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Abstract: Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp.
MCCC 3A00126 along with 34 known compounds (3–36). The structures of the new compounds were
established by spectroscopic data. The absolute configuration of 1 was validated by comparison of
experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity
and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-
CEM cells, with IC50 values of 5.5 and 3.5 µM, respectively, whereas 26, 28, 33, and 34 significantly
inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 µM, respectively.
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1. Introduction

The oceans cover over 70% of the world’s surface, with 95% of them being deeper
than 1000 m. In recent years, nearly half of the new marine natural products (MNPs) have
been isolated from marine microorganisms [1–3], especially fungi, the most diverse and
abundant eukaryotes on Earth, which can be distributed in any currently known extreme
environment [4]. As a region rarely explored, the deep sea is characterized by a high
pressure, a low/high (such as hydrothermal mouth) temperature, a high salt concentration,
the absence of light, oligotrophic conditions, a high halogen content, and so on. To adapt
to such extreme environments, deep-sea-derived microorganisms must develop special
metabolic mechanisms, giving rise to tremendous secondary metabolites with unique
structures and potent bioactivities [5]. For more than half a century, MNPs have been
continuously discovered, but those from the deep sea are rare [6,7]. In recent years, with
the development of deep-sea sample collection technology, reports of deep-sea MNPs have
increased significantly. As an important group of deep-sea microorganisms, fungi can
produce a large number of structurally novel and biologically active secondary metabolites,
which have attracted extensive attention from researchers. For example, vercytochalasins
A and B are two novel, biosynthetically related cytochalasins isolated from Curvularia
verruculosa, the endophytic fungus of the deep-sea lobster Shinkaia crosnieri. Vercytochalasin
A is the most potent natural product against angiotensin-I-converting enzyme (ACE), with
an IC50 value of 505 nM [8]. Chevalinulins A and B are two indole alkaloids with a rare
spiro-[bicyclo[2.2.2]octane-diketopiperazine] skeleton. They both exhibit significant in vivo
proangiogenic activity in transgenic zebrafish [9].

Xanthones, also known as 9H-xanthen-9-ones, are a class of yellow compounds bearing
a dibenzo-γ-pyrone scaffold. They are widely distributed in plants, lichens, and microor-
ganisms of terrestrial and marine origin, and exhibit diverse biological activities such
as antiviral [10], cytotoxic [11], antibacterial [12], antifungal [13], and hypoglycemic [14]
activities. The molecular skeleton of xanthones can bind with a variety of targets, so this
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family of compounds is often called “privileged structures” [15]. They are regarded as
typical aromatic polyketone and appear in the form of fully aromatic or hydrogenated
derivatives [16]. In general, xanthones can be classified into monomers, dimers, and het-
erodimers. According to the degree of hydrogenation of the skeleton aromatic ring, they
can be further split into four subclasses: fully aromatic xanthones, dihydro-, tetrahydro-,
and hexahydro-xanthones [16]. From 2010 to 2021, 100 marine xanthones were reported,
among which 51 were new compounds. Most of the new xanthones were derived from
marine fungi, especially deep-sea fungi isolated from deep-sea sediments or organisms [17].
Therefore, deep-sea-derived fungi are undoubtedly an important resource for the discovery
of xanthones with novel structures and significant bioactivities.

During our ongoing search for bioactive secondary metabolites from deep-sea-derived
fungi [18–21], the crude extract of Penicillium sp. MCCC 3A00126 isolated from the Eastern
Pacific Ocean at a depth of 5246 m showed significant cytotoxicity against acute lymphoblas-
tic leukemia CCRF-CEM with the cell survival rate of 29.8 % under the concentration of
10 µg/mL. Therefore, it was subjected to a systematic chemical investigation. As a result,
two novel (1 and 2) and 13 known (3–15) xanthones were isolated and purified, along with
21 known miscellaneous compounds (16–36) (Figure 1). Herein, the details of isolation,
structure, and bioactivity are reported.
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2. Results and Discussion

