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Abstract: Based on the structures of natural products streptochlorin and pimprinine derived from
marine or soil microorganisms, a series of streptochlorin derivatives containing the nitrile group
were designed and synthesized through acylation and oxidative annulation. Evaluation for anti-
fungal activity showed that compound 3a could be regarded as the most promising candidate—it
demonstrated over 85% growth inhibition against Botrytis cinerea, Gibberella zeae, and Colletotrichum
lagenarium, as well as a broad antifungal spectrum in primary screening at the concentration of
50 µg/mL. The SAR study revealed that non-substituent or alkyl substituent at the 2-position of oxa-
zole ring were favorable for antifungal activity, while aryl and monosubstituted aryl were detrimental
to activity. Molecular docking models indicated that 3a formed hydrogen bonds and hydrophobic
interactions with Leucyl-tRNA Synthetase, offering a perspective for the possible mechanism of
action for antifungal activity of the target compounds.

Keywords: streptochlorin; pimprinine; nitrile group; synthesis; antifungal activity; SAR; molecu-
lar docking

1. Introduction

Natural products are well known as one of the most important sources for lead dis-
covery in medicinal and agricultural chemistry, because their novel scaffolds can afford
an opportunity to discover novel candidates with different modes of action from the
existing agents. Streptochlorin is a marine natural product with the structure of 4-chloro-
5-(3-indolyl)oxazole; it has been reported to display a range of biological activity [1–4].
Pimprinine is an indole alkaloid produced by many species of Streptomyces, first isolated
from the filtrates of Streptomyces pimprina cultures in 1963 [5,6]; it is a monoamine ox-
idase (MAO) inhibitor. Both of these natural products belong to the class of naturally
occurring 5-(3′-indolyl)oxazoles, and compounds of this family, including Pimprinethine;
Pimprinaphine; WS-30581 A and B; Labradorins 1 and 2; Almazole A, B, and C; and
Martefragin A, exhibit a wide range of potent biological activities [7] (Figure 1), such as
anti-angiogenesis [3], antibiotic [8], anticancer [1], anti-cell proliferation [9], antioxidant [10],
and antiviral activity [11,12]. Bioassay conducted at Syngenta showed that streptochlorin
and pimprinine are also promising antifungal substances demonstrating good bioactivity
against many phytopathogens [13–16]; for example, streptochlorin displayed excellent
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antifungal activity against Pythium dissimile, Botrytis cinerea, Zymoseptoria tritici, Pyricular-
iaory zae, Fusarium culmorum, and Rhizoctonia solani in artificial media. Meanwhile, these
compounds lack potency at lower concentrations, rarely warranting further study.
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Figure 1. Structures of streptochlorin, pimprinine, and related natural products.

In classical medicinal chemistry, the nitrile group was commonly considered as
bioisosteres of carbonyl, hydroxyl, and carboxyl groups, as well as halogen atoms [17]. As
nitrile-containing drugs account for 2.4% of the 2327 approved small-molecule drugs accord-
ing to the DrugBank database by 2018 [18], the presence of the nitrile group in the structure
of compounds is a very common feature of drug molecules [19,20], such as Enzalutamide,
a hormone treatment that blocks testosterone from reaching prostate cancer cells [21],
Escitalopram, a medication used in the management and treatment of major depressive
disorder and generalized anxiety disorder [22]; Tofacitinib, as an oral JAK3 inhibitor to treat
adults with moderately to severely active rheumatoid arthritis [23]; Verapamil, a medication
for treating hypertension, angina, and certain heart rhythm disorders [24]; Rilpivirine, a
non-nucleoside reverse transcriptase inhibitor that inhibits the replication of HIV-1 [25]; and
Vildagliptin, an orally administered dipeptidyl peptidase-4 (DPP-4) inhibitor for treating di-
abetes [26]. Meanwhile, Cyazofamid is a novel fungicide exhibiting specific activity against
diseases caused by Oomycetes [27]; Azoxystrobin is a broad-spectrum β-methoxyacrylate
fungicide that was first introduced in 1998, which inhibits mitochondrial respiration by
binding to the Qo site of the cytochrome bc1 complex [28,29]; and Phenamacril is a Fusarium-
specific fungicide used for Fusarium head blight management [30,31]. (Figure 2).
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Figure 2. Structures of nitrile-containing drugs and agrochemicals.

