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Abstract: Aeruginosins, a family of nonribosomal linear tetrapeptides discovered from cyanobacteria
and sponges, exhibit in vitro inhibitory activity on various types of serine proteases. This family is
characterized by the existence of the 2-carboxy-6-hydroxy-octahydroindole (Choi) moiety occupied at
the central position of the tetrapeptide. Aeruginosins have attracted much attention due to their special
structures and unique bioactivities. Although many studies on aeruginosins have been published, there
has not yet been a comprehensive review that summarizes the diverse research ranging from biogenesis,
structural characterization and biosynthesis to bioactivity. In this review, we provide an overview
of the source, chemical structure as well as spectrum of bioactivities of aeruginosins. Furthermore,
possible opportunities for future research and development of aeruginosins were discussed.

Keywords: aeruginosins; Choi; biogenesis; structural diversity; nonribosomal polypeptide synthesis;
serine protease inhibitory activity

1. Introduction

Water eutrophication is a phenomenon of water pollution caused by the enrichment
of nutrients containing phosphorus and nitrogen in water, which is manifested by the
abnormal reproduction and growth of algae and other plankton, the reduction of dissolved
oxygen in water and the death of a large number of aquatic organisms [1]. Due to eutrophi-
cation, a large number of algae, with cyanobacteria and green algae as the dominant species,
grow on the surface of the water, forming a “green scum”—water bloom. This results in
the release of large amounts of harmful gases from the accumulation of organic matter in
the bottom layer under anaerobic conditions as well as the release of large amounts of algal
toxins due to the rupture of algal cells, posing a serious threat to the safety of drinking
water for humans and animals [2].

Cyanobacterial blooms are distributed in tropical, subtropical and temperate regions
of the world [3]. China is one of the countries where cyanobacterial blooms occur most
severely in the world. Although water blooms cause a variety of hazards, cyanobacteria
that cause water blooms contain rich and diverse secondary metabolites, so they are con-
sidered to be important sources of drug candidates and precursors. Among the different
cyanobacteria-derived secondary metabolites identified, aeruginosins, a class of bioactive
tetrapeptides that appear during cyanobacterial blooms in natural waters, have been found
in Microcystis [4–8], Planktothrix [9,10], Nostoc [11,12], Nodularia [13,14] of the cyanobacte-
rial phylum, and were found in sponges (probably in symbiotic cyanobacteria) as well
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(Table 1) [15–17]. The structure of this peptide was initially elucidated by two-dimensional
nuclear magnetic resonance (2D-NMR) during the screening of metabolites from Micro-
cystis aeruginosa, which marked the discovery of a new class of peptides possessing serine
protease inhibitory activity [18,19]. Aeruginosin is characterized by the occupation of the
2-carboxy-6-hydroxy-octahydroindole (Choi) moiety at the central position in the tetrapep-
tide, while other positions are occupied by a single variable residue of congeners [20].
Aeruginosins are a family of chemo-diverse peptides that have been shown to inhibit serine
protease in vitro [21]. The mechanism of inhibition has been elucidated by X-ray crystallo-
graphic analysis of the structure of the aeruginosin–protease complex [19,22]. Considering
the potential druggability of aeruginosin, its organic synthesis has been carried out. Aerugi-
nosin 298A is the first member of the aeruginosin family isolated by Murakami and his team
in 1994, so it is also the original synthetic target selected by many researchers [23]. After the
efforts of many years, the organic syntheses of aeruginosin 298A and 298B were finally com-
pleted in 2001 based on the absolute configuration observed in the crystal structure [18,24].
As the research progressed, total syntheses of microcin SF-608 [6], chlorodysinosin A [25],
oscillarin [26] and aeruginosin KT608A [27] were also completed.

Aeruginosins have attracted much attention due to their special structures and unique
bioactivities. Although these compounds have similar backbones, the isolation of new
members of the aeruginosin family is often accompanied by the discovery of new residues,
especially arginine derivatives [19].
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Table 1. Biogenesis, structural diversity, and bioactivity of aeruginosins. Hpla: 4-hydroxyphenyllactic acid; Pla: phenyllactic acid; Choi: 2-carboxy-6-octahydroindole;
Abn: tricyclic azabicyclononane; Agma: 4-amidinobutylamide; Aaep: 1-amidino-3-(2-aminoethyl)-3-pyrroline; Mgs: 2-O-methylglyceric acid 3-O-sulfate.

No. Name Source

Structure Diversity IC50

Refs.
The N Terminal Residue The Second Residue The Third

Residue
The C

Terminal
Residue

Trypsin Thrombin Plasmin

1 Aeruginosin 298A Microcystis aeruginosa NIES-298 R2=OH, R4=OH D-Hpla X = side chain of D-Leu R5=OH L-Choi L-Argol 1.38 µM 0.42 µM >14 µM [4,28]
2 Aeruginosin 98A Microcystis aeruginosa NIES-98 R1=Cl, R2=OH, R4=OH D-Hpla X = side chain of

D-allo-Ile
R5=OSO3H

L-Choi Agma 0.87 µM 10.17 µM 8.72 µM [20,29]

3 Aeruginosin 98B Microcystis aeruginosa NIES-98 R1=H, R2=OH, R4=OH D-Hpla X = side chain of
D-allo-Ile

R5=OSO3H
L-Choi Agma 0.92 µM 15.28 µM 10.7 µM [20,29]

4 Aeruginosin 98-C Microcystis aeruginosa NIES-98 R1=Br, R2=OH, R4=OH D-Hpla X = side chain of
D-allo-Ile

R5=OSO3H
L-Choi Agma 5.33 µM 4.5 µM 6.83 µM [29]

5 Aeruginosin 298B Microcystis aeruginosa NIES-298 R2=OH, R4=OH D-Hpla X = side chain of D-Leu R5=OH
L-Choi-NH2

- >100 µM >100 µM >100 µM [4]

6 Aeruginosin 101 Microcystis aeruginosa NIES-101 R1=Cl, R2=OH, R3=Cl, R4=OH D-Hpla X = side chain of
D-allo-Ile

R5=OSO3H
L-Choi Agma 4.15 µM 4.43 µM 4.57 µM [4]