Compound 1 was obtained as a colorless gum. The molecular formula C18H18O9 was
determined by the positive HR-ESI-MS (high resolution electrospray mass spectrometry spec-
trum) at m/z 401.0839 [M + Na]+, suggesting ten degrees of unsaturation. The 1H (Figure S1
in the Supplementary Materials) and 13C (Figure S2 in the Supplementary Materials) NMR
(nuclear magnetic resonance) spectroscopic data (Table 1) exhibited the presence of one
methoxyl [δH 3.84 (3H, s); δC 53.4 q], one methyl singlet [δH 2.16 (3H, s); δC 20.8 q], one
oxygenated [δH 5.13 (2H, s); δC 65.0 t], and two aliphatic [δH 2.25 (2H, m), 2.87 (2H, m); δC
24.2 t, 26.1 t] methylene groups, one oxygenated aliphatic [δH 4.09 (1H, dd, J = 10.3, 3.6 Hz);
δC 72.6 d] and two olefinic [δH 6.75 (1H, s), 6.86 (1H, s); δC 109.9 d, 105.5 d] methines, as
well as ten quaternary carbons including one oxygenated aliphatic (δC 76.2 s), six olefinic
(δC 109.6 s, 117.0 s, 145.0 s, 156.1 s, 160.7 s, 167.4 s), and three carbonyl (δC 170.5 s, 172.7 s,
182.0 s] carbons. These signals were very similar to aspergillusone B (4) [22], except for an
additional acetyl group [δH 2.16 (3H, s); δC 20.8 q, 170.5 s] at the C-11 position. This was
supported by the downfield shifts of H-11 from δH 4.76 to δH 5.13 and C-11 from δC 64.4 to
δC 65.0. Further confirmation was obtained by the HMBC (heteronuclear multiple-bond
correlation) correlations of H2-11 to the carbonyl group of the acetyl moiety; and the 1H-1H
COSY (correlation spectroscopy) cross peaks of H2-6 to H2-5/H-7 (Figure 2).

Table 1. 1H (400 MHz) and 13C (100 MHz) NMR data of 1 and 2 in CDCl3 (δ in ppm, J in Hz
within parenthesis).

No. 1 2

δC δH δC δH

1 160.7 C 161.7 C
2 109.9 CH 6.75 s 111.6 CH 7.44 s
3 145.0 C 137.6 C
4 105.5 CH 6.86 s 108.1 CH 7.60 s

4a 156.1 C 155.4 C
5 26.1 CH2 2.87 m 119.6 CH 7.59 (d, 8.0)
6 24.2 CH2 2.25 m 135.5 CH 7.81 (dd, 8.0, 7.2)
7 72.6 CH 4.09 (dd, 10.3, 3.6) 123.1 CH 7.36 (d, 7.2)
8 76.2 C 133.7 C

8a 117.0 C 117.4 C
9 182.0 C 180.9 C

9a 109.6 C 111.0 C
10 167.4 C 156.2 C
11 65.0 CH2 5.13 s 165.3 C
12 172.7 C 169.2 C

11-OMe 52.8 CH3 3.98 s
11-OAc 170.5 C

20.8 CH3 2.16 s
12-OMe 53.4 CH3 3.84 s 53.2 CH3 4.04 s

1-OH 11.99 s 12.20 s
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the 7,8-anti diol found in 1.

The coupling constants between H-7 and H2-6 of 1 (J = 10.3 Hz, 3.6 Hz) indicated
the same pseudoaxial position of H-7 as that of 4 [22], as it was found in a simple MM2
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conformational study of both possible 7,8-anti and 7,8-syn diols (Figure 2). The observed
optical rotation value of 1 ([α]25

D −82.5) was close to that of 4 ([α]25
D −46.3) in the same

concentration (c 0.2) and the same solvent (CHCl3), (c 0.2, CHCl3), suggesting they have the
same absolute configuration at C-7 and C-8. For the further confirmation, the ECD (electron
circular dichroism) spectra were calculated for (7R,8R)-1 (1a) and its enantiomer (7S,8S)-1
(1b) using Yinfo Cloud Computing Platform (https://cloud.yinfotek.com, accessed on
13 June 2022). Thirty states of each seven conformers were calculated to generate the ECD
curves. As shown in Figure 3, the calculated ECD spectrum of 1a was consistent with
that of the experimental one. On the basis of the above evidence, compound 1 was then
elucidated as 11-O-acetylaspergillusone B.
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Compound 2 was obtained as a amorphous yellow solid. The molecular formula
C17H12O7 was established by its positive HR-ESI-MS spectrum at m/z 351.0482 [M + Na]+.
The 1H and 13C data of 2 showed the presence of two methoxyls, five methines and ten
quaternary carbons, which were closely related to those of huperxanthone A (13) [14],
except that the sp2 quaternary carbon at C-7 (δC 151.1 s) in 13 was changed as an sp2

methine (δC 123.1 d) in 2. By detailed analysis of its HSQC (heteronuclear single quantum
correlation), 1H–1H COSY, HMBC, and NOESY (nuclear Overhauser effect) spectroscopic
data, compound 2 was then established as 7-dehydroxyhuperxanthone A.