Introducing the nitrile group into the molecules is an effective protocol for structural
optimization (Figure 3). For example, the nitrile-containing structure exhibited a 277-fold
improvement in potency over the non-substituted structure as selective inhibitors of cFMS.
For casein kinase 2 (CK2) inhibitor, the nitrile-containing structure improved binding
affinity more than 90-fold compared with the non-substituted structure, and the nitrile
group was engaged in hydrogen bond interactions with the conserved water molecules in
a cocrystal structure (PDB Code: 5H8B) [17].

In this study, based on the parent structures of streptochlorin and pimprinine (Figure 4),
we designed and synthesized a series of streptochlorin derivatives containing the ni-
trile group, and carried out the evaluation for antifungal activity, aiming at the discov-
ery of natural product derivatives with improved antifungal activity. Furthermore, the
structure–activity relationships (SARs) around these compounds and the molecular dock-
ing of the most active compound with potential target enzyme were further performed.
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Figure 4. Design strategy of the target molecule.

2. Results and Discussion
2.1. Synthetic Chemistry

The series of streptochlorin derivatives containing the nitrile group were synthesized
as shown in Scheme 1, using the reported methods [32,33]. The synthesis started with cheap
and readily available indole (1). After the acylation of indole, 3-cyanoacetylindole (2) was
obtained. Then, the target compounds 3 were synthesized by the oxidative annulation
of 3-cyanoacetylindole. With DMF as solvent and TBHP as oxidant, 3-cyanoacetylindole
reacted with methylene amine under the catalysis of iodine to give compounds 3. The
structures and yields of 20 target compounds are shown in Figure 5. Copies of the NMR
spectra and HR-MS (ESI) spectra can be found in the Supplementary Materials.
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Figure 5. The structures and yields of compounds 3.

2.2. Antifungal Activity and Structure–Activity Relationships (SARs)

The antifungal activity of the target compounds and positive controls was evaluated
against six common phytopathogenic fungi at the concentration of 50 µg/mL, including
Botrytis cinerea (BOT), Alternaria solani (ALS), Gibberella zeae (GIB), Rhizoctorzia solani (RHI),
Colletotrichum lagenarium (COL), and Alternaria Leaf Spot (ALL). The screening results are
presented in Table 1.
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Table 1. Antifungal activity of the target compounds (50 µg/mL).
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3l (3-CH3)-Ph 18.3 4.5 12.1 33.8 18.7 22.5

3m (3-OCH3)-Ph 19.4 3.9 8.2 16.2 0.9 13.2
3n (3-F)-Ph 10.8 2.9 3.9 21.6 8.6 7.9
3o (3-Br)-Ph 10.8 5.8 4.2 20.5 8.2 17.5
3p (4-CH3)-Ph 33.9 5.8 4.1 13.0 21.3 22.2
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Osthole / 70.4 61.2 57.0 66.5 92.3 31.3
Boscalid / 100.0 57.6 40.9 87.3 25.5 92.8
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As compounds 3a, 3b, 3g, and 3h exhibited relatively good antifungal activity in pri-
mary screening; EC50 values of them and commercial fungicides Boscalid and Carbendazim
were further determined (Table 2). The most active compound 3a was compared with Ost-
hole, Boscalid, and Flutriafol in the radar chart shown in Figure 6, and its antifungal activity
against four kinds of fungi was more active than at least one of the positive controls.

Although the antifungal activity of most of streptochlorin derivatives containing
the nitrile group was relatively poor, making it difficult to find clear structure–activity
relationships, some preliminary conclusions could still be drawn.

Firstly, it is worth noting that the target compounds lack antifungal activity potency,
though compounds 3a and 3g showed a more than 50% antifungal effect against at least
three kinds of fungi. 3a could be regarded as the most promising candidate, as it demon-
strated over 85% growth inhibition against Botrytis cinerea, Gibberella zeae, and Colletotrichum
lagenarium, as well as a broad antifungal spectrum.

