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Abstract: Depsipeptides, an important group of polypeptides containing residues of hydroxy acids
and amino acids linked together by amide and ester bonds, have potential applications in agriculture
and medicine. A growing body of evidence demonstrates that marine organisms are prolific sources
of depsipeptides, such as marine cyanobacteria, sponges, mollusks, microorganisms and algae.
However, these substances have not yet been comprehensively summarized. In order to enrich our
knowledge about marine depsipeptides, their biological sources and structural features, as well as
bioactivities, are highlighted in this review after an extensive literature search and data analysis.
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1. Introduction

Marine organisms are tremendously important sources of natural products since almost
40,000 compounds have been discovered and recorded in the MarinLit database (https://
marinlit.rsc.org/, accessed on 12 December 2022) [1]. Depsipeptides are an important group
of polypeptides simultaneously containing ester and amide bonds, and they display a wide
variety of biological properties [2,3]. A number of naturally occurring depsipeptides have
been successfully developed as new drugs or are being evaluated in clinical trials, such as the
antitumor agents romidepsin [4,5], plitidepsin (aplidine) [6,7], kahalalide F [8,9] and OBP-801
(spiruchostatin A) [10]. Generally, these substances are divided into two groups, namely, cyclic
and non-cyclic, of which the former tends to display excellent bioactivity [11,12]. However,
marine-derived depsipeptides have not yet been comprehensively summarized until now. In
order to enrich our knowledge about these compounds, their origins and structural features, as
well as their biological properties, are highlighted in this review.

According to an extensive literature search using the DNP (Dictionary of Natural Products)
database as well as Web of Science and SciFinder tools, as many as 288 depsipeptides (1–288)
have been isolated and characterized from marine organisms. As shown in Figure 1, the major
producers of depsipeptides are marine cyanobacteria, which make up 55.90%, followed by marine
sponges (18.06%), mollusks (10.41%), bacteria (7.99%), marine fungi (5.56%) and algae (2.08%).
On the basis of biological sources and chemical structures, these marine depsipeptides are each
introduced herein. Their detailed information is supplied in the Supplementary Materials.
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2. Marine Cyanobacteria

Marine-cyanobacterium-derived depsipeptides (1–161) have diverse chemical struc-
tures and a wide variety of pharmacological activities, and most of them are cytotoxic [13].
Structurally, these metabolites are linear and cyclic depsipeptides containing
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-hydroxy carboxylic acid residues, and the latter are the major components and can be fur-
ther divided into five subgroups, including cyclic penta-, hexa-, and hepta-depsipeptides,
thiazole-containing depsipeptides and others.

2.1. Linear Depsipeptides

The marine cyanobacteria Symploca and Lyngbya spp. are the major producers of linear
depsipeptides (1–27, Figure 2) [10–25]. Grassystatins D–F (1–3) containing statine units
have strong aspartic protease inhibitory activity preferentially targeting cathepsins D and
E [14]. Both compounds 4 and 5 possess an acetate extended and S-adenosyl methionine-
modified isoleucine unit, a central triheterocyclic system comprising two R-methylated
thiazolines and one thiazole, and a highly oxygenated and methylated C-15 polyketide
unit [15], and 5 exerted potent inhibitory activity against the p53/MDM2 interaction
(EC50 = 4.5 µM), an attractive target for anticancer drug development [15,16]. Malevamide
D (7) exhibited a highly cytotoxic effect on P-388, A-549, HT-29 and MEL-28 cell lines in the
subnanomolar range [17]. Symplostatins 3 (8) and 4 (9) were discovered as new analogs of
dolastatin 10 and were shown to possess excellent cytotoxicity mediated by the disruption
of microtubules [18]. Tasiamides A–E (10–14), produced by a Symploca sp., were found to
have strong cytotoxicity against KB and LoVo cells [19–21].