By comparison of the NMR and MS data with those published in the literature, 34 known
compounds were identified as 13 xanthones: (7R,8R)-α-diversonolic ester (3) [23,24], as-
pergillusone B (4) [22], 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (5) [25], yi-
cathin B (6) [26], pinselin (7) [27], sydowinins A (8) and B (9) [28], huperxanthone C
(10) [14], 13-O-acetylsydowinin B (11) [29], 8-(methoxycarbonyl)-1-hydroxy-9-oxo-9H-
xanthene-3-carboxylic acid (12) [25], huperxanthone A (13) [14], sterigmatocystin (14) [30],
5-methoxysterigmatocystin (15) [31]; six anthraquinones: versicolorin B (16) [32], 8-O-
methylversicolorin B (17) [33], anthraquinone aversin (18) [34], averufin (19) [35], 6-O-
methylaverufin (20) [36], questin (21) [37]; five sesquiteroenoids: (S)-(+)-sydonic acid
(22) [38], (S)-(+)-11-dehydrosydonic acid (23) [38], (−)-12-acetoxy-1-deoxysydonic acid
(24) [39], (7S,11S)-(+)-12-acetoxysydonic acid (25) [38], (−)-(7R,10R)-iso-10-hydroxysydowic
acid (26) [39]; four diphenyl ethers: diorcinol (27) [40], verticilatin (28) [41], (R)-3-((2-(2-
hydroxypropan-2-yl)-6-methyl-2,3-dihydrobenzofuran-4-yl)oxy)-5-methylphenol (29) [42],
(3S)-3,4-dihydro-5-(3-hydroxy-5-methylphenoxy)-2,2,7-trimethyl-2H-chromen-3-ol (30) [43];
one polyketone: 3-hydroxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate (31) [44]; four
indole alkaloids: brevianamide F (32) [45], notoamide I (33) [46], notoamide C (34) [47],
psychrophilin D (35) [48], and one steroid: 5a,8a-epidioxy-22E-ergosta-6,9(11)-trien-3β-ol
(36) [49].

https://cloud.yinfotek.com
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Since the crude extract of Penicillium sp. MCCC 3A00126 showed a potent anti-
proliferative effect on CCRF-CEM, all 36 isolates were subjected to cytotoxicity tests on the
same acute lymphoblastic leukemia using the CCK-8 assay. As shown in Figure 4, under
a concentration of 20 µM, two compounds, 14 and 15, exerted potent activity, with cell
survival rates of 6.2% and 7.3%, respectively, while seven compounds, 4, 8, 11, 17, 20, 28,
and 29, showed weak effects, with cell survival rates of 70.2%, 78.5%, 78.8%, 62.3%, 75.8%,
55.3%, and 55.3%, respectively. Interestingly, compounds 14 and 15 possess a difuran ring
at C-5 and C-6, which might be the key to the bioactivity.
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Figure 4. Cytotoxicity of compounds 1–36 against CCRF-CEM cells.

Compounds 14 and 15 were further evaluated to determine their 50% inhibiting
concentration (IC50) against CCRF-CEM using five different concentrations: 1 µM, 2.5 µM,
5.0 µM, 10.0 µM, and 20.0 µM. The IC50 values of 14 and 15 were found to be 5.5 µM and
3.5 µM, respectively (Figure 5).
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Ferroptosis is an iron-dependent mode of necroptosis induced by certain small molecules,
such as RSL3 (the glutathione peroxidase 4 inhibitor), which is different from apoptosis,
necrolysis, and autophagy [50]. Its main characteristics are the generation of ROS (reactive
oxygen species), LPO (lipid peroxidation), and iron accumulation. RSL3 acts on specific
targets in cells and causes a reduction in antioxidants GSH (glutathione) and GPX4 (glu-
tathione peroxidase 4), resulting in the accumulation of ROS in cells, LPO in cells, and
ferroptosis in cells under the synergistic effect of iron [51]. Many tumor cells that are
easy to metastasize are prone to ferroptosis, so inducing and inhibiting ferroptosis for
pharmacological regulation has great potential in the treatment of certain cancers.