Secondly, this series of streptochlorin derivatives showed relatively stronger antifungal
activity against Rhizoctorzia solani than the other five phytopathogenic fungi. This was
highlighted by compounds 3b, 3g, and 3h, which were equivalent to or even more active
than Osthole.
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Table 2. EC50 determination of active compounds.

Pathogen Compound Toxic Regression R EC50 (µg/mL) 95% Confidence Interval

Rhizoctonia solani

3b Y = 3.7265 + 1.0627X 0.9974 15.79 14.6091~17.0648
3g Y = 4.8431 + 0.2153X 0.9901 5.36 3.6186~7.9249
3h Y = 4.9980 + 0.1754X 0.9779 1.03 0.3249~3.2444

Boscalid Y = 5.4550 + 0.9056X 0.9853 0.31 0.2214~0.4326

Botrytis cinerea 3a Y = 4.6025 + 1.1407X 0.9973 2.23 1.7204~2.8914
Boscalid Y = 5.4374 + 1.1977X 0.9934 0.43 0.3585~0.5190

Gibberella zeae
3a Y = 4.1054 + 1.1956X 0.9953 5.60 4.1288~7.5968

Boscalid Y = 5.3462 + 1.6505X 0.9889 0.62 0.5023~0.7576

Colletotrichum
lagenarium

3a Y = 3.5588 + 1.3771X 0.9889 11.13 8.3162~14.8955
Carbendazim Y = 4.2332 + 2.3002X 0.9800 2.15 1.5600~4.6000

Boscalid Y = 2.9242 + 1.3510X 0.9673 34.39 18.9576~62.3960
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Thirdly, the antifungal activity data indicated that non-substituent or alkyl substituent
at the 2-position of oxazole ring were favorable for antifungal activity, while aryl and
monosubstituted aryl were detrimental to activity, though compound 3h also demonstrated
67.5% growth inhibition against Rhizoctorzia solani. This might be due to the presence of
methylene on the benzyl group.

2.3. Molecular Docking

Although streptochlorin and pimprinine exhibited widely potent biological activi-
ties, the mechanism of action for the antifungal activity is still unclear. In our previous
studies [16,34], molecular docking was performed on streptochlorin, which indicated that
streptochlorin binds with tLeuRS in a similar mode to AN2690, and provided some ideas for
the possible mechanism of action for antifungal activity of synthesized target compounds.
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Molecular docking of the most active compound 3a with receptor protein tLeuRS
(PDB Code: 2V0C) was performed using Autodock 4.2. The protein was downloaded in
high resolution solved at 1.85 Å from RCSB Protein Data Bank (https://www.rcsb.org/,
accessed on 29 October 2022). After the molecular docking, the best binding mode of
3a (cyan in Figure 7) was selected and analyzed according to the minimum value of the
docking energy.
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The simulated binding models indicated that compound 3a formed hydrogen bonds
and hydrophobic interactions with the amino acid residues. The nitrile group of 3a formed
a hydrogen bond with residue Met338, the indole N-H bond formed hydrogen bonds with
Thr247 and Thr252, and the oxazole ring formed a weak hydrogen bond with Arg346. The
indole ring formed hydrophobic interactions with Arg249, Thr252, Val340, His343, and
Asp344 (Figure 7).

3. Materials and Methods
3.1. Chemicals

All commercially available chemicals were purchased from Nanjing Crystal Chemical
Co., Ltd. (Nanjing, China) or Alfa Aesar (Beijing, China) and were analytically pure.
The specification of silica gel for column chromatography was 200–300 mesh. All target
compounds were characterized by melting point, 1H NMR, 13C NMR, and HR-MS (ESI).
The instruments were Büchi M-560 melting point apparatus, Bruker Avance 400 MHz
spectrometer (Rheinstetten, Germany), Agilent Technologies 6540 UHD Q-TOF LC-MS
(Palo Alto, CA, USA).

Furthermore, 3-cyanoacetylindole (2) and the target compounds (3) were synthesized
using the reported methods [32,33]. All of the reaction yields were not optimized.