The key structural feature of tasiamide F (15) is the presence of a Phe-derived statine
core, which contributes to its aspartic protease inhibitory activity [22]. Izenamides A,
B and C (16–18) were purified from an Okinawan Lyngbya sp. and demonstrated an
inhibitory effect on cathepsin D [23]. Grassystatins A–C (19–21) showed potency and
selectivity against cathepsins D and E in vivo [24]. Maedamide (22) was reported as a
novel chymotrypsin-inhibiting depsipeptide and strongly inhibited the growth of HeLa
and HL60 cell lines [25]. Lyngbyabellins D (23) and P (24) are, respectively, produced by
Lyngbya sp. and Okeania sp. and displayed strong antifouling and cytotoxic activities [26,27].
Gallinamide A (25) was presented as a new antimalarial pentapeptide from a Schizothrix
sp. collected off the north coast of Panama [28]. Veraguamides K (26) and L (27) are two
unique cytotoxic depsipeptides containing brominated alkynyls and were isolated from
Oscillatoria margaritifera [29].

2.2. Cyclic Depsipeptides
2.2.1. Cyclopentadepsipeptides

The marine cyanobacteria Lyngbya, Symploca and Dichothrix are the major sources
of cyclopentadepsipeptides (28–80, Figure 3), of which compounds 28, 32, 33, 48 and 49
contain a unique 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya) residue. Bouillomides A
(29) and B (30) were reported as two new analogs of dolastatin 13 and showed selective
inhibitory effects on the serine proteases elastase and chymotrypsin [30]. Cocosamides
A (31) and B (32) exhibited weak cytotoxicities toward MCF7 and HT-29 cancer cells [31].
Guineamide C (33) possessed moderate cytotoxicity against a mouse neuroblastoma cell
line [32]. Floridian Lyngbya sp.-derived novel cyclodepsipeptides (34–36) exhibited potent
inhibitory effects on elastase, chymotrypsin and trypsin [33,34]. Kurahamide (37) was
presented as a new dolastatin 13 analog and strongly inhibited elastase and chymotrypsin
as well as showed moderately cytotoxic activity against HeLa and HL60 cells [35]. Lyng-
byastatins 4–6 (38–40) contain an unusual amino acid homotyrosine residue and selectively
inhibited porcine pancreatic elastase and chymotrypsin [36,37]. Lyngbyastatins 8–10 (42–44)
had strong inhibitory effects on porcine pancreatic elastase with IC50 values of 123 nM,
210 nM and 120 nM, respectively [38].
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Figure 3. Marine-cyanobacterium-derived cyclopentadepsipeptides (28–81).

Peptolide (45) and kyanamide (65) possess a 3-amino-6-hydroxy-2-piperidone (Ahp)
residue, and the former could selectively inhibit trypsin over elastase and chymotrypsin
with an IC50 value of 2.4 mM [39,40]. Jizanpeptins A−E (50–54), possessing an Ahp residue
in a typical micropeptin motif, showed the specific inhibition of the serine protease trypsin
in vitro and were cytotoxic to HeLa cervical and NCI-H460 lung cancer cell lines [41].
Structure–activity relationship (SAR) studies and X-ray cocrystal structure analysis sug-
gested that compound 55 has similar activity, comparable to the clinically approved elastase
inhibitor sivelestat in short-term assays and superior sustained activity in longer-term as-
says [42,43]. Trikoveramides A–C (62–64) are members of the kulolide superfamily [44].
Largamides A–G (66–72) are characterized by the unusual occurrence of a senecioic acid
unit, and compounds 69-72 exhibited a strong inhibitory effect on chymotrypsin [45]. Log-
gerpeptins A–C (73–75) were reported as new Ahp-containing cyclic depsipeptides and
displayed an inhibitory effect on the cleavage of the elastase substrate CD40 [46]. Mo-
lassamide (76) was the first depsipeptide reported from the marine cyanobacterial genus
Dichothrix and has protease inhibitory activity [47]. Odoamide (77) showed potent cyto-
toxicity against HeLa S3 human cervical cancer cells with an IC50 value of 26.3 nM [48].
Tutuilamides A–C (78–80) are characterized by the presence of several unusual residues,
including Ahp, 2-amino-2-butenoic acid and vinyl chloride [49].