To further investigate whether these isolates could inhibit ferroptosis, RSL3, the GPX4
inhibitor, was used to induce ferroptosis in CCRF-CEM cells. As a result, compounds 26,
28, 33, and 34 exerted strong inhibition, with cell survival rates of 83.9%, 110.0%, 99.0%,
and 105.2%, respectively, under a concentration of 20 µM. Additionally, compounds 3, 27,



Mar. Drugs 2023, 21, 234 6 of 11

29, and 30 showed weak activity, with cell survival rates of 36.0%, 16.6%, 19.5%, and 28.8%,
respectively (Figure 6).
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To determine the 50% effective concentration (EC50) of compounds 26, 28, 33, and
34, four different concentrations (1 µM, 5.0 µM, 10.0 µM, and 20.0 µM) were adopted on
RSL3-induced ferroptosis in CCRF-CEM cells, providing corresponding IC50 values of
11.6 µM, 7.2 µM, 11.8 µM, and 2.2 µM, respectively (Figure 7).
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Figure 7. EC50 values of compounds 26, 28, 33, and 34 on RSL3-induced ferroptosis in CCRF-
CEM cells.

As ferroptosis was triggered by lipid peroxidation, many ferroptosis inhibitors exhib-
ited antioxidant activity, such as ferrostain-1 (Fer-1) [50,52,53]. Therefore, the 2,2-diphenyl-
1-picrylhydrazyl (DPPH) assay was performed on these compounds to evaluate their
intrinsic antioxidant potential. However, none showed positive effects under a concen-
tration of 20 µM (Figure 8), indicating that compounds 26, 28, 33, and 34 might exert
ferroptosis inhibition by other mechanisms instead of DPPH.
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3. Materials and Methods
3.1. General Experimental Procedures

The HR-ESI-MS spectra were obtained on a Waters Xevo G2 Q-TOF mass spectrometer
equipped with a Spray™ ESI source in both the positive and negative ion mode. NMR
spectra were recorded in CDCl3, CD3OD, or DMSO-d6 on a Bruker Avance III 400 Mz
spectrometer at room temperature. Optical rotation was measured by an Anton Paar MCP
100 polarimeter. UV and ECD spectra were acquired on a JASCO J-810 spectropolarimeter.
Preparative HPLC (high-performance liquid chromatography) separations for purification
were carried out on an Agilent 1260 system with a semi-preparative chromatographic
column (COSMOSIL 5C18-MS-II, 5PFP, SL-II, 250 mm × 10 mm). Materials for column
chromatography (CC) included silica gel, ODS (octadecylsilyl), and Sephadex LH-20.

3.2. Biological Material

The deep-sea-derived fungus Penicillium sp. MCCC 3A00126 was isolated from a
sediment sample collected from the Eastern Pacific Ocean at a depth of 5246 m by Profes-
sor De-Zan Ye of the Third Institute of Oceanography, Ministry of Natural Resources, in
September 2003. The 18S rRNA gene sequence alignment (AM18217) showed great similar-
ity (99.88%) to Penicillium sp. PB g (GenBank accession number MK372218.1); therefore, it
was identified to be Penicillium sp. It was deposited at the Marine Culture Collection of
China (Xiamen, China) with accession number MCCC 3A00126.

3.3. Fermentation, Isolation, and Purification

The strains stored at −80 ◦C were inoculated into a 250 mL conical flask containing
100 mL PDB culture medium to conduct initial activation for three days in a shaking
table culture at 28 ◦C. Then, under the same culture conditions, 1 mL of the fungal liquid
was placed in another 1 L conical flask containing 250 mL of PDB medium to conduct
secondary activation.

