordered in isolation. There are
two hEGF molecules in the asymmetric unit of the crystals, which form a potential dimer.

The N-terminal fragment of Factor C is completely responsible for binding to LPS [94,95].
This fragment, which includes a Cys-rich region, an EGF-like domain, and three CCP (Sushi)
modules, has several LPS (lipid A) binding sites and demonstrates strong positive cooper-
ativity of binding to the ligand [96]. This, apparently, determines its significantly higher
ability to neutralize endotoxin, in comparison with polymyxin B, as well as the high sensi-
tivity of Factor C to LPS. At low concentrations, the Factor C fragment completely inhibits
LPS-induced production of TNF-α and IL-8 by human monocyte cells THP-1 and peripheral
blood mononuclear cells. N-terminal fragment, which has low cytotoxicity, protects mice
from LPS-induced lethality.

Structural and functional analysis of the N-terminal region of factor C from the horse-
shoe crab C. rotundicauda showed that LPS-recognizing regions are localized in the CCP 1
(Sushi 1) and CCP 3 (Sushi 3) modules [97]. These modules have high-affinity LPS binding
sites with KD from 10−9 to 10−10 M, which are located in two 34-mer peptides, S1 and
S3. Both S1 and S3 can inhibit the LAL reaction with endotoxin and the LPS-induced
production of TNF-α by human macrophages with different efficiencies. The analysis of the
obtained data showed that at least two S1 peptides cooperatively bind to one LPS molecule
with a Hill coefficient of 2.42. In contrast, the binding of LPS to S3 is non-cooperative.
Synthetic peptides developed on the basis of CCP modules inhibited the LPS-induced
secretion of TNF-α by human THP-1 cells and protected D-galactosamine-sensitized mice
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from a lethal dose of E. coli LPS [96,97], demonstrating the promise of their use for the
immunotherapy of Gram-negative sepsis.

In the case of the Factor C orthologue from T. tridentatus, the LPS-binding region of
the molecule was found not inside the tandem CCP (Sushi) modules but in the N-terminal
cysteine-rich Cys region and the EGF-like domain [80]. The Cys-rich region specifically
binds LPS not only in free form but also on the bacterial surface. The LPS binding site in
the Cys region contains a conserved tripeptide sequence (Arg36-Trp37-Arg38) consisting
of an aromatic residue flanked by two basic residues, which is also found in other LPS-
recognizing proteins [98]. Mutations in this tripeptide prevent its binding to both LPS
and Gram-negative bacteria, which determines the key role of this conserved motif in
interaction with LPS. It is assumed that the binding of this peptide to LPS occurs according
to the mechanism previously proposed for the ALF peptide: the basic residues interact
with D-glucosamine-1-phosphate of lipid A, and the aromatic residue associates with its
hydrophobic part.

Full-length Factor C binds and neutralizes LPS more effectively than individual LPS-
binding peptides derived from it [83,97]. This fact indicates that interdomain interactions
in the molecule enhance the overall interaction between factor C and LPS. The tandem ar-
rangement of Sushi’s LPS-binding domains in Factor C has been reported to be responsible
for its high affinity for LPS. In addition, the lectin-like and CCP 4 domains have been shown
to contribute to the binding of factor C to LPS [99]. These modules can either influence the
conformation of LPS-binding domains or directly participate in LPS binding.

6. Bactericidal/Permeability-Increasing Proteins

The bactericidal/permeability-increasing protein (BPI) is a member of the LBP/BPI
family of LPS-binding proteins and a component of the innate immune system that acts
selectively against Gram-negative bacteria [100]. These proteins have a direct cytotoxic
and opsonizing effect on bacteria and also bind LPS in the lipid A region and neutralize
its biological activities [101–103]. These properties of BPI have been used therapeutically
for endotoxin-related complications of various diseases [104]. In animal models of sepsis,
pneumonia, and endotoxemia, as well as in preclinical and clinical trials, recombinant BPI
peptides have been shown to neutralize many of the biological effects of LPS.