2.2.2. Cyclohexadepsipeptide

The marine cyanobacterium Moorena producens is the most important producer of cyclic
hexadepsipeptides (82–103, Figure 4) [33,50–55]. The cytotoxicity-guided fractionation of a
strain of M. producens collected from Papua New Guinea led to the isolation of aurilides
B (86) and C (87), which showed excellent in vitro cytotoxicity toward NCI-H460 human
lung tumor and the neuro-2a mouse neuroblastoma cell lines [51]. Guineamides D (88) and
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F (89) contain α-amino or α-hydroxy carboxylic acid residues and were isolated from a
Papua New Guinea collection of M. producens [32]. Palmyramide A (90) features an unusual
arrangement of three amino acids and three hydroxy acids; one of the hydroxy acids is
the rare 2,2-dimethyl-3-hydroxyhexanoic acid (Dmhha) unit. This compound showed
sodium-channel-blocking activity in neuro-2a cells and cytotoxic activity in H-460 human
lung carcinoma cells [50]. Trungapeptins A–C (91–93) containing a 3-hydroxy-2-methyl-7-
octynoic acid (Hmoya) residue were isolated and characterized from M. producens collected
from Trung (Thailand) [52]. Veraguamides A-G (94–100) are characterized by the presence
of an invariant proline residue, multiple N-methylated amino acids, an α-hydroxy acid and
a C8-polyketide-derived β-hydroxy acid moiety with a characteristic terminus that is either
an alkynyl bromide, alkyne or vinyl group. These metabolites showed moderate to weak
cytotoxic activity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma
cell lines [53].
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2.2.3. Cycloheptadepsipeptide

As of the end of 2022, as many as 20 cyclic heptadepsipeptides (104–123, Figure 5) had
been isolated and characterized from marine cyanobacteria, including Lyngbya, Leptolyngbya,
Okeania, Dichothrix, Symploca and Rivularia [32]. Compounds 104–110 were derived from
several Lyngbya spp., and compounds 105–107 displayed significant antimalarial properties
and potent cytotoxic activities against P388 murine leukemia cell lines. Kohamamides
A–C (112–114), containing a Leu residue adjacent to a Pro residue, belong to the kulolide
superfamily [54]. Lagunamide D (115) exhibited low-nanomolar antiproliferative activity
against A549 human lung adenocarcinoma cells, while its structural transformation from
a 26-membered macrocycle to a 24-membered ring structure led to a 9.6-fold decrease
in activity [55]. Pemukainalides A (116) had cytotoxicity against the MOLT-4 leukemia
cell line with an IC50 value of 5.6 µM [56]. Viequeamides A-F (118–123) are a family of
2,2-dimethyl-3-hydroxy-7-octanic acid-containing cyclic depsipeptides, and compound 118
was found to be highly toxic to H460 human lung cancer cells (IC50 = 60 ± 10 nM) [57].
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2.2.4. Thiazole-Containing Cyclodepsipeptides

Nineteen thiazole-containing cyclic depsipeptides (124–142, Figure 6) were discov-
ered in three marine cyanobacteria: Lyngbya, Leptolyngbya and Phormidium [11,28,55–60].
Grassypeptolides A-G (124–130) are a group of closely related bis-thiazoline-containing
cyclic depsipeptides. SAR analyses indicated that the ethyl substituent in 124 is changed to a
methyl substituent in 125, and its cytoactivity was only slightly reduced (3~4-fold), whereas
the inversion of the Phe unit flanking the bis-thiazoline moiety resulted in 16~23-fold
greater potency [58]. Compounds 127 and 128 showed significant cytotoxicity against
HeLa and mouse neuro-2a blastoma cells [59], while 129 and 130 had moderate inhibitory
activity against the transcription factor AP-1 (IC50 = 5.2 and 6.0 µM, respectively) [60].
Guineamides B (132) possessed moderate cytotoxicity against a mouse neuroblastoma cell
line with an IC50 value of 15 µM [32]. Hoiamides A (133) and B (134) belong to the unique
hoiamide structural class [15,61]. Compound 133 showed a potent inhibitory effect on [3H]
batrachotoxin binding to voltage-gated sodium channels (IC50 = 92.8 nM) and activated
sodium influx (EC50 = 2.31 µM) in mouse neocortical neurons, while 134 could stimulate
sodium influx and suppressed spontaneous Ca2+ oscillations with EC50 values of 3.9 µM
and 79.8 nM, respectively. Lyngbyabellin A (135) was shown to be a potent disrupter of the
cellular microfilament network, and lyngbyabellin B (136) displayed potent toxicity toward
brine shrimp and Candida albicans [62], while compounds 137 and 138 exhibited good
cytotoxicity against NCI-H460 human lung tumor and neuro-2a mouse neuroblastoma cell
lines, with LC50 values between 0.2 and 4.8 mM. Obyanamide (142), derived from a variety
of L. confervoides, was cytotoxic against KB cells, with an IC50 value of 0.58 µg/mL [63].
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2.2.5. Other Cyclodepsipeptides