The secondary activated fungal strain was inoculated into 60 Erlenmeyer flasks con-
taining 80 g rice and 120 mL distilled water. The fermentation was kept under static
conditions at 25 ◦C. After 40 days, 400 mL of EtOAc was added to each flask over 12 h. The
organic solvent was filtered. The procedure was repeated four times. The organic solvents
were combined and concentrated to a small volume. The latter was dissolved in MeOH
and extracted by PE (petroleum ether) three times. The MeOH layer was concentrated to
provide a crude extract (26.3 g), which was subjected to MPLC (medium-pressure liquid
chromatography) over silica gel using the CH2Cl2/MeOH gradient (100%→ 70%) to obtain
four fractions (Fr.1–Fr. 4). Fraction Fr.1 (0.46 g) was separated by repeated column chro-
matography (CC) over ODS (MeOH/H2O) and Sephadex LH-20 (CH2Cl2/MeOH, 1:1 and
0:1), then purified by semi-prep. HPLC (C18, 10 × 250 mm, MeOH/H2O, 80%→ 100%),
providing 2 (15.0 mg) and 5 (14.0 mg). Fraction Fr.2 (1.1 g) was subjected to CC over ODS
and Sephadex LH-20, then purified by semi-prep. HPLC (C18, 10 × 250 mm, MeOH/H2O,
70%→ 90%), yielding 14 (2.0 mg), 15 (3.0 mg), and 18 (5.4 mg). Fraction Fr.3 (3.7 g) was
separated by ODS CC with MeOH/H2O (30%→ 80%, 3 h, 80% → 90%, 3 h) to obtain
thirteen subfractions (Fr.3.1–Fr.3.13). Subfractions (Fr.3.1–Fr.3.9) were subjected to CC over
Sephadex LX-20 using MeOH to yield compounds 3 (2.0 mg), 10 (9.0 mg), 11 (4.0 mg),
13 (8.0 mg), 16 (2.0 mg), 19 (2.5 mg), 20 (6.0 mg), 28 (9.5 mg), and 36 (28.0 mg), respectively.
Sub-fraction Fr.3.10 was subjected to CC over Sephadex LH-20 (CH2Cl2/MeOH, 1:1) and sil-
ica gel (CH2Cl2/MeOH, 45:1), followed by separation using HPLC (C18, 10 mm × 250 mm,
MeOH/H2O, 80%→ 90%) to give 8 (15.0 mg) and 9 (2.0 mg). Fr.3.11 was separated
by CC over LH-20 (MeOH) and silica gel (CH2Cl2/MeOH, 55:1) to obtain 12 (1.0 mg).
Fr.3.12 was purified by semi-prep. HPLC (PFP-pentafluorophenyl group, 10 mm × 250 mm,
MeOH/H2O, 60%→ 90%), yielding 21 (3.0 mg), 29 (6.6 mg), and 30 (1.3 mg). Fr.3.13 was
further separated by HPLC (C18, 10 mm × 250 mm, MeOH/H2O, 55%→ 85%) to yield
6 (3.0 mg).
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Using similar procedures, fraction Fr.4 (3.3 g) was separated into thirteen subfractions
(Fr.4.1–Fr. 4.13) by CC over ODS (MeOH/H2O, 5→ 60%, 4 h, 60%→ 100%, 2 h). Com-
pounds 1 (8.0 mg), 4 (23.3 mg), 17 (23.0 mg), 22 (39.0 mg), 27 (7.0 mg), and 31 (19.8 mg)
were obtained from Fr.4.1–Fr.4.6 by CC over Sephadex LH-20 (MeOH). Fr.4.7 and Fr.4.8
were separated by HPLC (C18, 10 mm × 250 mm, MeOH/H2O, 35% → 65%) to ob-
tain 26 (1.0 mg) and 32 (2.6 mg), respectively. Fr.4.9 was subjected to Sephadex LH-
20 CC, eluting with MeOH, and then purification by HPLC (C18, 10 mm × 250 mm,
MeOH/H2O, 55%→ 85%) afforded 24 (3.0 mg) and 25 (9.5 mg). Fr.4.10 was separated by
HPLC on silica gel (10 mm × 250 mm, CH2Cl2/MeOH, 100%→ 90%) to yield 35 (12.0 mg).
Compounds 23 (2.5 mg) and 33 (1.7 mg) were also separated from Fr.4.11 using HPLC
(C18, 10 mm × 250 mm, MeOH/H2O, 60%→ 80%). Fr.4.12 was chromatographed by CC
over silica gel (PE/EtOAc, 3:1) to yield 7 (3.2 mg) and Fr.4.13 was subjected HPLC (C18,
10 mm × 250 mm, MeOH/H2O, 55%→ 85%) to yield 34 (0.7 mg).

11-O-Acetylaspergillusone B (1). Colorless gum; [α]25
D −82.5 (c 0.2, CHCl3), −19.0 (c

0.1, MeOH); UV (2.6 mM, MeOH) λmax (log ε) 212 (2.32), 240 (2.42), 289 (1.69), 331 (2.04)
nm; ECD (2.6 mM, MeOH) λmax (∆ε) 216 (1.99), 263 (2.06), 313 (1.79); 1H and 13C NMR
data, Table 1; HRESIMS m/z 401.0839 [M + Na]+ (calcd for C18H18O9Na, 401.0849).

