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Abstract: Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates re-
markable selectivity and affinity for sodium channels on the excitation membrane of nerves. This
property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality.
Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature
addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research
endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids—an
innovative model closely mirroring the structural and functional intricacies of the human brain. This
model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure,
thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our
findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed
lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed
group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annota-
tion, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein–protein
interaction (PPI) analysis, we ascertained that these differential genes predominantly participate
in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA
network analysis unveiled that DEmRNAs exert control over the expression of ion channels and
neurocytokines, suggesting their potential role in mediating apoptosis.

Keywords: tetrodotoxin; human cerebral organoids; transcriptomic profiling

1. Introduction

Tetrodotoxin (TTX) stands as a highly potent nonprotein natural toxin, ubiquitously
present across diverse aquatic and terrestrial species [1]. Originally identified in pufferfish
in 1964, TTX has since been detected in a wide array of aquatic and terrestrial organisms.
This neurotoxin operates as a swift and reversible inhibitor of sodium channels, exerting
its action primarily on the central nervous system. Specifically, TTX selectively blocks
sodium channels, impeding the ingress of sodium ions into cells and perturbing the
initiation of cellular membrane action potentials. Consequently, this inhibition culminates
in the dampening of excitatory processes in nerves and muscles. In human beings, TTX
exposure can manifest as limb paralysis, paresthesia, and even cardiac failure [2,3], often
leading to fatality within a matter of hours in cases of acute intoxication. Unfortunately,
due to the absence of effective antidotes, treatment options are confined to symptom-
based supportive care [4]. Conversely, owing to its exceptional selectivity and potent
influence on voltage-gated sodium channels (VGSC), TTX has emerged as a pivotal tool in
VGSC research. This unique attribute bestows TTX with significant potential in diverse
applications, encompassing local anesthesia, analgesia, arrhythmia therapy, and addiction
mitigation [5–8].

The toxicological mechanisms of tetrodotoxin (TTX) have primarily been elucidated
through classical animal models. However, concerns have been raised regarding the
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translatability of findings from animal-based studies due to inherent physiological, genetic,
and developmental disparities between human and animal brains. In recent years, as
biomedical technology has progressed, cerebral organoids have emerged as promising
in vitro models for replicating the complexities of the human nervous system and for
toxicity screening [9]. Cerebral organoids represent three-dimensional organ-like cultures
derived from human induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs).
Unlike conventional two-dimensional cell cultures, which often lack cellular diversity due
to a uniform cell-type composition, cerebral organoids faithfully replicate the molecular,
cellular, structural, and functional attributes of the human brain [10]. Consequently, cerebral
organoid technology not only holds substantial promise for faithfully recapitulating human
neurodevelopment and disease but also serves as a powerful tool for investigating toxicant-
induced toxicity and underlying mechanisms [11,12].

For instance, iPSC-derived cerebral organoids have been employed to emulate the
impact of serum exposure on blood–brain barrier disruption in Alzheimer’s disease pa-
tients [13]. Furthermore, cerebral organoids generated from iPSCs derived from micro-
cephaly patients have consistently exhibited significantly reduced sizes, thus serving as
an early testament to the capacity of cerebral organoids to manifest neurodevelopmental
disorder phenotypes [14]. These versatile models are also instrumental in elucidating
viral tropism, infection dynamics, their effects on organoid function, size, and cellular
composition, as well as innate immune responses. Notably, cerebral organoids have made
substantial contributions to unraveling the pathophysiology of neurotropic viral infections
and evaluating the efficacy of antiviral agents within physiologically relevant models [15].
In consonance with these strides, our research endeavors focus on employing iPSC-derived
cerebral organoids as a model to probe hitherto unknown toxicological mechanisms ensuing
from exposure to tetrodotoxin.

Whole transcriptome sequencing has emerged as a widely employed tool in the
fields of pharmacology and toxicology, facilitating comprehensive investigations into
molecular pathways. This technique encompasses the sequencing of multiple RNA species,
encompassing messenger RNA (mRNA), microRNA (miRNA), circular RNA (circRNA),
and long non-coding RNA (lncRNA). mRNAs harbor specific genetic information, while
miRNAs can interact with target mRNAs to degrade them or inhibit their translation.
Despite the absence of protein-coding capacity, lncRNAs wield significant influence over
gene expression through cis and trans-regulatory mechanisms. The ceRNA network, a
novel gene regulation system comprising interactions between lncRNA, miRNA, and
mRNA, has been implicated in the pathogenesis of numerous disorders. The application
of transcriptomics in toxicological investigations has gained prominence. Our whole-
transcriptome analysis revealed that the downregulation of specific genes precipitates
apoptosis following a 24 h exposure to 10 µM TTX.

Notably, there is a dearth of existing literature concerning whole-transcriptome studies
conducted in organoid models or pertaining to the ceRNA regulatory network implicated
in TTX-induced brain injury and alterations in synaptic homeostasis.