Almost twenty other cyclodepsipeptides (143–161, Figure 7) have been obtained from
Lyngbya [61–66], Symploca [67–69] and Okeania [70]. Guineamide G (143) showed potent
brine shrimp toxicity and significant cytotoxicity against a mouse neuroblastoma cell line,
with an LC50 value of 2.7 µM [64]. Desmethoxymajusculamide C (145) demonstrated
potent and selective anti-solid-tumor activity against the HCT-116 human colon carci-
noma cell line, with an IC50 value of 20 nM via the disruption of cellular microfilament
networks [65]. Homodolastatin 16 (146), containing a 4-phenylvaline (dolaphenvaline,
Dpv) moiety and a rare 2,2-dimethyl-3-hydroxyhexanoic acid (Dmhha) unit, shares higher
homology with the potential anticancer agent dolastatin 16 [66]. Lyngbyastatin 3 (148)
possesses two unusual amino acid residues, 3-amino-2-methylhexanoic acid (Amha) and
4-amino-2,2-dimethyl-3-oxopentanoic acid units (Ibu), and is a potent disrupter of cellular
microfilament networks [67,68]. The four cytotoxic depsipeptides wewakpeptins A-D
(150–153) represent an unusual arrangement of amino and hydroxy acid subunits and
possess a bis-ester, a Dhoya or 2,2-dimethyl-3-hydroxyoctanoic acid (Dhoaa) residue, and a
diprolyl group reminiscent of dolastatin 15 [69]. Malevamide E (156) had a potent inhibitory
effect on Ca2+ release-activated Ca2+ (CRAC) channels [70]. Triproamide (157) contains
the rare 4-phenylvaline (dolaphenvaline, Dpv) and a β-amino acid, dolamethylleucine
(Dml), originally discovered in dolastatin 16 [56]. Companeramides A (158) and B (159)
showed high nanomolar in vitro antiplasmodial activity [71], and hapalosin (160) displayed
multidrug-resistance-reversing activity [72]. Urumamide (161) is a novel chymotrypsin
inhibitor with a b-amino acid from a marine cyanobacterium Okeania sp. [73].



Mar. Drugs 2023, 21, 120 9 of 21Mar. Drugs 2023, 21, x FOR PEER REVIEW 9 of 21 
 

 

  

143 144 145 146 

147 R1=H, R2=Me, R3=OMe, 

R4=i-Bu 

148 R1=Me, R2=Me, R3=OMe, 

R4=i-Bu 

     

149 150 151 152 153 

  

 
 

154 155 156 157 

 
 

 

 

158 159 160 161 

Figure 7. Marine-cyanobacterium-derived other cyclic depsipeptides (143–161). 