3.1.1. Preparation of 3-(1H-indol-3-yl)-3-oxopropanenitrile (2)

Cyanoacetic acid (3.40 g, 40 mmol) was dissolved in Ac2O (76 mL) with stirring and
heating to 50 ◦C. Indole (4.69 g, 40 mmol) was then added and the solution was heated

https://www.rcsb.org/
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to 85 ◦C. The reaction was monitored by TLC and, after the reaction was complete, the
mixture was cooled in ice water. The solid was collected under suction and washed with
MeOH to obtain pure compound 2.

3-(1H-indol-3-yl)-3-oxopropanenitrile (2): Orange solid, yield: 66%. 1H NMR (400 MHz,
DMSO-d6) δ 12.20 (s, 1H), 8.39 (d, J = 3.2 Hz, 1H), 8.17–8.14 (m, 1H), 7.53–7.50 (m, 1H),
7.29–7.21 (m, 2H), 4.51 (s, 2H).

3.1.2. General Procedure for the Synthesis of 2-substituted-4-cyano-5-(1H-indol-3-yl)oxazole (3)

Compound 2 (0.2 g, 1.5 mmol), amine (1.5 mmol), I2 (0.095 g, 0.375 mmol), and TBHP
(0.58 mL, 6 mmol) were dissolved in DMF (10mL) and reacted at 60 ◦C for 6 h. Then, the
solvent was concentrated under reduced pressure. Then, CH2Cl2 was added to the mixture
and washed with 50 mL water and 30 mL saturated brine solution. The organic layer was
dried over anhydrous Na2SO4 and the solution was removed under reduced pressure.
Finally, the pure product 3 was obtained after purification by column chromatography on
silica gel (eluent: petroleum ether/ethyl acetate = 8:1).

3.2. Compound Data
3.2.1. 5-(1H-indol-3-yl)oxazole-4-carbonitrile (3a)

Yellow solid, yield: 46%, m.p. 167.5–168.8 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.16 (s,
1H), 8.65 (s, 1H), 8.14(d, J = 3.2 Hz, 1H), 7.98 (dd, J = 7.6, 3.6 Hz, 1H), 7.61–7.56 (m, 1H),
7.33–7.22 (m, 2H).13C NMR (100 MHz, DMSO-d6) δ 156.9, 150.8, 136.3, 127.5, 123.6, 123.2,
121.5, 119.9, 114.8, 112.8, 102.8, 101.0. HR-MS (ESI): m/z calcd for C12H7N3O ([M + H]+)
210.0662, Found 210.0656.

3.2.2. 5-(1H-indol-3-yl)-2-methyloxazole-4-carbonitrile (3b)

Yellow solid, yield: 85%, m.p. 226.7–227.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.08 (s,
1H), 8.06 (d, J = 2.8 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.25 (ddd,
J = 15.2, 13.6, 6.8 Hz, 2H), 2.56 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 159.8, 156.9, 136.3,
126.9, 123.6, 123.1, 121.3, 120.0, 114.9, 112.7, 102.9, 101.1, 13.5. HR-MS (ESI): m/z calcd for
C13H9N3O ([M + H]+) 224.0818, Found 224.0821.

3.2.3. 2-ethyl-5-(1H-indol-3-yl)oxazole-4-carbonitrile (3c)

Yellow solid, yield: 40%, m.p. 165.2–167.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.09 (s,
1H), 8.07 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.31–7.20 (m,
2H), 2.91 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 163.8,
156.7, 136.3, 126.9, 123.6, 123.1, 121.3, 119.9, 115.0, 112.7, 102.8, 101.2, 20.9, 10.6. HR-MS
(ESI): m/z calcd for C14H11N3O ([M + H]+) 238.0975, Found 238.0983.

3.2.4. 5-(1H-indol-3-yl)-2-propyloxazole-4-carbonitrile (3d)

Yellow solid, yield: 25%, m.p. 167.3–168.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.09 (s,
1H), 8.07 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.26 (ddd,
J = 15.2, 13.6, 6.8 Hz, 2H), 2.87 (t, J = 7.2 Hz, 2H), 1.80 (h, J = 7.2 Hz, 2H), 1.00 (t, J = 7.6 Hz,
3H). 13C NMR (100 MHz, DMSO-d6) δ 162.7, 156.8, 136.3, 126.9, 123.6, 123.1, 121.3, 119.9,
115.0, 112.7, 102.8, 101.2, 29.0, 19.7, 13.5. HR-MS (ESI): m/z calcd for C15H13N3O ([M + H]+)
252.1131, Found 252.1130.