2. Results
2.1. Cerebral Organoid Formation and Cultivation

The generation of cerebral organoids from iPSCs involves four distinct stages: embry-
oid body (EB) formation, induction, neuroepithelial expansion, and maturation. On the
initial day, human iPSCs autonomously aggregated into EBs, attaining diameters of approx-
imately 100 to 200 µm, which subsequently expanded to approximately 300 to 400 µm by
the conclusion of the EB formation stage. Upon the transition to induction medium on day
5, the cultured tissues exhibited diameters of nearly 500 µm. These developed tissues were
encapsulated within Matrigel droplets and transferred to a 6-well ultra-low-adherence
cell culture plate for continued expansion in expansion media. On day 10, the cultured
tissues were transitioned to a maturation medium and placed on a low-speed orbital shaker.
By approximately day 40, these cultured tissues matured into cerebral organoids with
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diameters of approximately 3 to 5 mm, concurrently revealing the presence of dispersed
cortical cells.

To assess the representation of major brain cell types within the cerebral organoids,
their markers were identified through immunofluorescence staining. Figure 1A illustrates
the positive expression of early-born layer 5 and superficial cortex markers, BCL11B and
Reelin, in cerebral organoids. Figure 1B depicts the positive expression of neurons and
layer 6 neuron markers, TBR1 and MAP2, in cerebral organoids. Figure 1C exhibits the
co-expression of PAX6 and βIII-Tubulin, markers for radial glial cells and neurons, within
cerebral organoids. The co-expression of astrocyte and oligodendrocyte markers, GFAP and
GALC, in cerebral organoids is presented in Figure 1D. Furthermore, cerebral organoids
also featured neurons positive for forebrain markers FOXG1 and MAP2, as shown in
Figure 1E.
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Figure 1. Generation and characterization of human-induced pluripotent stem cell (iPSC)-derived
brain organoids. (A) Immunofluorescent staining of cerebral organoids using BCL11B and Reelin
antibodies, demonstrating the presence of early-born layer 5 and the superficial cortex, respectively.
(B) Immunofluorescent staining of cerebral organoids using MAP2 and TBR1 antibodies, confirming
the expression of neurons and layer 6 neurons, respectively. (C) Immunofluorescent staining of
cerebral organoids using PAX6 and βIII-tubulin antibodies, indicating the expression of radial glial
cells and neurons, respectively. (D) Immunofluorescent staining of cerebral organoids using GFAP
and GALC antibodies, revealing the expression of astrocytes and oligodendrocytes, respectively.
(E) Immunofluorescent staining of cerebral organoids using FOXG1 and MAP2 antibodies, confirming
the expression of forebrain and neurons, respectively. Scale bar = 25 µm.
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2.2. Tetrodotoxin Exposure Causes Changes in Cerebral Organoid Cell Viability

When TTX was incubated with cerebral organoids at concentrations of 0.1 µM, 1 µM,
and 10 µM for 24 h. As shown in Figure 2, the cell viability of each group was (89.39 ± 16.80)%,
(91.73 ± 7.38)%, and (63.72 ± 1.73)% of the normal control group, respectively. TTX had
significant toxicity to cerebral organoids at a concentration of 10 µM (p < 0.05). Therefore, a
concentration of 10 µM was selected for omics analysis and considering the construction of
a neurotoxicity model.
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2.3. Tetrodotoxin Exposure Induces Disruption in RNA Expression within Cerebral Organoids

To elucidate the molecular mechanisms underlying TTX-induced cytotoxicity in cere-
bral organoids, comprehensive transcriptional sequencing was employed to analyze RNA
expression within the brain. mRNA and lncRNA were subjected to stringent screen-
ing criteria (|log2FC|≥1.5, p-adjust < 0.05). This analysis unveiled 455 differentially
expressed mRNAs (DEmRNAs), comprising 101 upregulated and 354 downregulated tran-
scripts (Figure 3A). Additionally, 212 differentially expressed lncRNAs (DElncRNAs) were
identified, encompassing 92 upregulated and 120 downregulated transcripts (Figure 3B).
miRNA analysis applied the following criteria (|log2FC|≥ 1.2, p < 0.05), identifying a
total of 18 differentially expressed miRNAs (DEmiRNAs), featuring 8 upregulated and
10 downregulated miRNAs (Figure 3C) (Supplementary Table S1). Notably, heat map
analysis distinctly demonstrated clustering and segregation between the control group
and tetrodotoxin-exposed group, affirming the reliability of differential expression analysis
(Figure 3D–F). These findings underscore the significant impact of tetrodotoxin exposure
on RNA expression within cerebral organoids.
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Figure 1. caption of Figure 2.Figure 3. Analysis of differentially expressed RNAs (DERNAs) and heatmap comparison in TTX-
treated and control samples. (A) Volcano plot illustrating differentially expressed mRNAs (DEmR-
NAs), where blue dots represent downregulated RNAs, red dots signify upregulated RNAs, and gray
dots indicate RNAs with no significant differences compared to the control group. (B) Volcano plot
of differentially expressed long noncoding RNAs (DElncRNAs). (C) Volcano plot of differentially
expressed miRNAs (DEmiRNAs). (D) Hierarchical clustering and heatmap analysis of DEmRNAs,
with red denoting upregulated RNAs and blue representing downregulated RNAs compared to the
control group. (E) Hierarchical clustering and heatmap analysis of DElncRNAs. (F) Hierarchical
clustering and heatmap analysis of DEmiRNAs, where red indicates upregulated RNAs and blue
indicates downregulated RNAs compared to the control group.