3. Marine Sponges 

Marine sponges are well known as prolific sources of biologically natural products 

and are the second largest group of producers of marine-derived depsipeptides (162–212, 

Figure 8) [71–84]. With respect to the genus and species, however, there are no striking 

features about these sponges. Callipeltin A (162), obtained from a shallow water sponge 

of the genus Callipelta, exhibited a protective effect on cells infected with human immu-

nodeficiency (HIV) virus [74]. Callipeltins N (164) and O (165) showed significant cyto-

toxicity against A2058, HT-29, MCF-7 and MRC-5 cell lines, with an IC50 value of 0.16 μM 

[75]. Cyclolithistide A (166) was discovered as a novel antifungal cyclodepsipeptide con-

taining the unique amino acids 4-amino-3,5-dihydroxyhexanoic acid, formyl-leucine and 

chloroisoleucine [76]. Daedophamide (167) displayed strong cytotoxic activity against a 

Figure 7. Marine-cyanobacterium-derived other cyclic depsipeptides (143–161).

3. Marine Sponges

Marine sponges are well known as prolific sources of biologically natural products
and are the second largest group of producers of marine-derived depsipeptides (162–212,
Figure 8) [71–84]. With respect to the genus and species, however, there are no strik-
ing features about these sponges. Callipeltin A (162), obtained from a shallow water
sponge of the genus Callipelta, exhibited a protective effect on cells infected with human
immunodeficiency (HIV) virus [74]. Callipeltins N (164) and O (165) showed signifi-
cant cytotoxicity against A2058, HT-29, MCF-7 and MRC-5 cell lines, with an IC50 value
of 0.16 µM [75]. Cyclolithistide A (166) was discovered as a novel antifungal cyclodep-
sipeptide containing the unique amino acids 4-amino-3,5-dihydroxyhexanoic acid, formyl-
leucine and chloroisoleucine [76]. Daedophamide (167) displayed strong cytotoxic activity
against a panel of four human tumor cell lines with GI50 values in the submicromolar
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range [77]. Gunungamide A (168), produced by an Indonesian sponge Discodermia sp., pos-
sesses an unusual chloropyrrol ring [78]. Homophymine analogs (169–178) featuring new
polyketide-derived end groups displayed potent antiproliferative activity (IC50 in the nM
range) against a panel of human cancer cell lines [79,80]. Microspinosamide (179) was the
first naturally occurring cyclodepsipeptide containing a
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-hydroxy-p-bromophenylalanine
residue and inhibited the cytopathic effect of HIV-1 infection in an XTT-based in vitro assay,
with an EC50 value of approximately 0.2 µg/mL [81]. Mirabamides A–H (180–187) have two
new residues, 4-chlorohomoproline and β-methoxytyrosine 4′-O-α-L-rhamnopyranoside,
along with a rare N-terminal aliphatic hydroxy acid, and were shown to potently inhibit
HIV-1 fusion [82]. Papuamides A–F (189–194) were the first marine-derived depsipep-
tides reported to contain 3-hydroxyleucine and homoproline residues, as well as a previ-
ously undescribed 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid moiety. Both
189 and 190 inhibited the infection of human T-lymphoblastoid cells with HIV-1RF in vitro,
with an EC50 of 4 ng/mL, and 189 was also cytotoxic against a panel of human cancer
cell lines, with a mean IC50 value of 75 ng/mL [83]. Pipecolidepsins A and B (197 and
198) contain unusual residues, including 2-amino-3-hydroxy-4,5-dimethylhexanoic acid,
3-ethoxyasparagine,3,4-dimethylglutamine,4,7-diamino-2,3-dihydroxy-7-oxoheptanoic acid
and 3-hydroxyaspartic acid, as well as a terminal 3-hydroxy-2,4,6-trimethylheptanoic acid
residue [84]. Polydiscamides B–D (200–202) were the first examples of nonendogenous
human SNSR agonists [85]. Two new HIV inhibitory depsipeptides, stellettapeptins A (211)
and B (212), were the first peptides reported to contain a 3-hydroxy-6,8-dimethylnon-4-(Z)-
enoic acid moiety [86]. Theopapuamide (213) was strongly cytotoxic against CEM-TART
and HCT-116 cell lines, with EC50 values of 0.5 and 0.9 µM, respectively [87].
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4. Marine Mollusks

