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Abstract: This review article presents past and current alginate-based materials in each application,
showing the widest range of alginate’s usage and development in the past and in recent years. The
first segment emphasizes the unique characteristics of alginates and their origin. The second segment
sets alginates according to their application based on their features and limitations. Alginate is a
polysaccharide and generally occurs as water-soluble sodium alginate. It constitutes hydrophilic
and anionic polysaccharides originally extracted from natural brown algae and bacteria. Due to
its promising properties, such as gelling, moisture retention, and film-forming, it can be used in
environmental protection, cosmetics, medicine, tissue engineering, and the food industry. The
comparison of publications with alginate-based products in the field of environmental protection,
medicine, food, and cosmetics in scientific articles showed that the greatest number was assigned to
the environmental field (30,767) and medicine (24,279), whereas fewer publications were available in
cosmetic (5692) and food industries (24,334). Data are provided from the Google Scholar database
(including abstract, title, and keywords), accessed in May 2023. In this review, various materials
based on alginate are described, showing detailed information on modified composites and their
possible usage. Alginate’s application in water remediation and its significant value are highlighted.
In this study, existing knowledge is compared, and this paper concludes with its future prospects.

Keywords: alginate; biomaterials; natural polymer

1. Introduction

Alginate constitutes a hydrophilic and anionic polysaccharide originally extracted
from natural brown algae (kelp) and bacteria [1,2]. The main species of brown algae as the
source of alginates represent Ascophyllum nodosum, Durvillea antarctica, Laminaria digitata,
Laminaria hyperborea, Macrocystis pyrifera, Ecklonia maxima, Laminaria japonica, Sargassumspp,
and Lessonia nigrescens [3–5]. Enzymes such as alginate lyases can degrade these polymers
into monosaccharides and oligosaccharides, which leads to major applications [6]. A wide
variety of functional features, such as biocompatibility, ease of gelation, and bioadhesive
and biodegradable properties, are the main reason why alginate has many applications
(see Figure 1).

Alginate materials can be found in the medical, cosmetic, and engineering industries [7,8].
The gel-forming and ion-exchange capability of alginates make them useful in wound-

regeneration materials. In recent years, the improvement in these materials enhanced their
antimicrobial, absorption, and gel-forming properties. The development of alginate fibers
enabled the discovery of new functional biomaterials [9]. Alginate generally occurs as water-
soluble Na alginate and is transformed into Ca-alginate beads. These forms are used as
adsorbents that remove heavy metal ions. Chelating and mucoadhesive properties are other
reasons to use this material in drug delivery systems in the pharmacological field. Moreover,
due to its degradation ability and recycling, alginate is considered an environmentally
friendly polymer. The physicochemical properties of alginates, such as sol–gel transition,
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pH responsivity, and thermostability, make alginate materials a fast-developing field.
These properties can be modified in the presence of surfactants, crosslinkers, and their
concentrations, as well as stirring time manipulations. Using processing parameters and
different techniques, it is possible to obtain nanoparticles with a desirable encapsulation
efficiency, size, drug release profile, and zeta potential [10–13].
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Figure 1. Schematic presentation of alginate properties (graphic was prepared with program
BioRender.com, accessed on 18 April 2023).

This review will provide an extensive survey of alginate’s structure, chemical proper-
ties, and applications and suggests new perspectives for future studies with these polymers.

2. Chemical Structure and Properties of Alginate

Alginate is an unbranched polysaccharide copolymer built from L-guluronic and
D-mannuronate blocks combined together with 1,4-glycosidic linkages [14]. The structures
of α-L-guluronic acid and ß-D-mannuronic acid are shown in Figure 2.
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Figure 2. The structure of α-L-guluronic acid and ß-D-mannuronic acid (graphic was prepared with
program BioRender.com, accessed on 18 April 2023).

The D-mannuronate component is the main fraction in the precipitation process with
Ca salts. The content ratio of mannuronate to guluronate can vary and depends on the
source of alginates. Alginate linear copolymers are built with blocks of (1,4)-linked α-L-
guluronate (G) and ß-D-mannuronate (M), as one can see in Figure 3. Only the G-block
structure is involved in the intermolecular covalent crosslinking binding with divalent
cations and leads to the hydrogel-forming process. The length of the G-block, M/G ratio,
and molecular mass are important agents with an influence on the physical properties of
alginates [15–18].
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The molecular mass of alginates varies depending on their origin, whereas bacteria-
derived alginates are distinguished by high molecular masses and a high degree of poly-
merization [19,20]. The process of gelation can be induced by the presence of divalent
cations, for example, Ca2+, Ba2+, or Mg2+, which initiates alginate aggregation and forms
a physical gel [21]. One of the main parameters that influence the hydrogelling ability of
alginate is pH responsivity; material shrinks in at a low pH, whereas it swells and releases
the medications from its carriers at higher pH values as a promising drug medium material
for oral delivery. The structure of the gel is determined by ion type, sequence, composition,
and guluronic residue content [15]. Alginate is supplied in various forms on the market:
powder, powder with an activator, and paste. The most common form of alginate is powder,
which can be mixed with water. The paste is available in two states that vary in viscosity:
tray and syringe viscosity. When comparing the state of the paste to the powder state, the
paste requires a shorter gelation time, and studies have shown that the paste form better
meets the requirements of the dentistry industry than the powder form [22].