The first BPIs were isolated from rabbit and human polymorphonuclear leukocytes
[105,106]. Human BPI (hBPI), one of the most well-studied representatives of the LBP/BPI
family, is a cationic protein with a molecular weight of 55 kDa, whose three-dimensional
structure was determined by X-ray diffraction (Figure 7) [107,108]. At the same time,
orthologues of this protein have been found in several non-mammalian vertebrate species
and various invertebrates [109].
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The hBPI homologue was revealed in the oyster C. gigas [110]. This was the first time
that BPI was identified in an invertebrate. The protein, named Cg-BPI, was obtained in
recombinant form and characterized. Mature Cg-BPI is a cationic protein (50.1 kDa) with a
calculated pI of 9.3, close to that of hBPI, pI 9.4. Amino acid sequence analysis, as well as
structure modeling and electrostatic surface potential prediction, showed that Cg-BPI has a
high degree of structural similarity to hBPI. It contains two conserved domains, N-terminal
and C-terminal, which are separated by a proline-rich region. Although these domains have
a low degree of amino acid sequence similarity, they exhibit the same spatial structure. The
Cg-BPI, like the hBPI, has a boomerang shape and consists of two identical barrels formed
by a beta-sheet and two alpha-helices, which are connected via a central β-sheet (Figure 7).
The N-terminal domain of Cg-BPI contains functional regions previously characterized in
hBPI as responsible for LPS binding and neutralization, as is bactericidal activity [111,112].
This domain has three conserved lysine residues that can bind to negatively charged LPS
groups through electrostatic interactions [113], as well as two cysteines characteristic of
mammalian BPI and forming a disulfide bond, which has been shown to be important for
the rhBPI function [114]. Both domains contain an apolar pocket that serves as a binding
site for lipids and probably lipid A.

Recombinant Cg-BPI bound LPS and lipid A with high affinity (KD 3.1 × 10−8 M
for E. coli LPS) [110]. It had a strong bactericidal effect on Gram-negative bacteria and
disrupted their cytoplasmic membranes. Thus, the BPI protein from C. gigas combines
LPS-binding activity with antibacterial and membrane-permeabilizing properties. It is
noteworthy that Cg-BPI was highly active against E. coli SBS363, which contains LPS
with short O-polysaccharide chains but was 30 times less active against E. coli ML35 with
long-chain LPS. A similar result was obtained for hBPI and was explained by the greater
accessibility of anionic and hydrophobic sites in and near the lipid A region of the LPS
molecule in E. coli SBS363 due to a decrease in the shielding effect of O-polysaccharide
chains [115,116].

In further research, a second BPI, Cg-BPI2, was found in C. gigas, which showed the
highest sequence identity with the already-known Cg-BPI [117]. According to the results
of molecular modeling, Cg-BPI2, like hBPI and Cg-BPI, has a structure consisting of an
N- and C-terminal barrels and a central β-sheet. At the same time, a comparison of the
electrostatic surface potentials revealed that Cg-BPI2 has a higher surface charge than hBPI
and Cg-BPI. The recombinant N-terminal domain of Cg-BPI2 exhibited a high affinity for
LPS and was effective against Gram-negative bacteria. Thus, the antibacterial activity of
C. gigas BPIs, as well as human BPI, is determined by their N-terminal domain.

Recently, BPIs EsBPI2 and EsBPI4 from the squid Euprymna scolopes have been char-
acterized [118]. Based on amino acid sequence analysis and comparative modeling data,
EsBPI2/4 were predicted to have molecular characteristics typical of hBPI. These two
proteins have a two-domain “boomerang-like” structure. They share with other BPIs the
predicted LPS-binding regions in their N-terminal domains and conserved cysteines, which
are involved in the formation of disulfide bonds crucial for the functional activity of this
family of proteins. Both proteins isolated from squid tissue extract showed potent bacterici-
dal activity against Gram-negative bacteria Vibrio fischeri. Host exposure to LPS derivatives
(lipid A) led to increased EsBPI2 gene expression.