At this point in time, a total of thirty depsipeptides (214–243, Figure 9) have been dis-
covered in marine mollusks, including Dolabella, Elysia, Philinopsis and Onchidium [85–94].
Aurilide (214) was reported as a new 26-membered cyclodepsipeptide and displayed po-
tent cytotoxicity against HeLa S3 cells, with an IC50 of 0.011 µg/mL [88]. Dolastatin D
(215) is a cytotoxic cyclodepsipeptide possessing a novel β-amino acid (2R,3R)-3-amino-
2-methylbutanoic acid residue [89]. Two 35-membered depsipeptides, dolastatin G (218)
and nordolastatin G (219), exhibited cytotoxicity against HeLa S3 cells, with IC50 values of
1.0 and 5.3 µg/mL, respectively [90]. Dolastatin 14 (220), derived from the Indian Ocean
sea hare Dolabella auricularia, was shown to be a novel cytostatic (PS EDm 0.022 µg/mL)
agent [91]. Kahalalides Z1 (231) and Z2 (232) displayed potent antifungal properties and
strong anticancer activities [92].

Two cytotoxic cyclodepsipeptides (233 and 234) containing two unusual amino acids,
4-phenylvaline and 3-amino-2-methylhexanoic acid, were purified from the cephalaspidean
mollusk Philinopsis speciosa [93,94]. Kulolide, a cyclic depsipeptide, was isolated from a
cephalaspidean mollusk, Philinopsis speciosa Pease [95], and kulolide (235), possessing a rare
Dhoya residue, displayed a strong cytotoxic effect on L-1210 leukemia cells and P388 murine
leukemia cells, with IC50 values of 0.7 and 2.1 µg/mL, respectively [95]. Onchidin A (241)
was structurally determined to have a new β-amino acid, 3-amino-2-methyloct-7-ynoic acid
(Amo) [96], while its analog onchidin B (242) contains two 2-hydroxy-3-methylpentanoic
acid (Hmp) moieties and two 3-hydroxy-2-methyloct-7-ynoic acid (Hymo) units [97].
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5. Marine Fungi

A growing body of evidence has indicated that marine fungi are important sources
of depsipeptides, and the genus Fusarium is the most common producer. To date, all
marine-fungus-derived depsipeptides (244–259, Figure 10) are cyclic and have a wide array
of biological properties [95–100]. Enniatin G (245) has inhibitory activity against Heps 7402,
with an ED50 value of 12 µg/mL [98]. Two cyclohexadepsipeptides, fusarihexin A (246)
and fusarihexin B (247), are manufactured by the marine mangrove endophytic fungus
Fusarium sp. R5 and exhibited stronger inhibitory activity against the plant pathogenic
fungi C. gloeosporioides, C. musae and F. oxysporum than carbendazim, which is widely used
as an agricultural and horticultural fungicide worldwide [99]. HA 23 (250) was reported as
a novel cyclodepsipeptide containing a 14-carbon polyketide unit, a substituted tyrosine
and pipecolinic acid [100]. Sansalvamide (254) exhibited selective in vitro cytotoxicity
toward COLO 205 colon and SK-MEL-2 melanoma cancer cell lines [101]. W493 A-D
(255-258) possess the unique residue 3-hydroxy-4-methyl-tetradecanoic acid (Hmta) and
exhibited moderate activity against Cladosporium cladosporiodes and weak antitumor activity
against the human ovarian cancer cell line A2780 [102,103]. Compound 261 had significant
cytotoxicity in the NCI-60 cell line panel (median GI50 = 9.1µM), with highly enhanced
selectivity against the CNS cancer cell line SF-268 (GI50 = 6.5 nM) and the renal cancer cell
line RXF 393 (GI50 ≤ 5.0 nM) [75].
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6. Marine Bacteria