The mechanism of alginates in a natural state can interact with cationic polyelectrolytes
and proteoglycans via a pH-dependent anionic nature, whereas in delivery systems for
cationic medications, electrostatic interactions are used [7,8].

3. Alginate Extraction and Origin

Nowadays, alginates used commercially are extracted from various species of brown
seaweed, as can be seen in Figure 4 [23].
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Increasing CO2 levels caused by climate change have become a threat to seaweed
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(1,4)-linked α-L-guluronate (G) and ß-D-mannuronate (M) to suit the proper expectations
are time- and money-consuming. Therefore, there is an increasing need for customizable
sources of alginates. Alginate extraction methods can be divided into conventional and
non-conventional, as Figure 5 shows.
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Species of Azotobacter and Pseudomonas also constitute sources of alginate [24–26].
Gram-negative bacteria extracted from water, soil, or other natural or laboratory envi-
ronments, as an opportunistic pathogen, can be a reason for severe infections of urinary,
respiratory, or cystic fibrosis infections [27,28]. The genome of P. aeruginosa contains many
secreted virulence factors, such as exoenzymes, exotoxins, proteases, and lipases [29]. In
the outer membrane, the cell of P. aeruginosa includes virulence factors such as lipopolysac-
charide (LPS) [30]. The main feature of this bacteria is the capability to produce biofilms
rich in alginates [31–35]. In Pseudomonas aeruginosa, alginate is polymerized and secreted by
a specific unit that spans the outer and inner membranes of the bacteria [36,37]. The particu-
lar protein in this unit is expressed by a biosynthetic operon with 12 coding sequences [38].
These genes are observed in bacterial species that produce alginate. According to Pseu-
domosas aeruginosa, the expression of this operon is controlled and regulated by AlgU,
which is the sigma factor expressed from the alginate regulatory operon [39,40]. Positive
alginate biosynthesis regulators act via the degradation of the AlgU regulator to release
AlgU, resulting in the expression of the biosynthetic operon and, finally, alginate produc-
tion [41–43]. The biotechnology method of producing alginates from bacteria is complicated
due to potential pathogenicity and diversified content in various strains. Other research
has shown that the overexpression of the alginate biosynthesis activator MucE is made
possible by activating the protease AlgW, which degrades MucA, thus activating AlgU [44].
Alternative methods are based on deleting five virulence factor genes from the chromosome
of a type of P. aeruginosa strain, which leads to the attainment of a non-pathogenic strain:
PGN5. The PGN5 strain can produce high amounts of alginate. Biotechnology methods can
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make alginates with desired physical properties, improving their features and expanding
their application [45].

4. Alginate Applications
4.1. In Cosmetics

Novel research published by Sayin et al. [46] has shown that alginate extracted from
Sargassum vulgare can be used as a preservative agent in cosmetics. As the study showed,
alginate indicates a higher antimicrobial effect than commercially used herbal preserva-
tive 705, which contains glyceryl caprylate and glyceryl undecylenate. The results of the
research have shown that alginate from Sargassum vulgare needed less time to initialize
antimicrobial activity on microorganisms such as Staphylococcus aureus, Pseudomonas aerugi-
nosa, Candida albicans, Aspergillus brasiliensis, and Escherichia coli. Antimicrobial tests were
performed according to the ISO 11930 standard [46]. The literature provides information
about the most proper and the best-quality sources of alginates in cosmetic applications,
such as Laminaria hyperborea, Laminaria digitata, and Laminaria japonica, whereas the most
common source of marine polysaccharides is brown seaweed in the Phaeophyceae family,
Macrocystis pyrifera [47–49]. In cosmetics, alginates are used for the encapsulation of oils,
which mask their specific undesirable effects and help to maintain their stability. The
medium is classified in addition to its structure, the number of cores, and sizes. The
encapsulation techniques, where the encapsulating material is alginate, use internal, exter-
nal, or inverse-gelation mechanisms. Alginates are widely commercially used because of
their gelling capacity and biocompatibility [50]. Recent research has shown that sodium
alginate can be used with tetradecylallydimethylammonium bromide as shells based on
complex coacervation–emulsion polymerization to create apple aroma microcapsules with
a potential application in cosmetics [51].

Oils for cosmetic applications such as argan oil, berry oil, caprylic/capric triglyceride,
apricot kernel oil, raspberry oil, ginko biloba oil, moringa, Pistacia Lentiscus oil, rose hip oil,
camellia oil, black wheat oil, and jojoba and soybean oil can be encapsulated by alginate
to protect active substances and to obtain a controlled release in skincare and haircare
products [52,53].