Using genomic technologies, proteins of the LBP/BPI family have been identified in
a number of marine invertebrates, such as marine annelids [119], sea urchins [120], and
mollusks [121]. The LBP/BPI gene expression in the invertebrates has been shown to occur
after challenge with LPS. These results suggest that BPIs contribute to the elimination of
Gram-negative bacteria through interaction with LPS.

7. Lipopolysaccharide-Binding Lectins

Lectins are non-immunoglobulin-type proteins or glycoproteins that selectively rec-
ognize and reversibly bind to specific carbohydrates and carbohydrate moieties without
changing the structure of glycan. Marine animals, including invertebrates, have a large
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and complex set of lectins that vary considerably in their structure and carbohydrate speci-
ficity. Invertebrate lectins are potential molecules involved in the immune recognition and
phagocytosis of microorganisms through opsonization. They are able to interact with LPS
on the surface of bacterial cells. However, this fact only applies to those LPS that have
carbohydrate motifs recognized by the lectins. Carbohydrate ligands in the LPS molecule
are localized mainly in O-specific polysaccharide chains (hypervariable structural element)
and rather less frequently in the core oligosaccharide (relatively conserved structure) and
in lipid A (very conserved part of the molecule) [122].

In marine invertebrates, horseshoe crab LPS-binding lectins are the best studied. Five
types of such lectins have been isolated from the hemolymph of T. tridentatus, of which four,
called tachylectins (TL-1 to TL-4), are from hemocytes and one, TPL2 (Tachypleus plasma
lectin 2), is from plasma. Unlike tachylectin proteins-1-3, TPL-2 is a glycoprotein. A study
of recombinant TPL2 with a mutation in the glycosylation site shows that glycosylation
does not appear to be important for LPS binding [123].The hemolymph lectins differ in
their carbohydrate specificity. Indeed, TL-1 (L6) interacts with the core oligosaccharide of
the LPS molecule, probably through the 2-keto-3-deoxyoctonic acid (KDO) residue [124];
TL-2 (L10) exhibits specific activity for D-GlcNAc (KD = 5.13 × 10−5 M and 1.54 × 10−8

M for free and immobilized (GlcNAc–BSA) monosaccharide, respectively) and D-GalNAc
[125,126]; TL-3 specifically binds to S-type LPS from several Gram-negative bacteria through
a specific structural fragment of O-polysaccharide, similar to that of the blood group
A antigen [127]; and TL-4, like TL-3, specifically recognizes S-type LPS, but not R-LPS
lacking O-polysaccharide. The most likely specific ligand for TL-4 is colitose (3-deoxy-L-
fucose), a monosaccharide that is structurally similar to L-fucose, to which the lectin is also
able to bind, but with lower affinity [128]. The D-isomer of colitose, abequose, is also a
candidate for another ligand. TPL2 shows an 80% sequence identity with TL-3 and, like
TL-3, specifically interacts with the O-polysaccharide fragment of LPS [123,129,130]. This
lectin binds to E. coli LPS with a KD of 1.03 × 10−6 M [131]. The specific ligand for TPL2
is L-rhamnose.

A structural feature of tachylectins is the presence of tandem repeats in their amino
acid sequence, which are at least 30 residues long and encode the secondary and tertiary
structure of the protein. The TL-1 (27 kDa), TL-2 (27 kDa), and TL-3 (14 kDa) sequences
include six, five, and two repeats, respectively [124,125]. TL-3 (14 kDa) is present as a
dimer (29 kDa) in solution, while TL-4 (30 kDa) exists under physiological conditions
as a high molecular weight oligomer (470 kDa) consisting of 30 kDa subunits [127,128].
Wild-type TPL-2 (18 kDa) exists in solution as a covalent dimer (36 kDa), and the cleavage
of the intermolecular disulfide bond results in monomer formation and loss of LPS-binding
activity. LPS induces TPL2 oligomerization, in which tetramers and hexamers are formed.
In hemolymph plasma, TPL-2 is predominantly present as oligomers with a molecular
weight above 60 kDa. Carbohydrate chains of TPL-2 glycoprotein have been suggested to be
responsible for the formation of the oligomers’ stable cluster through protein–carbohydrate
interactions. Unlike most other LPS-binding proteins, TPL-2 has a near-neutral pI of 7.65.
However, there are three clusters of basic amino acids in the TPL-2 sequence that may be
critical for its binding to LPS. TPL2 inhibited the growth of Gram-negative E. coli but was
almost unable to detect Gram-positive bacteria.