Over twenty depsipeptides (260–282, Figure 11) have been identified in marine bacte-
rial genera, including Mciromonospora, Streptomyces, Chromobacterium, Verrucosispora and
Photobacterium [104]. Chromopeptide A (260) was investigated as a novel bicyclic dep-
sipeptide and was found to suppress the proliferation of HL-60, K-562 and Ramos cells,
with average IC50 values of 7.7, 7.0 and 16.5 nmol/L, respectively [105]. Rakicidins G–I
(264–266), containing a long aliphatic chain without terminal methyl branching, were
found to be 18.2~20.3-fold and 7.4~8.7-fold more cytotoxic under hypoxic than under
normoxic conditions toward PANC-1 and HCT-8, respectively, and exhibited potent an-
tibacterial effects against Gram-positive anaerobic bacteria [80]. Salinamides A (267) and
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B (268), sharing a rigid bicyclic hexadepsipeptide core with two esters and an aromatic
ether link, showed significant topical anti-inflammatory activity [81]. Streptopeptolins
A–C (271–273), containing the unusual amino acids Ahp and N-methyl tyrosine, were the
first cyanopeptolin-type peptides isolated from S. olivochromogenes strain NBRC 3561 and
demonstrated potent inhibitory activities against chymotrypsin [106]. Thiocoraline (274),
produced by Micromonospora sp. strain L-13-ACM2-092, showed potent cytotoxic activity
against P-388, A-549 and MEL-28 cell lines, as well as strong antimicrobial activity against
Gram-positive bacteria by binding to supercoiling DNA and inhibiting RNA synthesis.
Unnarmicins A (280) and C (281) selectively inhibited the growth of two strains belonging
to the genus Pseudovibrio, one of the most prevalent genera in the marine environment [107].
Verrucosamide (282), composed of two rare seven-membered 1,4-thiazepane rings, was
shown to have moderate cytotoxicity against MDA-MB-468 and COLO 205, with LD50
values of 1.26 µM and 1.4 µM, respectively [108].
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7. Marine Algae

To date, a half dozen depsipeptides (283–288, Figure 12) have been obtained from
two marine macroalgae, Bryopsis and Derbesia [108]. Mebamamides A (286) and B (287)
were reported as new lipopeptides with four D-amino acid residues and a 3,8-dihydroxy-9-
methyldecanoic acid residue, but exhibited no growth inhibitory activity against HeLa and
HL60 cells at 10 µM [109].
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8. Conclusions and Perspectives

In summary, as many as 288 depsipeptides have been discovered in marine organ-
isms, including cyanobacteria, sponges, mollusks, bacteria, fungi and algae, among which
marine cyanobacteria are the largest group of producers. Most of these substances are
formed by closing the loops of their terminal amino acids. It is very exciting that a large
number of marine-derived cyclodepsipeptides display potent cytotoxic effects since they
have absolute advantages in structural rigidity, biochemical stability, binding affinity and
membrane permeability, which greatly improve their anticancer activity [110], such as the
hormones or hormone analogs oxytocin [111], octreotide [112] and vasopressin [113], the
antibiotics vancomycin [114], daptomycin [115] and polymyxin B [116] and the immunosup-
pressant cyclosporine [117]. Therefore, the discovery of novel marine cyclodepsipeptides
for new drug development has been attractive to academic researchers and pharmaceutical
companies. In the past decade, however, the number of new marine depsipeptides has
been greatly reduced, as almost all accessible marine organisms have been collected and
chemically studied. Fortunately, marine microorganisms (such as Fusarium, Mciromonospora,
Streptomyces) have been shown to be a rich and unexploited source of bioactive natural prod-
ucts due to vast species richness and the biosynthetic potential of secondary metabolites,
especially those of symbiotic microbes in marine sponges, mollusks, tunicates, macroalgae
and mangroves. Therefore, more efforts should be made toward strain separation and
chemical research using classical methods (e.g., strain cultivation and fermentation, chro-
matographic and spectroscopic techniques) and advanced approaches (e.g., metabolomics,
genome mining and engineering).
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cyanobacterium-derived depsipeptides (1-161); Table S2. Detail information for marine sponge-
derived depsipeptides (162–213); Table S3: Detail information for marine mollusk-derived depsipep-
tides (214–243); Table S4 Detail information for marine fungus-derived depsipeptides (244–259);
Table S5: Detail information for marine bacterium-derived depsipeptides (260–282); Table S6. Detail
information for marine algae-derived depsipeptides (283–288).
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