7 Aeruginosin 89A Microcystis aeruginosa NIES-89 R1=Cl, R2=OSO3H, R4=OH D-Hpla X = side chain of D-Leu R5=OH L-Choi L-Argal 0.48 µM 0.04 µM 0.02 µM [4]
8 Aeruginosin 89B Microcystis aeruginosa NIES-89 R1=Cl, R2=OSO3H, R4=OH D-Hpla X = side chain of D-Leu R5=OH L-Choi D-Argal 7.9 µM 0.06 µM 0.55 µM [4]
9 Microcin SF608 Microcystis aeruginosa R2=OH, R4=OH L-Hpla X = side chain of L-Phe R5=OH L-Choi Agma 0.82 µM - - [29]

10 Aeruginosin GE686 Microcystis aeruginosa from bloom
material R1=Br, R2=OH, R3=Cl, R4=OH D-Hpla X = side chain of

D-allo-Ile R5=OH L-Choi Agma 3.2 µM 12.8 µM - [5]

11 Aeruginosin GE766 Microcystis aeruginosa from bloom
material R1=Br, R2=OH, R3=Cl, R4=OH D-Hpla X = side chain of

D-allo-Ile
R5=OSO3H

L-Choi Agma 12.2 µM >45.5 µM - [5]

12 Aeruginosin GE730 Microcystis aeruginosa from bloom
material R1=Br, R2=OH, R3=Br, R4=OH D-Hpla X = side chain of

D-allo-Ile R5=OH L-Choi Agma 2.3 µM 12.9 µM - [5]

13 Aeruginosin GE810 Microcystis aeruginosa from bloom
material R1=Br, R2=OH, R3=Br, R4=OH D-Hpla X = side chain of

D-allo-Ile
R5=OSO3H

L-Choi Agma 18.2 µM >45.5 µM - [5]

14 Aeruginosin GE642 Microcystis aeruginosa from bloom
material R1=Cl, R2=OH, R3=Cl, R4=OH D-Hpla X = side chain of D-Leu R5=OH L-Choi Agma 8.5 µM >45.5 µM - [5]

15 Aeruginosin KY642 Microcystis aeruginosa from bloom
material R1=Cl, R2=OH, R3=Cl, R4=OH D-Hpla X = side chain of D-Ile R5=OH L-Choi Agma 1.85 µM - - [5,7]

16 Aeruginosin DA688 Microcystis aeruginosa from bloom
material R1=Cl, R2=OH, R3=H, R4=OH D-Hpla X = side chain of D-Leu R5=OSO3H

L-Choi Agma 9.5 µM >45.5 µM - [8]

17 Aeruginosin 205A Planktothrix agardhii NIES-205 R4=OSO3H L-Pla X = side chain of
(2R,3S)-Hleu R5=Cl Ccoi Agma 0.08 µM 1.65 µM - [4,9]

18 Aeruginosin 205B Planktothrix agardhii NIES-205 R4=OSO3H D-Pla X = side chain of
(2S,3R)-Hleu R5=Cl Ccoi Agma 0.08 µM 0.19 µM - [4,9]

19 Oscillarin Planktothrix agardhii B2 83 R4=OH, D-Pla X = side chain of D-Phe R5=OH L-Choi Aaep 0.03 µM 0.02 µM >300 µM [10,26]
20 Aeruginosin 865 Nostoc sp. Lukešová 30/93 R2=OH, R4=OH D-Hpla X = side chain of D-Leu R5=ManA,R6=HA

Choi Agma - - - [11]
21 Varlaxin 1046A Nostoc sp. UHCC 0870 Mgs X = side chain of D-Ile Hex Aaep 0.62–3.6 nM - - [12]
22 Varlaxin 1022A Nostoc sp. UHCC 0870 Mgs X = side chain of D-Ile Hex Agma 97–230 nM - - [12]
23 Suomilide Nodularia sphaerocarpa UHCC 0038 Mgs X = side chain of allo-Ile Abn Aaep 1.8 µM - - [12,13]
24 Dysinosin A Species in the family Dysideidae R4=H

D-glyceric acid X = side chain of D-Leu R5=OH R6=OH
L-Choi Aaep - 0.38 µM - [15,19]

25 Chlorodysinosin A - D-glyceric acid X = side chain of D-Leu R5=OH L-Choi Aaep 0.03 µM 0.004 µM - [19,25]

26 Dysinosin B Lamellodysidea chlorea D-glyceric acid X = side chain of D-Val R5=xylose,R6=OH
L-Choi Aaep - 0.17 µM - [17]

27 Dysinosin C Lamellodysidea chlorea D-glyceric acid X = side chain of D-Val R5=OH,R6=OH
L-Choi Aaep - 0.55 µM - [17]

28 Dysinosin D Lamellodysidea chlorea D-glyceric acid X = side chain of D-Val R5=OH,R6=OH
L-Choi Aaep - >5.1 µM - [17]

29 Aeruginosin
KT608A

Microcystis aeruginosa from bloom
material R2=OH, R4=OH L-Hpla X = side chain of D-Phe R5=OH L-Choi Agma 1.9 µM - - [12,27]

30 Aeruginosin 686A Microcystis aeruginosa PCC 7806 R1=Cl, R2=OH, R4=OH X = side chain of D-Tyr R5=OH L-Choi Argal - - - [30,31]
31 Aeruginosin 686B Microcystis aeruginosa PCC 7806 R1=Cl, R2=OH, R4=OH X = side chain of D-Tyr R5=OH L-Choi Arg - - - [30,31]
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2. Biogenesis
2.1. Genus Microcystis

In the early 1990s, aeruginosin 298A (Figure 1) was isolated from Microcystis aeruginosa
(strain NIES-298). It is the first member of the aeruginosin family that has ever been
identified, and its structure was originally determined by 2D-NMR [18]. In 1998, the crystal
structure of the complex of aeruginosin 298A with leech thrombin was determined at 2.1 Å
resolution, leading to the confirmation of an absolute stereo configuration that revealed
some unexpected interactions, which could be utilized for structure-based drug design [28].
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In 1995, Murakami and colleagues isolated the new trypsin inhibitors aeruginosin
98A and 98B (Figure 1) from the cultured freshwater cyanobacterium Microcystis aeruginosa
(NIES-98) [22]. The absolute configurations of the peptides were determined by acid hydrol-
ysis of the peptides, derivatization and subsequent chiral phase high-performance liquid
chromatography (HPLC) with standard samples as references, combined with 2D-NMR
analysis. The absolute configuration of the Choi moiety was determined by derivatization
and NMR analysis. The absolute configuration of aeruginosin 98B was determined by
X-ray crystallographic analysis of its ternary complexes with hirudin and thrombin [22].