The X-ray structures of tachylectin-2 and its complex with N-acetyl-D-glucosamine
were solved with a resolution of 2.0 Å [132]. The lectin has a five-bladed β-propeller
structure: five four-stranded antiparallel interconnected beta-sheets of W-shaped topology
are located around a central water-filled tunnel, with the water molecules arranged as a
pentagonal dodecahedron (Figure 8a).
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Figure 8. Crystal structures of (a) tachylectin-2 (pdb, 1tl2) and (b) complex of tachylectin-2 with
N-acetyl-D-glucosamine (pdbe, 1tl2). Bound GlcNAc is shown as a ball-and-stick model.

The TL-2 molecule has five equivalent carbohydrate-binding sites located between ad-
jacent β-sheets. The binding sites are formed by a large loop between the outermost strands
of β-sheets and the connecting segment of the previous β-sheet (Figure 8b). According to
crystal structure analysis, TL-1 is the protein of the six-bladed β-propeller structure [133].
The non-covalently bound TL-3 dimer is expected to have a four-blade β-propeller struc-
ture. A large number of binding sites in one polypeptide chain convincingly indicates
the ability of the lectin to recognize carbohydrate surface structures of pathogens with a
sufficiently high density of ligands.

The high affinity and specificity of horseshoe crab lectins binding with a propeller-like
fold or oligomeric organization to a ligand is achieved due to their multivalence, short
distances between individual binding sites (for example, 25 Å and 40 Å for TL-2), and low
structural flexibility: upon ligand binding, the conformation of the main or side chains
of tachylectins does not change at all. These observations suggest that these lectins can
recognize parameters characterizing the distribution of glycan ligands on the cell surface,
such as density, mobility and spatial arrangement, and this enables them to distinguish
between simple ligands (monosaccharides and oligosaccharides) expressed on both the
pathogen and the host and thus to discriminate between self and nonself.

The LPS-binding lectin, which is structurally related to tachylectins, has been found
in the marine sponge Suberites domuncula [134]. This lectin (27 kDa), like TL-1, has six
tandem repeats of 30–38 amino acid residues in sequence and exhibits high activity against
Gram-negative bacteria, which is inhibited by D-GlcNAc, but not by D-GlcN. A number
of proteins of the LPS- and β-1,3-glucan-binding proteins (LGBP) family can be assigned
to lectins interacting with LPS. Many of them show a high degree of homology with
invertebrate 1,3-β-glucanases. Probably, during the evolution, one of the gene copies of
this enzyme evolved towards the specialization of the encoded protein exclusively for the
function of binding to LPS and 1,3-β-glucans as a trigger mechanism for the body’s defense
response to the introduction of pathogenic microorganisms. At the same time, the protein
lost its enzymatic activity, but its catalytic domain became a binding site not only for β-1,3-
glucan but also for LPS [135]. Proteins of this family have been most extensively studied in
crustaceans [136–138]. Recombinant LGBP (PmLGBP) from the P. monodon shrimp with a
calculated molecular weight and pI of 39.8 kDa and 4.28, respectively, binds LPS with the
apparent dissociation constant of 3.55 × 10−7 M [139]. Strong binding to LPS, as well as
agglutinating activity against Gram-negative and Gram-positive bacteria, was shown by
rLGBP from the scallop Chlamys farreri [140].

8. Conclusions

The present literature review showed that the LPS-binding proteins from marine
invertebrates are understudied, which is confirmed by the data summarized in Table 1.
These proteins have been characterized in a small number of invertebrate species that
mainly inhabit the tropical seas of Southeast Asia and are objects of mariculture in the
countries of the region. In addition, the study of ILBPs from new species is often limited by
the search for homologues of already-known proteins. Basically, the field of researchers’
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interest is focused on the antimicrobial properties of these proteins, while their potential
LPS-binding and LPS-neutralizing activities remain unidentified. Currently, it is impossible
to exclude the discovery of new ILBP structural types under their targeted search involving
new species of marine invertebrates. So a recent screening of marine invertebrates from the
Sea of Okhotsk belonging to different taxonomic groups revealed a large number of species
with LPS-binding activity that are of interest as new sources of ILBPs [141].