3.2.5. 2-butyl-5-(1H-indol-3-yl)oxazole-4-carbonitrile (3e)

Yellow solid, yield: 69%, m.p. 150.2–151.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.09 (s,
1H), 8.07 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.26 (ddd,
J = 15.2, 13.6, 6.8 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 1.81–1.70 (m, 2H), 1.46–1.35 (m, 2H),
0.94 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.8, 156.7, 136.3, 126.9, 123.6,
123.0, 121.3, 119.9, 114.9, 112.7, 102.8, 101.2, 28.2, 26.8, 21.6, 13.6. HR-MS (ESI): m/z calcd for
C16H15N3O ([M + H]+) 266.1288, Found 266.1290.
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3.2.6. 5-(1H-indol-3-yl)-2-pentyloxazole-4-carbonitrile (3f)

Yellow solid, yield: 37%, m.p. 126.5–127.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.10 (s,
1H), 8.07 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.33–7.20 (m,
2H), 2.87 (t, J = 7.6 Hz, 2H), 1.83–1.71 (m, 2H), 1.41–1.30 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 162.8, 156.8, 136.3, 126.9, 123.7, 123.1, 121.3, 119.9, 115.0, 112.8,
102.9, 101.3, 30.7, 27.1, 25.8, 21.9, 13.9. HR-MS (ESI): m/z calcd for C17H17N3O ([M + H]+)
280.1444, Found 280.1444.

3.2.7. 5-(1H-indol-3-yl)-2-isobutyloxazole-4-carbonitrile (3g)

Yellow solid, yield: 36%, m.p. 125.1–126.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.10 (s,
1H), 8.08 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.32–7.19 (m,
2H), 2.78 (d, J = 7.2 Hz, 2H), 2.18 (dp, J = 13.6, 6.8 Hz, 1H), 1.01 (d, J = 6.8 Hz, 6H). 13C
NMR (100 MHz, DMSO-d6) δ 162.1, 156.8, 136.3, 126.9, 123.6, 123.1, 121.3, 119.8, 114.9, 112.7,
102.8, 101.2, 35.9, 26.9, 22.1. HR-MS (ESI): m/z calcd for C16H15N3O ([M + H]+) 266.1288,
Found 266.1285.

3.2.8. 2-benzyl-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3h)

Yellow solid, yield: 88%, m.p. 163.3–164.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ

12.11 (s, 1H), 8.08 (d, J = 2.8 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 8.0, 0.8 Hz, 1H),
7.44–7.37 (m, 4H), 7.33–7.25 (m, 2H), 7.22 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 4.31(s, 2H). 13C
NMR (100 MHz, DMSO-d6) δ 161.3, 157.1, 136.3, 135.0, 129.1, 128.8, 127.2, 127.1, 123.6, 123.1,
121.4, 119.9, 114.8, 112.8, 103.0, 101.0, 59.8, 33.4, 14.2. HR-MS (ESI): m/z calcd for C19H13N3O
([M + H]+) 300.1131, Found 300.1129.

3.2.9. 5-(1H-indol-3-yl)-2-phenyloxazole-4-carbonitrile (3i)

Yellow solid, yield: 70%, m.p. 216.7–218.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.20 (s,
1H), 8.14 (d, J = 33.2 Hz, 4H), 7.61 (s, 4H), 7.32 (d, J = 2.8 Hz, 2H). 13C NMR (100 MHz,
DMSO-d6) δ 158.5, 157.1, 136.3, 131.4, 129.4, 128.6, 127.8, 127.6, 126.2, 125.5, 123.6, 123.2,
121.6, 120.1, 114.8, 112.8, 104.2, 101.2. HR-MS (ESI): m/z calcd for C18H11N3O ([M + H]+)
286.0975, Found 286.0974.