2.4. Tetrodotoxin Exposure Results in Dysregulated RNA Enrichment in GO and KEGG Pathways

To gain insight into the functional repercussions of the aforementioned dysregulated
RNAs, we conducted GO enrichment and KEGG pathway analyses, employing a signifi-
cance threshold of p < 0.05. The analysis yielded a total of 732 significantly enriched GO
terms within DEmRNAs, encompassing 530 biological process (BP) terms, 128 molecular
function (MF) terms, and 74 cellular component (CC) terms. In BP analysis, DEmRNAs
were prominently associated with ion transport, blood circulation, phasic smooth muscle
contraction, and cellular component biogenesis (Figure 4D). CC analysis indicated high
enrichment of DEmRNAs in the extracellular region, extracellular matrix, postsynaptic
membrane, neuron projection, and synaptic membrane (Figure 4E). MF analysis revealed
significant enrichment of DEmRNAs in functions such as SH3 domain binding, receptor reg-
ulator activity, somatostatin receptor activity, signaling receptor binding, and voltage-gated
potassium channel activity (Figure 4F).

To validate the involved signaling cascades, KEGG pathway analysis was conducted,
and the top 20 highly enriched pathways were visualized in a bubble plot. These pathways
included neuroactive ligand–receptor interaction, calcium signaling pathway, JAK-STAT
signaling pathway, and cAMP signaling pathway (Figure 4A), among others. Furthermore,
KEGG analysis of DElncRNAs (Figure 4B) and DEmiRNAs (Figure 4C), expected to target
genes, indicated that the enriched pathways primarily revolved around neuroactive ligand–
receptor interaction, calcium signaling pathway, glutamatergic synapse, dopaminergic
synapse, vascular smooth muscle contraction, and other relevant processes.
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Figure 2 is as shown below.

Figure 2. caption of Figure 2.Figure 4. Functional enrichment analysis of dysregulated RNAs. (A–C) Top 20 dysregulated RNAs
KEGG pathway enrichment analysis: (A) KEGG pathway enrichment analysis of differentially
expressed mRNAs (DEmRNAs). (B) KEGG pathway enrichment analysis of mRNAs targeted by
differentially expressed long noncoding RNAs (DElncRNAs). (C) KEGG pathway enrichment analysis
of mRNAs targeted by differentially expressed miRNAs (DEmiRNAs). (D–F) Top 20 Gene Ontology
(GO) enrichment analysis: (D) GO enrichment analysis of biological processes. (E) GO enrichment
analysis of cellular components. (F) GO enrichment analysis of molecular function. The dot size
corresponds to the number of enriched genes, and the color gradient indicates the level of enrichment
significance, ranging from blue to red.

2.5. Functional Analysis of the Protein–Protein Interaction (PPI) Network

The PPI network encompassing all DEmRNAs from both the control and TTX exposure
groups was constructed using the String database to elucidate the interconnections among
these DEmRNAs, as illustrated in Figure 5. Cytoscape was employed for PPI network
inspection, while the MCODE plug-in of Cytoscape was utilized to generate sub-networks,
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revealing hub modules and pivotal genes within the PPI network. We emphasize the
four modules characterized by the most extensive interactions in the ensuing subsection.
Module 1 (score = 10, Figure 6A) consists of 10 nodes and 45 interaction pairings, with
the associated genes primarily engaged in systemic lupus erythematosus, alcoholism, and
necroptosis. Module 2 (score = 8.25, Figure 6B) comprises 25 nodes and 99 interaction
pairings, with the connected genes predominantly enriched in protein digestion and ab-
sorption, ribosome ECM–receptor interaction, and neuroactive ligand–receptor interaction.
Module 3 (score = 7.714, Figure 6C) encompasses 8 nodes and 27 interaction pairings, with
the genes chiefly linked to nicotine addiction, GABAergic synapse, morphine addiction,
retrograde endocannabinoid signaling, and taste transduction. Module 4 (score = 7.2,
Figure 6D) includes 16 nodes and 54 interaction pairings, with the genes concentrated
predominantly in cell adhesion molecules, Rap1, Ras, and MAPK signaling pathways. The
pathways involved in these core nodes are primarily associated with synaptic homeostasis
and synaptic plasticity. As TTX affects the cell membrane’s action potential, it subsequently
influences the postsynaptic membrane’s response to neurotransmitters.
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Figure 6. Significantly clustered modules from the protein–protein interaction (PPI) network. Within
this figure, we depict four distinct modules derived from the PPI network analysis. Upregulated
differentially expressed mRNAs (DEmRNAs) are visualized as red nodes, while downregulated
DEmRNAs are represented as blue nodes. The connections between nodes signify protein–protein
interactions.