It is noteworthy that most of the well-studied ILBPs were originally isolated from
the hemolymph of horseshoe crabs (lat. Xiphosura). This is for several reasons. The
horseshoe crabs have the best-characterized immune system of any long-lived invertebrate.
The study of immunity in the horseshoe crab has been facilitated by the availability and
ease of collecting large volumes of blood. In addition, these marine animals have existed
on Earth for about half a billion years and are often referred to as living fossils. The
horseshoe crab habitat is rich in pathogenic microorganisms and contains a vast amount
of endotoxin, since most aquatic bacteria are of the Gram-negative variety. During their
long evolution, horseshoe crabs have formed a unique and very efficient host defense
system, which includes a large set of proteins and peptides with high antimicrobial and
endotoxin neutralizing activity. These defense molecules are attracting much attention
from researchers as potential therapeutic agents.

Endotoxin-neutralizing ILBPs exhibit some structural features that provide optimal
parameters for their interaction with LPS and inhibition of LPS toxicity. These pro-
teins/peptides are mostly cationic amphiphilic molecules that have clusters of hydrophobic
and hydrophilic amino acid residues on their surface [41,142]. Positively charged residues
play a key role in binding ILBP to LPS and neutralizing endotoxin. Anionic ALF peptides
that have lost most of these residues in the LPS-binding domains are unable to interact with
LPS and exhibit low antimicrobial activity [143]. A high positive charge allows ILBPs to
replace divalent cations, approach LPS molecules through strong electrostatic interactions,
and neutralize and even overcompensate their negative charge. It could be argued, how-
ever, that the proper positioning of the basic amino acids in the three-dimensional structure
of the protein is more important than the overall basic (cationic) nature of the protein for
binding to the negatively charged LPS. An important factor is the distance between the
positively charged residues in the ILBPs. The charged amino groups of Arg and Lys in
ILBPs bound to LPS micelles show a typical distance range of 12–15 Å, which is in good
accordance with an average distance between phosphate groups in lipid A [144,145]. This
fact may mean that the positively charged amino acids residues in ILBPs mainly interact
with the lipid A phosphate groups.

The presence of hydrophobic residues in the molecule, along with cationic ones, allows
ILBPs to penetrate deeply into LPS micelles and bilayers and interact with lipid A acyl
chains. A strong positive correlation is observed between hydrophobicity and LPS-binding
activity of ILBPs [146]. An increase in the ratio between hydrophobicity (after reaching a
certain threshold) and the net molecule positive charge increases the ability of ILBPs to
neutralize LPS. At high hydrophobicity (outside the range), the activity drops, probably
due to the strong self-association of ILBPs.
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Table 1. LPS-binding peptides and proteins from marine invertebrates and their characteristics.

Peptides/Protein Size, kDa Structural
Characteristics Biological Activity Source (Phylum, Species) Reference

Anti-LPS factor
(ALF) 11–12

α-helices,
four-stranded

β-sheet, disulfide
bond

LPS-binding and
-neutralization,

antibacterial (G−,
G+), antiviral,

antifungal

Arthropoda—horseshoe crabs
Limulus polyphemus, Tachypleus

tridentatus, shrimps Penaeus
monodon, Fenneropenaeus

chinensis, Litopenaeus vannamei,
crabs Portunus trituberculatus,
Scylla serrata, Eriocheir sinensis,

Scylla paramamosai, lobster
Homarus americanus

[7–9,15–22,35]

Arenicins 2.62
antiparallel

β-hairpin, disulfide
bonds

anti-endotoxin
(optimized arenicin

derivatives),
antibacterial (G−,

G+), antifungal

Annelida—lugworm Arenicola
marina [43,47,48]