At the end of the 20th century, aeruginosin 98C and 298B (Figure 2) were isolated from
Microcystis aeruginosa (strains NIES-298 and NIES-98). In addition, three new congeners,
aeruginosin 101, 89A and 89B (Figure 2), were isolated from other algal strains (NIES-101
and NIES-89). Their structures were determined by 2D-NMR. In HPLC, it was found that
aeruginectin 89A and 89B were tautomeric, containing argininal with a stereo configuration
of L-type or D-type [4]. In the same year, Carmeli and coworkers discovered microcin SF608
(Figure 2) during screening for protease inhibitors from a non-toxic strain of Microcystis
aeruginosa. Through 2D-NMR and HPLC analysis, the structure of microcin SF608 (9)
(Figure 2) was elucidated, and it was found to be very similar to that of aeruginosin 298A
(Figure 1) [7].

In August 2007, Elkobi-Peer and colleagues extracted a freeze-dried water extract
of Microcystina aeruginosa collected from a fish pond in Kibbutz Geva, Israel, with 70%
methanol. Five novel natural products, aeruginosin GE686, GE766, GE730, GE810 and
GE642 (14) (Figure 3) [5], as well as four known aeruginosins: 98C, 101 (Figure 2) [4], KY642
(Figure 3) [7] and DA688 (Figure 4) [8], were obtained. Various spectroscopic techniques,
including NMR and mass spectrometry, were used to identify the structure, while the
absolute configuration of the center was determined by Marfey’s method and chiral phase
HPLC.
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2.2. Genus Planktothrix

In 1997, Shin and colleagues isolated aeruginosins in Planktothrix agardhii (NIES-205)
from cyanobacteria collected from Lake Kasumigaura, Japan. Extracts with significant
inhibitory activities on trypsin and thrombin were obtained by mass cultivation, and two
new types of aeruginosins, aeruginosin 205A and 205B (Figure 4), were purified by reverse
HPLC by using Cosmosil C-18 column [9]. Since the data of their 2D-NMR spectra are
basically identical, it can be assumed that they have the same stereochemistry.

In the same year, oscillarin (Figure 5), a new type of aeruginosin, was isolated from
the cultures of Planktothrix agardhii (strain B2 83) [10]. Based on NMR data and the crys-
tal structure of its complex with trypsin, the structure and absolute configuration were
confirmed. Oscillarin is composed of D-phenyllactic acid (D-Pla), D-Phe, L-Choi and the
cyclic guanidine. In 2004, Hanessian and colleagues succeeded in obtaining a complex
of oscillarin and α-thrombin-huridin (Hirudin is a 65 amino acid residue protein isolated
from the salivary glands of the medicinal leech Hirudo medicinalis. Hirugen is a close
analog of the C terminus of this recombinant form of hirudin. Since hirugen prevents
proteolysis of thrombin in vitro, it was possible to obtain crystals of the hirugen–thrombin
complex without autolysis. Importantly, the residues of the catalytic triad in this active
structure and those in the hirudin complexed structure, which is in an inactive state, are
remarkably similar [32].), which can be structurally resolved by X-ray diffraction at 2.0 Å
resolution [26]. The structure of the thrombin–oscillarin complex was further confirmed
by total synthesis and high-resolution X-ray diffraction data, and the revised structure
revealed the presence of 1-amino-2-(N-amidino-∆3-pyrrolinyl)-ethyl moiety (Aaep) instead
of the originally proposed cyclic guanidine [26].
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2.3. Genus Nostoc

In 2013, Kapuścik and colleagues obtained aeruginosin 865 (Figure 5) from Nostoc sp.
Lukešová 30/93 for the first time. The structure of aeruginosin 865 was determined by 1D-
and 2D-NMR. It is the first aeruginosin-type polypeptide that contains both fatty acid and
carbohydrate and the first aeruginosin that shows anti-inflammatory activity [11].

After a lapse of many years, varlaxin 1046A and varlaxin 1022A (Figure 6) were discov-
ered from Nostoc sp. UHCC 0870 in 2022. Both of them were capable of inhibiting human
trypsin isozymes at subnanomolar concentrations. The structure of the varlaxin variant was
derived from 1D- and 2D-NMR data and the most significant difference between varlaxin
and other aeruginosins is that the Choi moiety possesses two 4-hydroxyphenylacetic acid
(Hpaa) modifications [12].
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2.4. Genus Nodularia

In 1997, Fujii et al. first identified a new type of glycosylated aeruginosin, suomilide
(Figure 6), in Nodularia spumigena (strain HKVV) [13]. The structure was elucidated by
2D-NMR combined with MS/MS technique. In 2021, Ahmed et al. also found suomilide in
Nodularia sphaerocarpa (strain UHCC 0038) [14].

2.5. Sponges

In 2002, Quinn and colleagues isolated dysinosin A (Figure 7), a new type of aerugi-
nosin, from a sponge in the family Dysideidae found near Lizard Island, North Queensland,
Australia [15]. Dysinosin A is a potent inhibitor of the coagulation cascade factor VIIa2
and an inhibitor of the serine protease thrombin as well. The structure of dysinosin A was
determined by using 2D-NMR combined with acid hydrolysis studies, and the dysinosin A-
thrombin-hirugen (hirugen is N-acetylhirudin 53′-64′ with sulfato-Tyr63′ [32]) complex was
analyzed by X-ray crystallography [19]. The configurations of chiral centers of dysinosin A
were confirmed to be C5 (R), C12 (S), C14 (S), C15 (S), C17 (R) and C19 (S). The chemical
exchange correlation between the high-intensity and low-intensity signals observed in the
NOESY spectra suggests the presence of conformational isomers rather than structural
isomers [15].
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In 2003, Goetz and colleagues isolated chlorodysinosin A (Figure 7), a chloride deriva-
tive of dysinosin A (Figure 7), and characterized it with the same backbone structure and
absolute configurations as that of dysinosin A [16]. Among the natural aeruginosin family,
chlorodysinosin A is the most potent inhibitor of the serine proteases, thrombin, factor
VIIa and factor Xa, which are key enzymes in the process leading to platelet aggregation
and fibrin mesh formation in humans [25]. In the following year, Carroll and colleagues
isolated three marine natural products, dysinosin B, C and D (Figure 7), from marine
sponges in the family Dysideidae and determined their structures by 1D- and 2D-NMR [17].
Dysinosin D lacks the sulfate group compared to dysinosin A-C, and therefore its inhibition
of factor VIIa and thrombin is enhanced by a factor of 10, suggesting that the sulfate group
contributes to the binding of factor VIIa and thrombin [17]. Dysinosin B shares the same
xylopyranose (Xyl) moiety as aeruginosin 205A and 205B (Figure 4) and thus belongs to
the glycosylated aeruginosin.