2.6. Competitive Endogenous RNA (ceRNA) Network of DEmRNAs, DElncRNAs, and
DEmiRNAs

The subcellular localization of DElncRNAs was initially predicted using the http:
//www.csbio.sjtu.edu.cn/bioinf/lncLocator/ (accessed on 5 September 2023) website, re-
sulting in the identification of 14 cytoplasmic lncRNAs (Supplementary Table S1). These
lncRNAs can serve as microRNA sponges or miRNA precursors, thereby modulating
miRNA expression and function. Subsequently, the Targetscan and Miranda algorithms
were employed to determine target mRNAs and lncRNAs of DEmiRNAs. The acquired
target mRNAs and lncRNAs were then combined with DEmRNAs and DElncRNAs, re-
spectively. This comprehensive analysis yielded 24 DEmRNAs and 15 lncRNAs, along
with 27 miRNA–mRNA interaction pairs and 28 lncRNA–miRNA interaction pairs. Conse-
quently, a biologically relevant lncRNA–miRNA–mRNA ceRNA network was constructed.

In line with the ceRNA hypothesis, common miRNAs acted as binding sites, with
upregulated miRNAs associated with downregulated lncRNAs and mRNAs, and down-
regulated miRNAs linked to upregulated lncRNAs and mRNAs. The down–up–down
network comprised 3 lncRNAs, 1 miRNA, and 11 mRNAs, resulting in 15 nodes and
26 edges (Figure 7, left panel). Additionally, the up–down–up network, comprising 1 node
and 10 edges (Figure 8), consisted of three lncRNAs, one miRNA, and one mRNA.

http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
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RNAs are depicted in red, while downregulated RNAs are represented in blue. Circular nodes
symbolize mRNAs, prism nodes denote miRNAs, and triangular nodes signify lncRNAs.
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Figure 8. Key lncRNA–miRNA–mRNA ceRNA subnetwork. This figure illustrates the key competing
endogenous RNA (ceRNA) subnetwork involving long non-coding RNAs (lncRNAs), microRNAs
(miRNAs), and messenger RNAs (mRNAs). In this representation, prism nodes signify lncRNAs,
arrow nodes symbolize miRNAs, and circular nodes represent mRNAs.
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2.7. Construction of the Key lncRNA–miRNA–mRNA Subnetwork

In order to construct a pivotal ceRNA subnetwork that effectively captures the func-
tions of the aforementioned ceRNA network, we established a network comprising 13 lncR-
NAs, 2 miRNAs, and 2 mRNAs, resulting in 17 nodes and 19 edges. Notably, the down-
regulated gene GRIA2 encodes the glutamate ion receptor AMPA-type subunit 2. It can
be inferred that TTX exerts its impact by impeding sodium ions from entering cells, conse-
quently affecting the generation of cell membrane action potentials. Neurons rely on the
release of neurotransmitters for signal conduction and output, and this release is facilitated
by numerous vesicles during cell depolarization stimulation. Applying electrical stimuli
to nerve cells induces the release of neurotransmitters, resulting in eEPSC or eIPSC. As
the occupation of sodium channels by tetrodotoxin is reversible, synaptic homeostasis is
restored when sodium channels regain their functionality.

2.8. TTX-Induced Alterations in Postsynaptic Membrane Homeostasis

Previous studies have indicated that TTX inhibits synaptic strengthening that depends
on PSD-95 [16–18]. Exposure to TTX disrupts the equilibrium of neuroligand interac-
tions, modifies postsynaptic membrane homeostasis, and leads to a decrease in PSD-95
expression.

Based on the existing omics data, we postulate that tetrodotoxin influences the synap-
tic homeostasis of cerebral organoids and impacts glutaminergic synapses, resulting in
alterations in synaptic homeostasis. Immunofluorescent staining of cerebral organoid
sections has demonstrated a reduction in the expression of PSD-95 protein. After 24 h of
incubation with tetrodotoxin, PSD-95 expression was found to be decreased in cerebral
organoids (Figure 9). This observation aligns with prior research findings.
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Figure 9. Fluorescent image depicting PSD-95 staining in organoids. The fluorescent micrograph
displaying the staining of PSD-95 (postsynaptic density protein 95, a marker for the postsynaptic
membrane) in organoids. PSD-95 is represented in green, while cell nuclei are shown in blue. The
images vividly illustrate the reduction in PSD-95 expression on the postsynaptic membrane of cerebral
organoids following exposure to tetrodotoxin. Scale bar = 25 µm.

Furthermore, we conducted immunofluorescence staining for astroglial cell markers,
neuronal cell markers, and TUNEL assays in both the exposed and control groups. As
shown in Figure 10A,B, following exposure to tetrodotoxin, astrocytes and neurons exhib-
ited partial apoptosis. This apoptosis may arise due to disruptions in synaptic homeostasis.
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Figure 10. Fluorescent images of GFAP and TUNEL co-staining in organoids. (A) Cerebral organoids
were either untreated or treated with 10 nM tetrodotoxin for 24 h. Nuclei were stained with DAPI and
are represented in blue, while GFAP and TUNEL signals are depicted in green and red, respectively.
(B) Fluorescent micrographs of cerebral organoids subjected to NeuN and TUNEL co-staining. The
staining highlights NeuN (green), TUNEL signal (red), and cell nuclei (blue). The scale bar measures
25 µm.