Tachyplesins,
polyphemusins 2.27–2.46

antiparallel
β-hairpin, amidated
C-terminal arginine

residue, disulfide
bonds

LPS-binding and
-neutralization,

antibacterial (G−,
G+), antifungal

Arthropoda—horseshoe crabs L.
polyphemus, T. tridentatus,

Tachypleus gigas, Carcinoscorpius
rotundicauda

[53–63]

Big defensins 8–11

α-helices, β-sheets
(antiparallel and

parallel); two
domains, disulfide

bonds

LPS- binding;
antibacterial (G−,

G+), antifungal

Arthropoda—horseshoe crab T.
tridentatus; Mollusca—oyster

Crassostrea gigas, clam Venerupis
philippinarum, scallops

Argopecten irradiant, Chlamys
nobilis;

Chordata—amphioxus
Branchiostoma japonicum

[69–78]

Factor C 120 and 132

β-sheets, disordered
segments (loops),

multidomain
structure, disulfide

bonds, tandem
modules

LPS-binding (binding
sites with KD from

10−9 to 10−10 M) and
-neutralization

Arthropoda—horseshoe crabs L.
polyphemus, T. tridentatus,

Carcinoscorpius rotundicauda
[80,81,86–88,96,97]

Bactericidal/
permeability-

increasing
proteins (BPI)

50.1

α-helix, β-sheet;
two-domain

“boomerang-like”
structure, disulfide

bonds

LPS-binding and
-neutralization;

antibacterial (G−)

Mollusca—oyster Crassostrea
gigas, squid Euprymna scolopes;
Annelida—worm Platynereis

dumerilii;
Echinodermata—urchin

Sterechinus neumayeri

[110,118–121]

Tachylectins
(TL-1 to TL-4 and

TPL2)

27, 27, 14, 30
(TL-1,-2,-3,-

4); 18
(TPL-2)

β-sheets
(four-stranded

antiparallel
interconnected),

propeller-like fold or
oligomeric

organization, tandem
repeats in sequence

LPS-binding (KD 1.03
× 10–6 M for E. coli
LPS); antibacterial

activity (G-)

Arthropoda—horseshoe crab
T. tridentatus; Porifera—sponge

Suberites domuncula
[125,126,134]

LPS- and β-1,3-
glucan-binding
proteins (LGBP)

40-60

LPS-binding (KD 3.55
× 10−7 M for E. coli
LPS); antibacterial

(G−, G+)

Arthropoda—shrimps Penaeus
monodon, Fenneropenaeus
merguiensis, crab Eriocheir

sinensis; Mollusca—scallop
Chlamys farreri

[136,137,139,140]

G−, Gram-negative bacteria, G+, Gram-positive bacteria.

ILBP incorporation into LPS aggregates leads to a change in the endotoxin supramolec-
ular structure [42,147]. The protein-induced conversion of the unilamellar, cubic, or mixed
unilamellar/cubic aggregate structures of LPS and lipid A into a multilamellar form is
considered as a necessary condition for LPS inactivation. The degree of LPS multilamellar-
ization can directly correlate with the endotoxin-neutralizing activity of ILBPs.

The specific arrangement of amino acid residues in the ILBP molecules is important for
the expression of their anti-LPS activity. As illustrated by synthetic peptides (based on the
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Limulus anti-LPS factor), it was shown that, while they have the same number of cationic
and hydrophobic residues at similar sequence positions, they differ from each other through
their LPS-neutralizing activity [42]. Moreover, these peptides differ in their ability to
neutralize LPS in isolated forms and as constituents of Gram-negative bacteria. Apparently,
this fact is explained by the fact that LPS molecules in the aggregate with a cubic structure
and in the outer leaflet of the outer membrane of bacteria have different conformations,
and peptides with different spatial structures are required for their neutralization. Thus,
the geometric correspondence between the ILBP and LPS conformations, which allows
positively charged protein residues to bind with high efficiency to the phosphate groups of
lipid A, and hydrophobic residues to incorporate into its lipophilic part, can determine the
endotoxin-neutralizing activity of the protein. In this regard, a well-organized, stable spatial
structure of ILBPs, providing this structural compatibility, may be an important condition
for binding lipid A with high affinity, which leads to LPS neutralization. The packaging of
aromatic amino acid side chains, perhaps in part because they play an important role in
stabilizing the compact structure of ILBPs, has a remarkable impact on the LPS-binding
affinity [148]. A significant contribution to the stability of the ILBP structure is made by
disulfide bonds. The substitution of cysteine residues in ALF, accompanied by the removal
of a disulfide bond, can lead to a loss of endotoxin-neutralizing activity [40]. At the same
time, the fully unfolded analog of tachyplesin-1, which has lost disulfide bonds, acquires a
well-ordered structure upon binding to the LPS bilayer [144]. Moreover, ILBPs, which are
mainly unstructured in solution, can gain an ordered conformation upon interaction with
LPS micelles.