3. Structural Diversity

Aeruginosins are highly variable linear tetrapeptides. The backbone of aeruginosin
consists of four residues: a 4-hydroxyphenyl lactate derivative at the N-terminus [33], a
hydrophobic amino acid [27], a Choi moiety and an arginine derivative at the C-terminus
(Figure 8, Table 1) [29,34].

3.1. Diversity of N-Terminal Residue

The first position of the N-terminus of aeruginosin is usually occupied by the deriva-
tives of hydroxyphenyl lactic acid (Hpla) or phenyllactic acid (Pla). Hpla is an NRPS
compound that can be used for tyrosine metabolism. It is in the D-configuration in the vast
majority of homologs, but it is in the L-configuration in aeruginosin KT608A (Figure 7) [27],
and Pla is in the L-configuration in aeruginosin 205A (Figure 4) as well [9]. Hpla can be
further modified by mono- or di-halogenation, hydroxylation and sulfation on the ben-
zene ring [30]. In contrast, the Hpla of aeruginosin 98C (Figure 2), aeruginosin GE686,
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aeruginosin GE766, aeruginosin GE730 and aeruginosin GE810 (Figure 3) were found to be
brominated, which is specific in comparison to other aeruginosins, as bromine cannot be
detected in the natural environment or culture media [4,5]. More rarely, the first position of
the N-terminus in the recently discovered suomilide, varlaxin 1046A and varlaxin 1022A
(Figure 6) is occupied by 2-O-methylglyceric acid 3-O-sulfate (Mgs) [12,14].
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3.2. Diversity of the Side Chain of the Second Residue

The second position of the N-terminus of aeruginosin is occupied by variable hy-
drophobic amino acids, relatively abundantly by leucine (Leu) and isoleucine (Ile), followed
by phenylalanine (Phe), tyrosine (Tyr) and homotyrosine [35], while valine (Val) is the least
abundant and so far only found in the dysinosin variant [15,17]. In most aeruginosins,
these amino acids are in the D-configurations but are in the L-configurations in microcin
SF608 (Figure 2) [6] and aeruginosin 205A (Figure 4) [9,30].

3.3. Modifications of Choi Moiety

Choi is one of the characteristics that distinguishes aeruginosin from other peptide
compounds [35]. It has been confirmed in the organic synthesis of aeruginosin 298A
(Figure 1) and 298B (Figure 2) that it is synthesized from tyrosine in vitro, but it is deduced
to be biosynthesized from prephenate in vivo [36]. Choi is also highly variable and can be
glycosylated, sulfated as well as halogenated at the R5 position of the general structural
formula (Figure 8) [34]. The 5,6-OH in the Choi moiety of aeruginosin 865 (Figure 5) is
replaced by ManA and HA, while suomilide (Figure 6) contains a multi-functional tricyclic
azabicyclononane (Abn) moiety despite the absence of the Choi moiety. So suomilide still
belongs to the aeruginosin family [11,14].

3.4. Diversity of the Side Chain of C-Terminal Residue

The C-terminal site is occupied by a variable arginine residue that presents a variety
of types: the first is an argininol reside generated by the reduction of the carboxyl group of
arginine to the hydroxyl group (aeruginosa 298-A) (Figure 1) [18]; the second is agmatine
generated by decarboxylation of arginine (aeruginosin 98-A) (Figure 1) [22]; the third to the
fourth is generated by the cyclization of the arginine side chain. Arginine was cycled to
either a five-membered ring (Aaep: oscillarin) (Figure 5) [10] or a six-membered ring, and
the six-membered ring presents in two forms: reduction of the carbonyl group to a hydroxyl
group (aeruginosin 686-A) or the retention of the original carbonyl group (aeruginosin
686-B) (Figure 9) [30,31].
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Aeruginosin 205A and 205B (Figure 4) are the most specific, independent of the above
types, consisting of uncommon amino acids or amino acid derivatives, sugars and organic
acids. At the time of their discovery, they were the only known glycosylate derivatives of
aeruginosin [9,19]. Aeruginosin 205A and 205B (Figure 4) are specific glycopeptides, and
their remarkable activity makes them potent candidates for drugs with protease inhibitory
activity. Both of their backbones are composed of five residues: phenyllactic acid 2-O-
sulfate (Pla), D-xyl, 3-hydroxyleucine (HLeu), 2-carboxy-6-chlorooctahydroindole (Ccoi)
and agmatine. Among them, Pla, Ccoi and HLeu residues are rare in natural products. 3-
hydroxyleucine has been found in peptide antibiotics such as telomycin, lysozyme peptides,
and lactobacillin [37]. Aeruginosin 205A and 205B (Figure 4) have the same planar structure,
but the stereochemistry of Hleu and Plas in aeruginosin 205B is opposite to that in 205A.
Acid hydrolysis product data based on HPLC showed that the Pla residues of 205A and
205B were in the L- and D-configurations, respectively. The absolute stereochemistry of
the Hleu residues was determined to be (2R,3S) and (2S,3R), respectively, using nine acid
hydrolysates derived from Marfey’s reagent.

4. Biosynthetic Pathways

The distribution and functions of nonribosomal peptide synthases (NRPSs) and polyke-
tide synthases (PKSs) have been extensively studied. They are two similar types of assembly
machinery composed of multi-functional megaenzymes that are responsible for the synthe-
sis of nonribosomal peptide (NRP) and polyketide (PK), respectively, in plants, bacteria
and even fungi [38–41].