3.2.10. 5-(1H-indol-3-yl)-2-(o-tolyl) oxazole-4-carbonitrile (3j)

Yellow solid, yield: 35%, m.p. 226.0–227.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.20 (s,
1H), 8.42–7.95 (m, 3H), 7.71–7.03 (m, 6H), 2.72 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
158.6, 156.5, 137.3, 136.3, 131.8, 130.8, 128.5, 127.5, 126.5, 124.4, 123.6, 123.1, 121.5, 119.9,
115.0, 112.8, 104.2, 101.1, 21.8. HR-MS (ESI): m/z calcd for C19H13N3O ([M + H]+) 300.1131,
Found 300.1132.

3.2.11. 2-(2-fluorophenyl)-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3k)

Yellow solid, yield: 64%, m.p. 221.0–222.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s,
1H), 8.20 (s, 1H), 8.17–8.10 (m, 2H), 7.67 (dd, J = 12.8, 6.4 Hz, 1H), 7.60 (d, J = 7.2 Hz, 1H),
7.54–7.43 (m, 2H), 7.34–7.27 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 160.4, 158.3, 157.2,
154.7 (d, J = 5.2 Hz), 136.3, 129.2, 127.4, 125.2 (d, J = 3.6 Hz), 123.6, 123.2, 121.5, 119.9, 117.1
(d, J = 21.2 Hz), 114.7, 113.7 (d, J = 11.2Hz), 112.7, 103.9, 101.1. HR-MS (ESI): m/z calcd for
C18H10FN3O ([M + H]+) 304.0881, Found 304.0882.

3.2.12. 5-(1H-indol-3-yl)-2-(m-tolyl) oxazole-4-carbonitrile (3l)

Yellow solid, yield: 63%, m.p. 193.2–194.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.20 (s,
1H), 8.21 (s, 1H), 8.16–8.10 (m, 1H), 7.93 (s, 2H), 7.63–7.56 (m, 1H), 7.51 (t, J = 7.6 Hz, 1H),
7.43 (d, J = 7.6 Hz, 1H), 7.34–7.29 (m, 2H), 2.44 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
158.4, 157.0, 138.7, 136.3, 131.9, 129.1, 127.4, 126.4, 125.4, 123.6, 123.3, 123.1, 121.5, 120.1,
114.9, 112.7, 104.1, 101.3, 21.0. HR-MS (ESI): m/z calcd for C19H13N3O ([M + H]+) 300.1131,
Found 300.1131.
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3.2.13. 5-(1H-indol-3-yl)-2-(3-methoxyphenyl) oxazole-4-carbonitrile (3m)

Yellow solid, yield: 62%, m.p. 185.9–187.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s,
1H), 8.23 (d, J = 2.8 Hz, 1H), 8.14–8.08 (m, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.63–7.51 (m, 3H),
7.36–7.27 (m, 2H), 7.24–7.15 (m, 1H), 3.88 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 159.7,
158.2, 157.1, 136.4, 130.7, 127.6, 126.7, 123.6, 123.2, 121.7, 120.0, 118.5, 117.2, 114.9, 112.8,
111.1, 104.1, 101.2, 55.4. HR-MS (ESI): m/z calcd for C19H13N3O2 ([M + H]+) 316.1081,
Found 316.1081.

3.2.14. 2-(3-fluorophenyl)-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3n)

Yellow solid, yield: 72%, m.p. 226.7–227.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s,
1H), 8.23 (s, 1H), 8.14 (d, J = 4.8 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 9.6 Hz, 1H),
7.68 (dd, J = 14.0, 7.6 Hz, 1H), 7.62–7.56 (m, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.35–7.27 (m, 2H).
13C NMR (100 MHz, DMSO-d6) δ 163.6, 161.2, 157.4, 157.2 (d, J = 3.2 Hz), 136.3, 131.7 (d,
J = 8.4 Hz), 127.8, 127.5 (d, J = 8.8 Hz), 123.5, 123.2, 122.4, 121.6, 120.1, 118.3 (d, J = 21.2 Hz),
114.7, 112.8 (t, J = 12.0 Hz), 104.2, 101.0. HR-MS (ESI): m/z calcd for C18H10FN3O ([M + H]+)
304.0881, Found 304.0888.