The enhancement of LPS-binding and -neutralizing activities of ILBP can be achieved
by creating tandem repeats of the LPS-binding units in its molecule or by forming oligomeric
forms of the protein. The effectiveness of this multivalent strategy for an improvement in
the activity is demonstrated by ILBPs such as Factor C and tachyplesins [97,123].

Although ILBPs remain one of the most promising molecules for the development
of endotoxin-neutralizing drugs, there are serious limitations to their introduction into
medical practice. They can be unstable under physiological conditions (in particular, they
are attacked by proteolytic enzymes) and toxic to mammalian cells and are quickly elimi-
nated from the body [149]. The effective neutralization of LPS requires high therapeutic
concentrations of ILBP, which causes serious side effects. To address these shortcomings,
the structure of ILBPs is modified, or their synthetic derivatives are obtained. Thus, the
stability of LBPs and their resistance to enzymatic degradation can be increased by the
cyclization of the peptide (linking the C- and N-terminus), the introduction of D-isomers
or unnatural amino acids into the peptide sequence, and their association with nanoparti-
cles [150]. Covalent binding to polyethylene glycol increases the bioavailability of LBPs
due to a decrease in the rate of renal clearance [151]. High manufacturing costs represent
another major challenge for therapeutic applications of ILBPs. The development of re-
combinant DNA technologies and the solid-phase peptide synthesis method (SPPS) will
contribute to solving this problem.

Synthetic peptides based on the structure of LPS-binding domains of known natural
endotoxin-neutralizing ILBPs are of great interest as potential drugs for the treatment
of sepsis [42]. Such peptides differ from their natural counterparts in size, amino acid
substitutions, and other structural modifications introduced to increase their potential
pharmacological efficacy and safety and considering the relationship between structure
and biological activity established in the study of native ILBPs. The designed peptides
demonstrate significant protective effect against septic shock in animal sepsis models even
at a low peptide dose, a rather long half-life, low cytotoxic, and hemolytic activity.

However, ILBP molecules that show high efficacy in the treatment of sepsis in lab-
oratory animals have been unsuccessful in human trials. This can partly be explained
by the incomplete adequacy of mouse models of sepsis and septic shock [152]. Another
reason may be the variability in the pathogenesis of various septic complications and the
heterogeneity of patients, which must be taken into account when developing a strategy for
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clinical trials. For a correct assessment of the effectiveness of potential anti-endotoxic drugs,
certain conditions must be met during trials: clinically proven selection of a suitable type of
patients; the early recognition of sepsis and well-timed initiation of goal-directed therapy,
which can interrupt the inflammatory cascade, preventing the progression to septic shock
with multiple organ dysfunction; and the optimal duration of therapy.

Despite all the difficulties and disappointments, ILBPs remain one of the most promis-
ing molecules that can effectively neutralize bacterial endotoxins and inhibit the devel-
opment of a systemic inflammatory response with cytokine overproduction (a cytokine
storm). These molecules are often multifunctional [153]. In addition to the antiendotoxic
activity, many peptides may exhibit antimicrobial and multifaceted immunomodulatory
properties, possibly resulting in their wider therapeutic possibility. However, further re-
search is required to evaluate the potential of LPS-neutralizing molecules with additional
beneficial properties in the treatment of sepsis.
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