7-Dehydroxyhuperxanthone A (2). Yellow amorphous solid; UV (3.0 mM, MeOH)
λmax (log ε) 266 (3.23); 1H and 13C NMR data, Table 1; HRESIMS m/z 351.0482 [M + Na]+

(calcd for C17H12O7Na, 351.0481).

3.4. ECD Calculation

ECD calculations were performed using Yinfo Cloud Computing Platform, a user-friendly
and versatile web server for biomedicinal, material, and statistical research (https://cloud.
yinfotek.com, accessed on 13 June 2022). The conformational analysis of compound 1 was
carried out using the MMFF94 force field at an energy cutoff of 7.0 kcal/mol and an RSMD
threshold of 0.5 Å. A total of thirteen conformations were obtained from the conformational
analysis, and seven of which, accounting for more than 1%, were selected for further screen-
ing. The seven conformers were relocated and confirmed at the PM6, HF/6-31G(d), and
B3LYP/6-1G(d) level to obtain three dominant conformers. Further, the calculation of the
theoretical ECD spectra at the B3LYP/6-311G(d, p) level was conducted in MeOH. The final
spectrum was obtained by averaging each conformer using the Boltzmann distribution.

3.5. Cytotoxic Experiment

CCRF-CEM cells (CL-0058), kindly provided by Procell Life Science & Technology Co.,
Ltd. (Wuhan, China), were cultured in RIPM-1640 at 37 ◦C in a humidified atmosphere
containing 5% CO2 with 10% inactive fetal bovine serum, 2 mM L-glutamine, 100 IU
penicillin, and 100 mg/mL streptomycin. The cytotoxicity experiment was conducted
using the CCK-8 (Cell Counting Kit-8) assay. Briefly, 4000 cells were seeded on a 96-well
plate. After 24 h, different concentrations of the tested compounds were added, and
the incubation continued for 48 h. The CCK-8 assay was performed with MD Spectra
Max Paradigm.

3.6. Ferroptosis Inhibitory Assay

As previously reported [54], 10,000 CCRF-CEM cells were seeded on a 96-well plate
for 24 h. Then, ferrostatin-1 (1 µM, as the positive control) and different concentrations of
the tested compounds, ranging from 1 µM to 20 µM, were added for first-round screening.
After 0.5 h, RSL3 (2 µM) was added to trigger ferroptosis. Four hours later, cellular ATP
was detected using the Cell Titer Glo Luminescent Cell Viability assay kit (G7570, Promega,
Madison, WI, USA) according to the manufacturer’s instructions. Then, the EC50 values
were determined as the indicated concentration.

https://cloud.yinfotek.com
https://cloud.yinfotek.com
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3.7. DPPH Assay

According to a reported procedure [55], the stable radical DPPH (2,2-diphenyl-1-
picrylhydrazyl) was dissolved in MeOH to a final working concentration of 100 µM. Then,
1 µL of the indicated compounds dissolved in DMSO (10 mM) was added to a final concen-
tration of 100 µM, inverted several times, and allowed to incubate at room temperature for
30 minutes. Samples were then aliquoted to a 96-well microplate and absorbance at 517 nm
was recorded using Spectra Max Paradigm (Molecular Devices, San Jose, CA, USA). The
relative DPPH normalized to the background (MeOH only) showed the mean ± SD, and
the experiments were triplicated.

4. Conclusions

Systematic chemical investigation of the deep-sea fungus Penicillium sp. 3A00126
yielded 36 compounds, comprising fifteen xanthones (3–15), six anthraquinones (16–21),
five sesquiterpenoids (22–26), four diphenyl ethers (27–30), one polyketone (31), four indole
alkaloids (32–35), and one steroid (36). Compound 1, named 11-O-acetylaspergillusone
B, is a new tetrahydroxanthone, and compound 2, 7-dehydroxyhuperxanthone A, is a
new, fully aromatic xanthone. All 36 isolates were tested for cytotoxicity and ferroptosis
inhibitory effects. Sterigmatocystin (14) and 5-methoxysterigmatocystin (15) showed potent
cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 µM and 3.5 µM, respectively,
whereas (−)-(7R,10R)-iso-10-hydroxysydowic acid (26), verticilatin (28), notoamide I (33),
and notoamide C (34) significantly inhibited RSL3-induced ferroptosis, with EC50 values of
11.6 µM, 7.2 µM, 11.8 µM, and 2.2 µM, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md21040234/s1, Figures S1–S13: One-dimensional and two-dimensional NMR and HR-ESI-MS
spectra of compound 1 and 2.
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