3.2.15. 2-(3-bromophenyl)-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3o)

Yellow solid, yield: 48%, m.p. 244.3–245.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.24 (s,
1H), 8.24 (d, J = 3.2 Hz, 1H), 8.19 (t, J = 1.6 Hz, 1H), 8.13–8.09 (m, 2H), 7.83–7.79 (m, 1H),
7.62–7.55 (m, 2H), 7.35–7.28 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 157.4, 156.8, 136.3,
134.0, 131.5, 128.4, 127.9, 127.5, 125.2, 123.5, 123.2, 122.5, 121.6, 120.0, 114.7, 112.8, 104.2,
101.0. HR-MS (ESI): m/z calcd for C18H10BrN3O ([M + H]+) 364.0080, Found 364.0077.

3.2.16. 5-(1H-indol-3-yl)-2-(p-tolyl) oxazole-4-carbonitrile (3p)

Yellow solid, yield: 50%, m.p. 245.4–247.6 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.19 (s,
1H), 8.21 (d, J = 2.8 Hz, 1H), 8.15–8.10 (m, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.62–7.56 (m, 1H),
7.43 (d, J = 8.0 Hz, 2H), 7.31 (p, J = 5.6 Hz, 2H), 2.42 (s, 3H). 13C NMR (100 MHz, DMSO-d6)
δ 158.6, 156.8, 141.4, 136.3, 129.9, 129.1, 127.8, 127.4, 126.1, 123.6, 123.1, 122.8, 121.6, 120.1,
114.9, 112.8, 104.0, 101.2, 21.2. HR-MS (ESI): m/z calcd for C19H13N3O ([M + H]+) 300.1131,
Found 300.1135.

3.2.17. 2-(4-fluorophenyl)-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3q)

Yellow solid, yield: 67%, m.p. 255.8–258.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.20 (s,
1H), 8.26–8.08 (m, 4H), 7.59 (d, J = 6.4 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.36–7.26 (m, 2H).
13C NMR (100 MHz, DMSO- d6) δ 162.9, 157.7, 157.2, 136.3, 128.9, 128.8, 127.6, 123.6, 123.2,
122.2 (d, J = 3.2 Hz), 121.6, 120.1, 116.7, 116.5, 114.8, 112.8, 104.1, 101.1. HR-MS (ESI): m/z
calcd for C18H10FN3O ([M + H]+) 304.0881, Found 304.0874.

3.2.18. 2-(4-chlorophenyl)-5-(1H-indol-3-yl) oxazole-4-carbonitrile (3r)

Yellow solid, yield: 28%, m.p. 225.6–226.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s,
1H), 8.32–8.00 (m, 4H), 7.64 (dd, J = 38.0, 8.4 Hz, 3H), 7.30 (dd, J = 9.2, 5.6 Hz, 2H). 13C NMR
(100 MHz, DMSO-d6) δ 157.5, 157.3, 136.3, 136.1, 129.5, 127.9, 127.7, 124.3, 123.5, 123.2, 121.6,
120.1, 114.7, 112.8, 104.2, 101.1, 99.6. HR-MS (ESI): m/z calcd for C18H10ClN3O ([M + H]+)
320.0585, Found 320.0582.

3.2.19. 5-(1H-indol-3-yl)-2-(4-(trifluoromethyl)phenyl)oxazole-4-carbonitrile (3s)

Yellow solid, yield: 55%, m.p. 274.2–275.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.23 (s,
1H), 8.24 (d, J = 8.0 Hz, 2H), 8.19 (d, J = 3.2 Hz, 1H), 8.12–8.08 (m, 1H), 7.92 (d, J = 8.4 Hz,
2H), 7.60–7.56 (m, 1H), 7.33–7.27 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 157.8, 157.0,
136.3, 130.8, 129.1, 128.0, 126.9, 126.3, 123.6 (d, J = 7.6 Hz), 123.3, 121.7, 120.0 (d, J = 11.6 Hz),
114.6, 112.9, 104.4, 101.0 (d, J = 6.8 Hz), 99.6. HR-MS (ESI): m/z calcd for C19H10F3N3O
([M + H]+) 354.0849, Found 354.0851.
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3.2.20. 5-(1H-indol-3-yl)-2-(thiophen-2-yl)oxazole-4-carbonitrile (3t)