4.1. Polyketide Synthase (PKS)

PKs have a wide range of bioactivities due to their structural and functional diversity,
but their biosynthetic mechanisms are similar. The generation of their core structures
is catalyzed by PKS. PKS can be classified into three types based on their compositions,
namely type I (modular), type II (iterative) and type III (chalcones) [42]. Type I PKS
consists of modules with different core and auxiliary catalytic domains, including acyltrans-
ferase (AT), acyl carrier protein (ACP), ketoacyl synthase (KS), ketoacyl reductase (KR),
dehydratase (DH), enoylreductase (ER), methyltransferase (MT) and thioesterase (TE).
AT, KS and ACP are the core functional domains for monomer assembly, and the PKS
termination module ends with a thioesterase domain [43].
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4.2. Nonribosomal Polypeptide Synthase (NRPS)

The backbone of NRP is synthesized by an assembly line consisting of multiple mod-
ules. A typical NRPS is composed of several modules in a certain order, typically 4 to
10 modules and some even 50 modules. Different domains with various enzymatic activ-
ities are responsible for assembling specific monomers to the nascent peptide chain. A
standard module consists of three core domains, adenylation (A) domain, thiolation (T)
domain/peptidyl carrier protein (PCP) domain and condensation (C) domain [39,44,45].
In addition to the C-A-T tri-domain, the NRPS module may also selectively contain some
catalytic domains for offline modification, such as methylation (MT), oxidation (Ox), hetero-
cyclization (Cy), epimerization (E) and sulfotransferase (ST) domains, etc. The C-terminus
of NRPS usually contains a thioesterase (TE) or terminal condensation (CT) domain, which
is responsible for releasing the products [46,47]. However, NRPSs that lack the TE domain
or are replaced by an NAD (P) + dependent terminal reductase (R) domain may also exist,
possibly by reductive release to terminate the peptide chain synthesis [48]. The vast major-
ity of NRPSs follow the rules of collinear assembly. The number, type and arrangement
order of NRPS modules are consistent with those of amino acid constituents of the product.
In the process of biosynthesis, NRPS sequentially performs the catalytic function of each
module to assemble monomers into specific NRPs according to a fixed logic. In addition,
some NRPSs employ specific assembly mechanisms, such as module hopping, iterative
extension and trans-uploading during product synthesis [49].

The iterative reaction process for the extension of the peptide chain of NRP mainly is:
(1) the pantoyl–thioglyamine (Ppant) arm is tethered in the T/PCP domain (Figure 10A);
(2) the A domain specifically recognizes the substrate amino acids to generate aminoacyl–
AMP by consuming ATP, which activates the amino acid substrate [50,51], and the
aminoacyl–AMP meets the pantoyl–thioglyamine (Ppant) arm tethered in the T/PCP
domain and links to its free thiol group, resulting in the aminoacyl–S-carrier complex
(Figure 10B) [52]; (3) the subsequent transfer of the amino-S-carrier complex from the A
domain to the C domain, and the binding of the upstream carriers of aminoacyl, lipoyl
CoA or peptidyl groups to form peptide bonds within the active site of the C domain
(Figure 10C) [53]; (4) the TE domains typically present in the NRPS termination modules
catalyze hydrolytic release or cyclization of the final products [54,55].

4.3. NRPS-PKS Hybrid

Both NRPS and PKS belong to a megasynthetase assembly line composed of multi-
ple modules, using similar strategies for synthesis. Recently, some secondary microbial
metabolites have been shown to require both NRPS and PKS domains to participate in
the synthesis [56]. With the development of genome mining technology, it has been found
that this pathway is ubiquitous in various microorganisms, such as the biosynthesis of
aeruginosin [21,41].

In the initial step of aeruginosin biosynthesis, the modules responsible for the addition
of α-keto acid include adenylation (A), ketoreductase (KR) and the peptidyl carrier protein
(PCP) domains. The A domain uses a hitherto not fully revealed mechanism to specifically
select α-keto acids, distinguishing them from α-amino acids and α-hydroxy acids: aspartic
acid in contact with the α-amino acid in the amino acid selective A domain is substituted
with a hydrophobic residue in the α-keto acid selective A domain [57]. The α-keto acid
adenylated by this type of A domain is then transferred to the PCP domain. Subsequently,
the PCP domain transfers the α-ketoacyl to the KR domain for stereoselective reduction
of the keto group (Figure 11) [56]. Afterward, the α-hydroxyacyl-PCP is supplied to the C
domain of the downstream module for condensation [56].
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Figure 10. A canonical peptide chain extension process during biosynthesis of aeruginosin.
(A) Pantoyl–thioglyamine (Ppant) arm is tethered in the PCP domain, which is catalyzed by PPTase;
(B) amino acid substrate is activated by A domain and is loaded onto the PCP domain, resulting
in the aminoacyl–S-carrier complex; (C) peptide bond formation catalyzed by C domain. PPTase:
4′-phosphopantetheinyl transferase; A: adenylation domain; C: condensation domain; PCP: peptidyl
carrier protein domain; CoA: coenzyme A; 3′,5′-ADP: adenosine 3′,5′-diphosphate; ATP: adenosine
triphosphate; PPi: pyrophosphoric acid.
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4.4. Biosynthesis of Aeruginosin

AerB, AerG, AerD, AerE, and AerF are found to be present in the biosynthesis pathway
of all the aeruginosins discovered and perform similar functions, being responsible for
peptide intermediate assembly and Choi precursor synthesis [14]. In the biosynthesis of
most types of aeruginosins, AerA first activates and loads the substrate monocarboxylate;
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then, AerB catalyzes the addition of hydrophobic D-amino acid; biosynthesis of the third
residue Choi is deduced to be initiated from prephenate and is catalyzed by non-NRPS
enzymes, such as AerD, AerE, AerF [36,41,58,59] and AerK [30], in an offline manner and is
supplied to AerG, which is a module responsible for adding Choi moiety to the elongating
peptide [30]; for strains harboring the aerM gene, AerM is responsible for the C-terminal
extension of aeruginosin, and the R domain of AerM is responsible for the formation of the
C-terminal structure of aeruginosin and the release of the final product [60,61] (Figure 12).
In contrast, the arginine residue of aeruginosin produced in the strain lacking aerM gene
is synthesized by AerH to generate Aeap residue [41]. aerO, aerP and aerQ genes have
so far only been found in the varlaxin biosynthesis gene cluster [12]. AerI and AerL
are deduced to be responsible for the glycosylation and sulfation of Choi moiety [14,21],
respectively. The details of the biosynthesis of several representative types of aeruginosins
are listed below.