3. Discussion

TTX exerts its toxic effects by selectively targeting voltage-gated sodium channels
(Nav) [19,20]. Clinical manifestations of TTX intoxication encompass symptoms such as
tingling of the tongue and lips, perioral abnormalities, quadriplegia or numbness, and
muscular incoordination. In severe cases, poisoning can progress to respiratory paralysis
and cardiac arrest, potentially leading to shock or fatality due to insufficient oxygen
delivery to the brain. Our finding represents a pioneering effort that harnesses iPSC-
derived cerebral organoids, bridging the gap between TTX exposure analysis in animal
models and its implications in human systems. Our findings illuminate the multi-tiered
neurotoxic effects induced by TTX in human cerebral organoids, encompassing alterations
in tissue structure, cellular activity, gene expression patterns, and regulatory networks.
Immunofluorescence analyses revealed the occurrence of apoptosis in cerebral organoids
within 24 h of TTX exposure.

Gene Ontology (GO) annotations unveiled the involvement of DEmRNAs in processes
such as positive regulation of ion transport, synaptic membrane organization, regulation
of blood circulation, and neuron projection development. These DEmRNAs significantly
impact receptor modulatory activity, signaling receptor binding, voltage-gated potassium
channel activity, and potassium channel inhibitor activity. These findings underscore the
influence of TTX exposure on the expression levels of genes central to synaptic function and
homeostasis. KEGG enrichment analysis revealed that the primary targets of DEmRNAs,
DElncRNAs, and DEmiRNAs included pathways such as neuroactive ligand–receptor
interaction, Rap1 signaling pathway, calcium signaling pathway, glutamatergic synapse,
long-term depression, and the cAMP signaling pathway. Glutamate synapses serve as the
principal excitatory synapses in the human brain and constitute the structural foundation
for synaptic plasticity and the regulation of synaptic homeostasis [21]. The enriched path-
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ways chiefly revolve around neurotoxicity, neurotransmitter conduction, voltage gating,
and analgesic withdrawal.

Subsequently, we assembled a protein–protein interaction (PPI) network incorporating
all DEmRNAs, culminating in a network featuring 346 nodes and 1189 edges. Following
this, we employed the MCODE plug-in within the Cytoscape software (v3.9.1) to identify
four modules characterized by the closest interactions. These major nodes predominantly
intersect with pathways crucial for synaptic homeostasis and synaptic plasticity.

When tetrodotoxin contacts cerebral organoids, the top four nodes with the highest
scores can be seen through the PPI network, as shown in Figure 5C. GABRA5 and Grm5
in this subnetwork are gamma-aminobutyric acid type A receptor subunit alpha5 and
glutamate metabotropic receptor 5. Downregulation of GABRA5 can have multiple effects
on metabolism and physiology. GABRA5 is a subunit of the GABAA receptor involved in
inhibitory neurotransmission in the brain. Downregulation of GABRA5 may result in im-
paired inhibitory neurotransmission and reduced number or function of GABAA receptors,
resulting in decreased inhibitory neurotransmission. This disrupts the balance between
excitatory and inhibitory signals in the brain, potentially leading to increased neuronal
excitability and altered neural network activity. GABRA5 downregulation may also have
metabolic effects, but the specific mechanism is unclear. GABA receptors are involved in
the regulation of glucose metabolism, insulin secretion, and energy homeostasis. Changes
in GABAA receptor function may disrupt these metabolic processes [22]. Grm5 plays
an important role in regulating synaptic plasticity, brain neurotransmitter levels, calcium
signaling pathways in astrocytes, the ability to regulate neuroinflammation, and metabolic
processes such as glucose uptake and lactate production in the brain. Downregulation of
Grm5 may disrupt the normal function of synapses and impair synaptic plasticity [23,24];
affect the release of neurotransmitters, leading to an imbalance in excitatory and inhibitory
signaling; disrupt calcium homeostasis and signaling, thus having widespread effects
on cellular processes [25]; affect the ability of astrocytes to regulate neuroinflammation;
and affect energy metabolism in the brain [26]. TTX-induced alterations in cell mem-
brane action potential further impinge upon the responses of postsynaptic membranes
to neurotransmitters.

Predictive analysis of target genes yielded 108 miRNA–mRNA interaction pairs,
33 miRNA–DElncRNA interaction pairs, and 6285 lncRNA–mRNA interaction pairs. On
this foundation, we constructed a physiologically relevant ceRNA network. Upon exposure
to tetrodotoxin, a noteworthy escalation in cellular apoptosis was observed. The underlying
factors governing cell apoptosis are multifaceted, entailing the participation and regulation
of various molecular components. In essence, these mechanisms can be categorized into
two fundamental pathways: the extrinsic (death receptor) pathway and the intrinsic (mito-
chondria) pathway. Despite the substantial differences in the mechanisms and molecules
involved in these two pathways, they are inherently interconnected [27,28].