Yellow solid, yield: 69%, m.p. 207.7–208.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.21 (s,
1H), 8.17 (d, J = 2.8 Hz, 1H), 8.09 (dd, J = 6.8, 1.6 Hz, 1H), 7.92 (ddd, J = 6.0, 4.4, 1.2 Hz,
2H), 7.59 (dt, J = 7.6, 3.2 Hz, 1H), 7.33–7.28 (m, 3H). 13C NMR (100 MHz, DMSO-d6) δ 156.6,
154.8, 136.3, 130.9, 129.5, 128.8, 127.7, 127.4, 123.6, 123.2, 121.6, 120.1, 114.6, 112.8, 103.9,
100.9. HR-MS (ESI): m/z calcd for C16H9N3OS ([M + H]+) 292.0539, Found 292.0538.

3.3. Biological Assays

Antifungal activity testing was carried out using the mycelia growth-inhibitory rate
method. The six common phytopathogenic fungi selected were Botrytis cinerea, Alternaria
solani, Gibberella zeae, Rhizoctonia solani, Colletotrichum lagenarium, and Alternaria leaf spot,
which were provided by the Laboratory of Plant Disease Control, Nanjing Agricultural
University. The experimental procedure of the antifungal activity was performed according
to the paper from the Department of Plant Pathology, Nanjing Agricultural University [35].
The compounds and three positive controls, Osthole, Boscalid, and Flutriafol, were tested
at 50 µg/mL in the primary screening. The strains were activated in Potato Dextrose Agar
Medium (PDA) at 25 ◦C for 2–15 days to afford new mycelia; the edge of the mycelia was
punched before the antifungal activity assay. The screening results are listed in Table 1.

3.4. Molecular Docking Strategy

First, removing the water molecules in the protein was performed using PyMol
2.5.4 (Schrödinger, New York, NY, USA). Drawing and energy minimization of ligand
molecules were completed in Chemdraw (Version 14.0, CambridgeSoft, Cambridge, MA,
USA) and Chem3D (Version 14.0, CambridgeSoft, Cambridge, MA, USA). Then, the prepa-
ration of the protein and ligand was performed using Autodock 4.2 (The Scripps Research
Institute, La Jolla, CA, USA). For protein, we added the hydrogen atoms, calculated the
charge, and added the atom type (Assign AD4type). As for ligand, we checked the charge,
“detect Root”, and “Choose Torsions”. Finally, we ran docking after setting the Grid (cen-
ter_x = 53.489, center_y = −26.319, center_z = 33.004, size_x = size_y = size_z = 22.5 Å) and
docking parameters, and the number of runs was 50. The best binding mode was analyzed
in PyMol.

4. Conclusions

Based on the natural product structures of streptochlorin and pimprinine derived from
marine or soil microorganisms, 20 kinds of streptochlorin derivatives containing the nitrile
group were effectively synthesized from indole, through acylation and oxidative annulation.
The antifungal activity of the target compounds against six common phytopathogenic fungi
was evaluated at 50 µg/mL. Evaluation of antifungal activity showed that compound 3a
could be regarded as the most promising candidate—it demonstrated over 85% growth
inhibition against Botrytis cinerea, Gibberella zeae, and Colletotrichum lagenarium, as well as
a broad antifungal spectrum in the primary screening at a concentration of 50 µg/mL,
though the target compounds lack antifungal activity potency as a whole. The SAR study
revealed that non-substituent or alkyl substituent at the 2-position of oxazole ring were
favorable for antifungal activity, while aryl and monosubstituted aryl were detrimental
to activity. Molecular docking models indicated that 3a formed hydrogen bonds and
hydrophobic interactions with Leucyl-tRNA Synthetase, offering a perspective for the
possible mechanism of action for antifungal activity of the target compounds. Further
structural optimization is well under way.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/md21020103/s1: Copies of the NMR spectra and HR-MS (ESI) spectra.
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Abbreviations

TLC thin layer chromatography
Ac2O acetic anhydride
MeOH methanol
TBHP tert-Butyl hydroperoxide
DMF N, N-dimethylformamide
m.p. melting point
PDA Potato Dextrose Agar (Medium)
EC50 50% effective concentration
tLeuRS Thermus thermophiles leucyl-tRNA synthetase
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