Mar. Drugs 2023, 21, x  14 of 24 
 

 

 

 

Figure 11. The reaction process of the loading of α-keto acid. A: adenylation domain; KR: 

ketoreductase domain; PCP: peptidyl carrier protein domain; NADPH: nicotinamide adenine 

dinucleotide phosphate. 

4.4. Biosynthesis of Aeruginosin 

AerB, AerG, AerD, AerE, and AerF are found to be present in the biosynthesis 

pathway of all the aeruginosins discovered and perform similar functions, being 

responsible for peptide intermediate assembly and Choi precursor synthesis [14]. In the 

biosynthesis of most types of aeruginosins, AerA first activates and loads the substrate 

monocarboxylate; then, AerB catalyzes the addition of hydrophobic D-amino acid; 

biosynthesis of the third residue Choi is deduced to be initiated from prephenate and is 

catalyzed by non-NRPS enzymes, such as AerD, AerE, AerF [36,41,58,59] and AerK [30], 

in an offline manner and is supplied to AerG, which is a module responsible for adding 

Choi moiety to the elongating peptide [30]; for strains harboring the aerM gene, AerM is 

responsible for the C-terminal extension of aeruginosin, and the R domain of AerM is 

responsible for the formation of the C-terminal structure of aeruginosin and the release of 

the final product [60,61] (Figure 12). In contrast, the arginine residue of aeruginosin 

produced in the strain lacking aerM gene is synthesized by AerH to generate Aeap residue 

[41]. aerO, aerP and aerQ genes have so far only been found in the varlaxin biosynthesis 

gene cluster [12]. AerI and AerL are deduced to be responsible for the glycosylation and 

sulfation of Choi moiety [14,21], respectively. The details of the biosynthesis of several 

representative types of aeruginosins are listed below. 

 

Figure 12. A general biosynthetic scheme of aeruginosin. A: adenylation domain; KR: ketoreductase 

domain; C: condensation domain; PCP: peptidyl carrier protein domain; E: epimerization domain; 

R: reductase domain. 

Figure 12. A general biosynthetic scheme of aeruginosin. A: adenylation domain; KR: ketoreductase
domain; C: condensation domain; PCP: peptidyl carrier protein domain; E: epimerization domain; R:
reductase domain.

4.4.1. Aeruginosin 126A

AerA, AerB, AerD, AerE, AerF, AerG, AerH and AerI mainly participate in the biosyn-
thesis of aeruginosin 126A [41] (Figure 13A). AerA is a PKS-like module containing A, KR,
and ACP domains. AerA activates and tethers phenylpyruvate, which is then reduced
by the KR domain to generate phenyl lactic acid (Plac) moiety. AerB contains the C, A,
PCP, and E domains. Since the sequence of the substrate binding pocket of the A domain
is very similar to that of the leucine activation domain of McyB involved in microcystin
biosynthesis, AerB is deduced to be responsible for the addition of leucine to the peptide
chain. AerD, E, and F are involved in Choi biosynthesis. AerG is a dimodule NRPS with
domain order C-A-PCP-C-PCP. The substrate binding pocket of the A domain of AerG is
shown to be most similar to enzymes that activate proline or methylproline, but it activates
a proline-like amino acid, Choi. The second module of AerG is probably responsible for
the incorporation of C-terminal residue. AerH shares similarities with a variety of bacterial
oxygenases, which may function in the synthesis of Aaep from arginine or agmatine. AerI
possesses sequence similarity to glycosyltransferases, so xylose moiety is postulated to be
transferred to the hydroxyl group of Choi by AerI.

4.4.2. Aeruginosin 686A

AerA, AerB, AerD, AerE, AerF, AerK AerG and AerM mainly participate in the biosyn-
thesis of aeruginosin 686A [30] (Figure 13B). AerA is a hybrid NRPS/PKS module that
includes A, KR and T domains. The A domain activates the substrate hydroxyphenylpyru-
vate, which is anchored by the T domain and reduced to HPla by the KR domain and is
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further halogenated by AerJ. AerB is responsible for the addition of tyrosine to the elon-
gating peptide chain. AerD, AerE, AerF and AerK are involved in the formation of Choi.
AerG consists of three core domains, C, A, and T, to load and incorporate Choi moiety into
the elongating peptide. AerM, consisting of C, A, T and R domains, is responsible for the
C-terminal extension. The R domain of AerM catalyzes the formation of the structure of the
C-terminal arginine residue and hydrolysis of the thioester bond to release the assembled
peptide chain.
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4.4.3. Dysinosin B

AerB, AerD, AerE, AerF, AerG and AerI mainly participate in the biosynthesis of
dysinosin B [14] (Figure 13C). AerB is a multimodular NRPS megasynthetase responsible
for glycerate loading and sulfation modification, as well as the addition of enantiomerized
valine. AerD, AerE and AerF are involved in the synthesis of the Choi moiety. The two
modules of AerG are responsible for the loading of Choi and arginine, respectively. Similar
to the case in aeruginosin 126A biosynthesis, AerI modifies the hydroxyl group of Choi by
glycolysation.

4.4.4. Aeruginosin NAL2

AerB, AerD, AerE, AerF, AerG and AerM mainly participate in the biosynthesis of
aeruginosin NAL2, which is predicted to be initiated by loading a short-chain fatty acid
via C domain of AerB [21] (Figure 13D). The tethered short-chain fatty acid is then linked
to tyrosine in AerB. AerD, AerE and AerF participate in the synthesis of Choi, which is
submitted to AerG for adding to the elongating peptide chain. AerM is responsible for
recognizing the substrate arginine to generate agmatine and its incorporation in the peptide.
Despite the presence of the AerI-encoding gene in the genome of the producing strain, no
glycosylation modification was found in aeruginosin NAL2.

4.4.5. Aeruginosin 865

The biosynthetic gene cluster (BGC) of aeruginosin 865 was inferred from the BGC
of nostopeptolide A1 to contain homologs of aerA, aerB, aerD, aerE, aerF, aerG and aerN in
the general BGC [62] (Figure 13E). Genes encoding glycoside modifying enzymes and an
enzyme predicted to be an acyltransferase are also present in aeruginosin 865 BGC. This
leads to chemical differences between aeruginosin 865 and other analogs of aeruginosin in
the presence or absence of glycoside and hexacarbon fatty acid tail.