The Ryanodine receptor (RYR), primarily associated with Ca2+ release from the endo-
plasmic reticulum (ER), has garnered less attention in its role in apoptosis regulation. RYR
type II, in particular, has been implicated in mediating Ca2+ transfer from the sarcoplasmic
reticulum (SR) to cardiac mitochondria via direct interaction with the mitochondrial voltage-
dependent anion channel 2 (VDAC2) [29]. Inhibition of ER Ca2+ release through RYR has
been demonstrated to safeguard cortical neurons against NMDA-induced excitotoxicity by
curbing cytosolic Ca2+ surges and mitigating mitochondrial and ER stress [30]. The rapid
onset of fatality resulting from TTX poisoning is evident, with systemic distribution evident
in animal poisoning models. Our ceRNA network analysis unveiled the downregulation of
the RYR3 gene, while its homologous genes within the RYR family predominantly govern
intracellular Ca2+ release from calcium pools to the cytoplasm. Although the precise regu-
latory role of RYR3 in Ca2+ dynamics remains elusive, it is conceivable that it possesses the
potential to elicit apoptosis akin to its family counterparts.

CNTF, conventionally recognized as a neuroprotective factor, is often associated with
promoting cell survival and axonal regeneration. However, the downregulation of CNTF
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expression following exposure to TTX raises questions regarding its role in cell protec-
tion and apoptosis [31]. Conversely, the downregulation of BCL11B prompts the acti-
vation of PTK7, culminating in the inhibition of cell proliferation and the facilitation of
apoptosis [32–34]. PHACTR1, while inhibiting endothelial cell proliferation and migra-
tion, augments apoptosis and oversees the regulation of matrix metalloproteinases and
apoptosis-related proteins [35]. Inactivation or ectopic expression of OPCML precipitates
cell cycle arrest and apoptosis, imparting profound effects on cell growth and proliferation
across various malignancies, thus underscoring the potential of OPCML downregulation
to induce apoptosis [36–38]. Neurotensin (NTS) serves as a neuroprotective agent against
ischemic injury and harbors therapeutic potential. Within the central nervous system, NTS
regulates neurotransmitter activities, particularly within the dopamine system. Its down-
regulation may disrupt neuropeptide transport, consequently impinging upon the normal
release and functioning of neuropeptides and neurotransmitters [39]. CDK18, by activating
the RAS/mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase
pathway, fosters the differentiation of oligodendrocyte precursor cells without exerting
influences on their proliferation or apoptosis [40].

The gene GRIA2, found to be downregulated in the ceRNA regulatory network fol-
lowing tetrodotoxin exposure, aligns with previously reported results [41]. This gene
encodes the glutamate ion receptor AMPA-type subunit 2, sensitive to AMPA enzymes,
and functions as a ligand for activating cation channels. Within the central nervous sys-
tem, GRIA2 operates as an excitatory neurotransmitter receptor, playing a pivotal role in
neuronal synaptic transmission. Its downregulation may impair normal neuronal func-
tion and hamper neurotransmitter conduction. Subsequently, the downregulation of the
TNR gene, responsible for encoding an extracellular matrix glycoprotein exclusively ex-
pressed in the central nervous system, implies a role in regulating neurite outgrowth,
neuronal adhesion, and sodium channel function. Furthermore, the HCN1 gene codes
for the hyperpolarization-activated cyclic nucleotide-gated potassium channel 1, which
also operates as a cation channel. Reduced expression of HCN1 may heighten neuronal
excitability, given its inhibitory role in neurons. Diminished HCN1 channel expression
can lead to heightened excitability, possibly facilitating the generation of action potentials.
The decreased expression of HCN1 channels in presynaptic neurons may perturb synap-
tic transmission, resulting in heightened excitability or diminished postsynaptic neuron
inhibition. HCN1 channels assume a pivotal role in the regulation of neuronal network
activity. Therefore, a decrease in HCN1 channel expression might engender alterations in
network activity patterns and frequencies. Notably, when exposed to 1 µM TTX for 48 h,
an upregulation of HCN1 was observed, which may stem from the dynamic balance shifts
initiated by the prior downregulation at 10 µM for 24 h. These intricate processes, involv-
ing the modulation of neurotransmitter conduction through promotion and inhibition of
specific targets, highlight the synaptic homeostasis’s self-regulating potential. It follows
that this self-regulation capability may hasten TTX’s inhibition of synaptic action potentials,
offering a glimpse into the possibility of discovering an antidote [42].

Saxitoxin (STX), a sodium channel blocker similar to TTX, can also inhibit action poten-
tial firing and has been reported in many related transcriptome and proteome studies [43].
Chen et al. poisoned mouse neuroblastoma cells with low doses of STX and analyzed their
proteomic changes. Subsequently, it was found that STX exposure increased the expression
of six proteins and decreased the expression of three proteins. In addition, these nine pro-
teins that were altered due to exposure to low-dose STX were mainly involved in apoptotic
pathways, cytoskeleton maintenance, membrane potential, and mitochondrial function [44].
Sun et al. evaluated the neurotoxic effects of long-term low-dose STX exposure on C57/BL
mice by analyzing the behavior of mice and the proteomic analysis of hippocampus after
STX exposure. Multiple behavioral tests showed that mice at different doses developed
cognitive deficits after 3 months. Compared with control mice, the neuronal cells in the CA1
area of the hippocampus were reduced and the pyramidal cell layer was thinned, resulting
in brain neuron damage. A total of 29 proteins were significantly altered in different STX
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dose groups. Bioinformatics analysis showed that protein phosphatase 1 (Ppp1c) and
arylsulfatase A (Arsa) are involved in the Hippo signaling pathway and the sphingolipid
metabolism pathway. The decrease in Arsa expression indicates that long-term low-dose
STX exposure can cause neuronal inhibition [45]. Our results on neurotoxicity induced by
TTX on brain organoids are similar to these proteomic changes after STX exposure.