4.4.6. Suomilide

AerB, AerD, AerE, AerF, AerK, AerG AerI and AerH mainly participate in the biosyn-
thesis of suomilide [14] (Figure 13F). The FkbH domain in the first module of AerB is
probably responsible for loading glycerate, which is further methylated and sulfonated by
MT and ST domains, respectively [63]. The second module of AerB activates L-isoleucine,
which is incorporated into the elongating peptide chain. AerD, AerE, AerF, AerK and AerH
are deduced to be responsible for the synthesis of Abn moiety converted from Choi by
an unknown mechanism. Abn is added to the elongating peptide by the first module in
AerG, while the second module of AerG is responsible for the loading of arginine. AerI
and a membrane-bound O-acyl transferase (MBOAT) enzyme are deduced to catalyze the
glycosylation and further acylation of Abn, respectively. Finally, AerH converts arginine to
Aaep by a currently unknown mechanism.

4.4.7. Varlaxin

AerB, AerD, AerE, AerF, AerG, AerP and AerQ mainly participate in the biosynthesis
of varlaxin [12] (Figure 13G). Both AerB and AerG are two bimodular NRPS enzymes that
are responsible for the formation of the backbone of varlaxin. The first module of AerB
contains the O-methylglyceric acid transferase (OMT), FkbH, PCP and ST domains for
glycerate incorporation and further methylation and sulfation of this residue. The second
module of AerB loads isoleucine, which is converted to the D-configuration from the L-
configuration via the E domain. AerD, AerE and AerF are responsible for the synthesis
of Choi. AerG consists of two modules for loading Choi and arginine, respectively. AerO
contains an A domain responsible for the recognition of Hpaa, while AerP contains a PCP
domain that loads Hpaa. AerQ belongs to the MBOAT enzyme family that is responsible
for the glycosylation of Hpaa.
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5. Bioactivity

Proteases play important roles in numerous important biological processes, from
simple proteolysis to the degradation of important regulators of major cellular pathways.
Aeruginosin is a chemically diverse family of serine protease inhibitors, and its inhibitory
activity is largely related to C-terminal modifications [19]. It demonstrates a high degree
of inhibition of thrombin and trypsin in vitro (Table 1). Moreover, the aeruginosins with
C-terminal argininal residues show a more significant tendency to inhibit thrombin than
the aeruginosin with C-terminal agmatine or argininol [4].

5.1. Thrombin Inhibitory Activity

Cardiovascular disease (CVD) is not only affected by external environmental factors
but is also closely related to metabolism status [64]. The coagulation system and its
components have a direct impact on CVD [65]. Blood coagulation is a process consisting of
a series of complicated chain reactions. As the last enzyme participating in the coagulation
system, thrombin plays a central role in the process of hemostasis, inducing platelet
aggregation and secretion [66,67]. Thrombin is involved in many biochemical reactions,
the most important function of which is the conversion of cleaved fibrinogen into fibrin.
Fibrin is subsequently converted into a cross-linked network that forms a thrombus with
bound platelets [32]. Over the past few decades, breakthroughs in antithrombotic drugs
have been made, but they have been limited by side effects and poorly targeted effects [66].
Efforts have been made to discover novel antithrombotic drugs that can specifically and
directly inhibit thrombin [67,68].

Few low molecular-weight natural product is a selective inhibitor of thrombin at
present. Because of the strong inhibition of coagulation factors exhibited by aeruginosin, it
has become a key candidate in the development of anticoagulants. To date, nearly 100 com-
pounds of this family have been isolated, many of which are thrombin inhibitors [12]. The
binding pattern of aeruginosa 298-A (Figure 1) in thrombin is similar to that of other serine
protease inhibitors: it binds to the active site of thrombin in a non-covalent manner [69].
Oscillarin (Figure 5) has an inhibitory concentration of 0.02 µM on thrombin, which is
one of the most effective thrombin inhibitors in the aeruginosin family [26]. Dysinosin A
(Figure 7) is an inhibitor of factor VIIa and thrombin with Ki values of 0.11 µM and 0.45 µM,
respectively. Compared with dysinosin A-D (Figure 7) showed reduced thrombin activity,
glycosylated dysinosin B (Figure 7) was a more potent inhibitor of factor VIIa with a Ki
value of 0.09 µM [17].

5.2. Trypsin Inhibitory Activity

Trypsin is an enzyme that plays a major role in the digestion of food but also has
important functions beyond that in the digestive system [14]. Cancer develops as a gradual
transformation of normal cells into highly malignant cells, and advanced stages of cancer
are often difficult to be treated [12]. Proteases play a crucial role in the metastatic spread
of cancer cells and tumor growth, and trypsin is one of the most characteristic protein
hydrolases [70]. Trypsin-1, -2 and -3 are three isozymes from human with highly similar
structures and functions. Trypsin-3 is demonstrated to be capable of promoting tumor
growth and metastasis in several types of cancer, including prostate, breast and pancreatic
cancers. Therefore, trypsin-3 has also been considered a potential target for the treatment
of these cancers [71,72].

A number of members of the aeruginosin family exhibit strong inhibition of trypsin
at low micromolar to low nanomolar concentrations. Since the isolation of aeruginosin
298A (Figure 1) in 1994 [18], most of the reported aeruginosins have exhibited trypsin-
inhibitory activity [12,14,19,33]. However, aeruginosin 298B (Figure 2) [19] and aeruginosin
EI461 [73] did not exhibit any trypsin inhibitory activity due to the absence of a C-terminal
arginine derivative [5]. Most biochemical assays of aeruginosins only use porcine and
bovine trypsins as inhibitory targets, whereas the sequence of human trypsin is significantly
different from that of porcine and bovine trypsins, which biases the preclinical evaluation
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of aeruginosins. Suomilide (Figure 6), discovered in Nodularia spumigena HKVV in 1997,
has been reported to inhibit human trypsin at low micromolar concentrations (Table 1).
Moreover, suomilide inhibits human trypsin-1 to a lesser extent compared to human
trypsin-2 and -3. The results of Ahmed’s study showed that suomilide could inhibit
metastasis of prostate cancer cells [14]. In the following year, Heinilä and colleagues
isolated varlaxin1046A and 1022A (Figure 6) from Nostoc sp. UHCC 0870 [12]. These two
varlaxin variants exhibited strong inhibitory activity against porcine trypsin, and they were
tested for inhibition of the three human trypsin isoenzymes. Varlaxin showed a similar
inhibition profile as suomilide. Varlaxin 1046A showed approximately 50 to 200 times
greater inhibitory activity against the trypsin isoenzyme than that of varlaxin 1022A. The
only difference between these two varlaxins is the fourth residue: Aaep in varlaxin 1046A
and Agma in varlaxin 1022A (Figure 6). Thus, aeruginosin is expected to be a pioneering
molecule for the drug development of trypsin inhibitors.