Taken together, these findings reveal novel mechanisms controlling neurotransmitter
release and transmission at synapses, dynamic transmission balance, and apoptosis induced
by TTX exposure in cerebral organoids models. However, the TTX concentration of 10 µM
that we used to induce neurotoxicity in cerebral organoids is difficult to achieve in the
human brain due to the existence of the blood–brain barrier in actual situations; these are
still directions worthy of further research.

4. Materials and Methods
4.1. Materials

Human induced pluripotent stem cells (iPSCs) were procured from Beijing Cellapy
Biotechnology Co., Ltd. (Beijing, China). The STEMdiff™ Brain Organoid Kit, mTeSRTM1
Complete Kit, and gentle cell dissociation reagent were sourced from STEMCELL Technolo-
gies (Vancouver, BC, Canada). The One Step TUNEL Apoptosis Assay Kit and DAPI were
obtained from Shanghai Beyotime Biotechnology Co., Ltd. (Shanghai, China). CellTiter-
Glo® Luminescent Cell Viability Assay (CTG) was obtained from Promega (Beijing) Biotech
Co., Ltd. (Beijing, China). Tetrodotoxin was provided by the Laboratory of Analytical
Chemistry, Research Institute of Chemical Defence (Beijing, China). Monoclonal antibod-
ies against BCL11B (1F8G8) and PAX6, as well as antibodies against Reelin, MAP2, β III
Tubulin, GFAP, GALC, FOXG1, and PSD95, were procured from Invitrogen (Carlsbad, CA,
USA) and Abcam (Cambridge, UK). Goat Anti-Mouse IgG H&L conjugated with AF594
was obtained from Beijing Bioss Biotechnology Co., Ltd. (Beijing, China), while Dylight 488
Goat Anti-Rabbit IgG(H+L) was sourced from Abbkine Scientific Co., Ltd. (Wuhan, China).
Furthermore, 0.4% Trypan blue was acquired from Thermo Fisher Scientific Co. (Waltham,
MA, USA).

4.2. Cultivation of 3D Cerebral Organoids Derived from iPSCs

The generation of 3D cerebral organoids from iPSCs was facilitated using the STEMd-
iff™ Brain Organoid Kit. In brief, iPSCs were dissociated with the gentle cell dissociation
reagent in mTeSRTM1 at 37 ◦C for 12 min. Subsequently, cells were resuspended in embry-
oid body (EB) seeding media at a concentration of 8000 cells/mL and seeded into 96-well
ultra-low adherent plates at a volume of 100 µL per well. EB formation media were added
on days 2 and 4, followed by induction medium for a duration of 2 days. On day 7, the
EBs were embedded in Matrigel droplets and cultured for an additional three days in a
6-well ultra-low adherent plate with expansion media. On day 10, the culture medium was
replaced with maturation media, and the organoids were placed on an orbital shaker within
a 37 ◦C incubator to support long-term cultivation. Cerebral organoids were sustained in
culture for a period of up to 45 days.

4.3. Immunofluorescence Characterization of Cerebral Organoids

Following 45 days of cultivation, cerebral organoids were fixed in 4% paraformalde-
hyde at 4 ◦C for 24 h. Subsequently, the organoids were subjected to dehydration in a 30%
sucrose aqueous solution at 4 ◦C for an additional 24 h. The gelatin-fixed cerebral organoids
were sectioned into 15 µm thick sections, after which they underwent immunofluorescence
labeling using a panel of primary antibodies, including BCL11B antibody, PAX6 monoclonal
antibody, Anti-Reelin antibody, anti-MAP2 antibody, anti-βIII Tubulin antibody, anti-GFAP
antibody, anti-GALC antibody, anti-FOXG1 antibody, and anti-PSD95 antibody. Secondary
antibodies employed for fluorescence labeling included Goat Anti-Mouse IgG H&L/AF594
and Goat Anti-Rabbit IgG(H+L). Finally, the nuclei were stained with DAPI.
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4.4. Treatment of Cerebral Organoids with Tetrodotoxin
4.4.1. Cell Viability Assessment

The cell viability of cerebral organoids was detected using the CTG method. Cerebral
organoids were incubated with TTX of 0 µM, 0.1 µM, 1 µM, and 10µM for 24 h, respectively.
After the incubation, the medium was aspirated and washed three times with DPBS; then,
100 µL of medium was added and equilibrated at room temperature for 30 min. After
equilibrium, 100 µL of CTG reagent was added, vortexed to completely lyse the cells, and
incubated at room temperature for 30 min. Using a microplate reader, chemiluminescence
detection was performed and the cell survival rate of cerebral organoids determined by
quantifying ATP. The integration time was set to 1 s per well, the luminescence value of
each well was read, and the cell viability rate of each group was calculated. Cell viability
rate (%) = luminescence value of the TTX group/luminescence value of the normal control
group × 100%.

4.4.2. Cytotoxicity Assessment

The 3D cerebral organoids were exposed to either 0 µM (control) or 10 µM TTX for
a duration of 24 h. Mature cerebral organoids were transferred into round-bottom 96-
well plates for the drug administration group, wherein the existing culture medium was
replaced with 100 µL of cerebral organoid culture medium containing 10 µM TTX per well.
In the control group, 100 µL of cerebral organoid culture medium was similarly exchanged.
Subsequently, both groups of cerebral organoids were cultured on a horizontal shaker
within a sterile incubator, maintaining conditions at 37 ◦C and 5% CO2 for 24 h. Following
incubation, the culture medium was discarded, and the organoids were gently rinsed five
times with DPBS.

4.4.3. TUNEL Assay

Cerebral organoid tissue slices derived from the control and TTX-exposed groups
underwent investigation for cell apoptosis utilizing the One Step TUNEL Apoptosis Assay
Kit. TUNEL labeling was conducted in conjunction with immunofluorescence staining to
discern the various brain cell types experiencing apoptosis post TTX exposure. Primary
antibodies targeting neuronal nuclear antigen (NeuN) or GFAP were employed, along with
corresponding secondary antibodies (Alexa Fluor 488-conjugated mouse or rabbit IgG,
Thermo Fisher Scientific). Cell nuclei were identified using DAPI, and imaging was carried
out utilizing a Leica STELLARIS 5 confocal microscope.

4.5. Whole-Transcriptome Sequencing and Analysis

Total RNA extraction, library construction, and sequencing for both the tetrodotoxin-
treated and control groups were conducted by Majorbio Bio-pharm Biotechnology Co.,
Ltd. (Shanghai, China). For detailed experimental protocols, please refer to Supplementary
Materials. A whole-transcriptome sequencing and analysis was performed, which included
three biological replicates.

To comprehensively analyze the differential expression of mRNAs, lncRNAs, and
circRNAs across various samples and unravel the regulatory mechanisms of genes by inte-
grating sequence functional information, RSEM (v3.3.2) software (http://deweylab.biostat.
wisc.edu/rsem/, accessed on 24 June 2023) was employed for quantitative assessment of
overall expression levels at the gene or transcript level for mRNA, lncRNA, and circRNA.
By merging sequencing data with functional information, gene regulatory mechanisms
were elucidated, and expression levels were standardized using the reads per million
mapped reads (RPM) methodology. Subsequently, all differential expression analyses were
conducted employing the DESeq2 program, with RNAs exhibiting |log2FC|>1.5 and
p-value < 0.05 considered as significant differentially expressed RNAs (DERNAs).

The annotation of DERNAs and their target genes was accomplished through Gene On-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotations.
The top 20 most significantly enriched GO terms and KEGG pathways were employed to

http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/
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construct interaction networks for signaling pathways of DERNAs and their targets based
on enrichment scores, at a significance level of p < 0.05 relative to the background encom-
passing all genes. GO annotations and KEGG pathway analyses were conducted utilizing
Goatools (https://github.com/tanghaibao/Goatools, accessed on 16 July 2023) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do, accessed on 16 July 2023). The protein–protein in-
teraction (PPI) network was established based on DEmRNAs utilizing the STRING database
(https://string-db.org/, accessed on 18 June 2023), and visualization and optimization
were executed using Cytoscape software (https://cytoscape.org/, accessed on 26 June
2023). Module analysis of the PPI network was carried out using the MCODE plugin to
identify meaningful interaction modules and cluster scores.

In accordance with the miRNA binding sites within the sequence of mRNA reaction
components, TargetScan (http://www.targetscan.org/, accessed on 22 June 2023) and
Miranda (http://www.miranda.org/, accessed on 22 June 2023) software were employed
to analyze miRNA–mRNA and miRNA–lncRNA binding sites. The connections between
lncRNA–miRNAs and miRNA–mRNAs were discerned, and a regulatory network encom-
passing circRNA–miRNA–mRNA interactions was established using miRNAs as pivotal
components. DElncRNA, DEmiRNA, and DEmRNAs were scrutinized for their functional
roles and mutual interactions. Finally, the competing endogenous RNA (ceRNA) network
was visualized employing Cytoscape software (v3.9.1) [46].

5. Conclusions

This study introduces human cerebral organoids generated from iPSCs as a novel
model for investigating the toxicological mechanisms of TTX. Exposure of cerebral organoids
to TTX led to observed apoptosis. In-depth analysis of the regulatory relationships among
differential RNAs culminated in the examination of the lncRNA–miRNA–mRNA network.
These findings shed light on novel mechanisms governing neurotransmitter release and
delivery at synapses, dynamic transmission equilibrium, and homeostasis restoration
following TTX exposure within cerebral organoid models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md21110588/s1, Supplementary Methods: Characterizing Tetrodotoxin-
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Networks; Supplementary Table S1: Details of mRNA, lncRNA and miRNA differential expression.
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