5.3. Other Bioactivities

Plasmin is a hydrolytic enzyme that specifically degrades fibrin gel. It is produced by
the proteolytic cleavage of blood plasminogen in humans. Under normal conditions, the
anticoagulant and fibrinolytic systems of the coagulation system are in balance [74]. An
imbalance in this process can lead to coagulation or hemorrhage, depending on which direc-
tion is dominant [75]. Therefore, fibrinolytic inhibitors are indispensable in the fibrinolytic
system to regulate the balance of the fibrinolytic system. In addition, researchers have
found that fibrinolytic enzymes are associated with the invasion and metastasis of cancer
cells, so these enzymes are expected to be important candidates for anticancer targets in
the future [76]. Most of the aeruginosins have been reported to be inhibitory to thrombin
and trypsin, but some have also shown inhibition of fibrinolytic enzymes [19]. To date, the
most potent inhibitor of plasmin in the aeruginosin family was aeruginosin 89A (Figure 2),
IC50 of which reached 0.02 µM (Table 1) [4].

Inflammation underlies the pathogenesis of many serious diseases, such as CVD and
Alzheimer’s disease, and also increases the risk of cancer development [77]. Aeruginosin
865 (Figure 5) exhibits not only inhibitory activity against trypsin but also shows anti-
inflammatory activity that is absent in general aeruginosins. Interleukin-8 (IL-8) is a
cytokine of the chemokine family. Its major function is to attract and activate neutrophils
to play a role in inflammatory sites so as to achieve the goal of bactericidal [78]. In
addition, IL-8 is also a potent angiogenic promoter [79]. Macrophage antigen-1 (Mac-1)
is a transmembrane glycoprotein responsible for the translocation of leukocytes through
the endothelium to inflammatory tissues [80]. In the in vitro AlphaLISA assay of IL-8 [81]
and intercellular adhesion molecule-1 (ICAM-1) [82] on human pulmonary microvascular
endothelial cells (HLMVECs), Kapuścik and colleagues treated HLMVECs with different
concentrations of aeruginosin 865 (Figure 5) before stimulation with HTNF-a. With the
increase in the concentration of aeruginosin 865, IL-8 and ICAM-1 were significantly down-
regulated, which indicated that aeruginosin 865 had a high anti-inflammatory effect [11].
In addition, the observations of impedance measurements by using electrical cell-substrate
impedance sensing (ECIS) showed that after the treatment of aeruginosin 865, the cell
membranes of HLMVECs were intact and the cells were not suffered from cytotoxic [11].
Taken together, aeruginosin 865 is an immunomodulatory agent with significant anti-
inflammatory activity and no cytotoxicity, which is consistent with the new demand for the
treatment of immune diseases in the future.

Despite efforts to find an effective anticoagulant to replace existing heparin or warfarin
therapy, it has been difficult to find a small molecule agent that is effective, safe and orally
available; similar cases exist in the treatment of cancer metastasis as well. Aeruginosins,
a family of newly discovered naturally occurring serine protease inhibitors, exhibit good
inhibitory effects on trypsin, thrombin and plasmin, as summarized in Table 1. Therefore,
these peptides are promising in the development of therapeutic agents for anti-thrombosis
and cancer prognosis. However, they have not been applied to clinical trials and are only
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considered lead compounds at present. The reason for this fact may be relevant to the
structural complexity of aeruginosins and inadequate investigation of the biosynthetic
mechanism of aeruginosins, as illustrated above, hindering the accurate examination of
structure–activity correlations and engineering of these peptides.

6. Conclusions and Prospects

Throughout history, natural products have been a valuable source of new molecular
frameworks with diverse bioactivities. Since its first isolation in 1994, aeruginosin has
attracted much attention from biologists, chemists and pharmacologists because of its
special Choi structure and serine protease inhibitory activity, and it has been considered a
promising drug candidate. As an important secondary metabolite rich in cyanobacteria
and sponges, aeruginosins warrant an in-depth study of the relationship between their
structure and bioactivity. Although a number of natural members of the aeruginosin family
have been isolated to date, more compounds are needed to more meticulously delineate
structure–activity relationships (SARs) and identify important structural motifs for various
biological activities.

During a long evolutionary process, microorganisms have relied on linear combina-
tions of various types of domains to obtain thousands of NRPSs, thus creating a diversity
of structures and functions of NRP natural products. To date, even though many mem-
bers of the aeruginosin family have been isolated, more compounds are still needed to
deepen the understanding of the NRPS-PKS synthetic pathway [83]. The modular struc-
tural features of NRPS offer the possibility to artificially design and engineer NRP assembly
lines and biosynthesize NRPs with novel backbones that can be used for drug screening.
The complexity of their structures poses a great challenge to their synthesis. Research in
this field is focused on the artificial modification of the NRPS synthesis mechanism after
clarifying the biosynthetic pathway and the function of each domain in order to allow
the biosynthetic production of a wide range of artificial aeruginosins, which can lead to
enhanced bioactivity or a wider range of applications. At present, adenylation domain-
specific rearrangements [84–86], multiple domain substitutions [87] and docking domain
modifications [88,89] are the dominant approaches.

The synthesis of aeruginosin has greatly facilitated the creation of novel analogs
applied to the healthcare of humans, which is the focus of future research. As a serine
protease inhibitor, future perspectives of aeruginosin studies should focus more on finding
better activity as well as solving the structural and pharmacological aspects of these
compounds to enable better efficacy. At the same time, the sustainable production or
engineering application of aeruginosin drugs through the heterologous expression of genes
involved in the aeruginosin biosynthesis pathway will be a promising alternative for future
chemical de novo synthesis. It is hoped that safe and effective drugs can be synthesized
in this field in the future to treat common life-threatening diseases such as thrombosis
and cancer.

Altogether, we have provided a detailed and comprehensive overview of the studies
of aeruginosins in terms of biogenesis, structural diversity, biosynthesis and multiple bioac-
tivities, which pave the way for the preclinical trials of these highly diverse nonribosomal
linear tetrapeptides probably carried out in the future.
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