Novel research has shown that cosmetic patches that enhance the moisture, adhe-
siveness, and delivery of active substances to the skin are developed using spirulina
extract-impregnated alginate nanofiber supported by polycaprolactone nanofiber cover.
The tests showed that none of the three components detected cytotoxicity in a human
keratinocyte-cell-based examination. Furthermore, the patch caused an increase in mois-
ture and adhesiveness to the skin [54].

The application of alginates is wide. Alginate helps to maintain proper skin or
hair moisture in creams, emulsions, hair gels, and face masks, which means it can
work as a humectant in cosmetic formulas. It also protects the cosmetic product from
stratification of phases in emulsions. It is often used as a gelling agent in acidic pH and
consistency regulators.

4.2. In Food

The United States Food and Drug Administration (FDA) institution has approved
alginate for a variety of applications, such as food, medicine, and supplements [55–59]. In
the food industry, alginate is used as a stabilizer as well as an emulsifying and thickening
agent. Because of its polysaccharide indigestible structure, alginate can be a source of
dietary fiber as well, which helps digestion regulation and works as a prophylactic measure
in gastrointestinal and cardiovascular diseases [60,61]. Recently published articles have
shown that alginate-based microgels with polymeric and colloidal fillers can enhance
probiotic stability during food storage. Lactobacillus casei encapsulated by calcium alginate
microgels with polymeric or colloidal fillers can increase probiotic viability [62].

Nowadays, the food industry is focused on functional food. Research has shown that
cocoa extract can be encapsulated using alginate. The extrusion method can induce either
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internal or external gelation. Alginate/cocoa beads with calcium prepared via the internal
gelation method represented a more homogenous and compact structure, whereas the
beads obtained by the external gelation method were harder because of the more rigid
shell which formed due to the migration of calcium to the exterior of the beads [63]. The
main characteristics of alginates that make them thickeners, stabilizers, and restructuring
agents in the food industry are their perfect gelling abilities at low temperatures and
thermostability. They can also be used as a carrier for protective coatings for fruits and
vegetables [64]. Research has shown that single alginate films exhibit more appropriate
features for food packaging applications than single-pectin or composite films [65].

Water solutions of alginate indicate higher viscosities and an exceptional sheer thin-
ning effect compared to other commercially used thickeners. The applied sheer thinning
effect while processing can lower the viscosity of the food mixture [66]. Alginate’s thick-
ening abilities are well used in marmalades, jams, and fruit sauces, as alginate–pectin
interactions provide heat-reversible effects and higher viscosity. Other applications of algi-
nates in the food industry are thickener agents for desserts, savory sauces, and mayonnaise.
The hydrophilic nature of alginates helps to improve the retention of moisture and food
texture and provides better organoleptic features to promote customer acceptance [67].
According to the perfect gelling abilities in high and low temperatures and at a low pH,
alginates can be used in food processing, for example, in bakery creams in which alginates
reduce the separation of the liquid and solid components. In ice cream, alginate is used
with other hydrocolloids to control the viscosity of the product, maintain temperature
resistance, and reduce shrinkage and ice crystal formation [68,69]. The proper tensile
strength and flexibility of alginates make them suitable as an ingredient for food coatings.
Once the surface of the food touches the water solution, alginate becomes an edible coating,
protecting the product. The film-forming ability of alginates can be a potential answer to
replacing non-recyclable food packaging. Alginate and gellan-based coatings are used to
prolong the shelf life of fresh-cut Fuji apples packed in trays. The shelf life for control apple
slices was four days, whereas using the alginate coatings shelf life for Fuji apples prolonged
the shelf life to two weeks [70]. In addition, alginate gels are safe to use and provide
better stability for the product and prolong its shelf life [71,72]. Alginate encapsulation
techniques, such as spray drying, spray cooling, and spray freezing microfluidization, can
provide acidulants, fats, and flavors, which are widely used in the food industry for food
processing, improving the functionality and acceptability of the product.

4.3. In Medicine

Alginates are commonly used in medicine, tissue engineering, drug delivery, and
as a drug component in medications that prevent gastric reflux because of their non-
antigenicity, biocompatibility, biodegradability, and chelating ability [7,8]. Furthermore,
alginate encapsulation techniques are used in drug delivery applications [73].

The delivery systems for cationic drugs can be received by electrostatic interactions
because of the pH-dependent anionic alginate structure and its response to cationic poly-
electrolytes and proteoglycans’ capability. Scaffolds are one of the methods of delivering
drugs, therapeutical cells, and growth factors into their proper place in the organism and
play an essential role in protecting incorporated substances or cells from the biological
environment. The scaffold’s time of degradation can be regulated with a proper pH as
well as mechanical or swelling properties. Kun Ma et al. [74] have shown that alginate in
fibrin/alginate blended hydrogels used in cartilage tissue engineering, especially for the
support of bone-marrow-derived mesenchymal stem cells, enhance the gel biostability and
support collagen II and glycosoaminoglycan production and chondrogenic gene expression.
Moreover, alginate scaffolds seeded with cardiomyocytes can prevent deterioration in
cardiac function after myocardial infarction in rats [75]. Chitosan–alginate hybrid scaffolds
are used in bone tissue engineering. Li et al. [76] showed that the chitosan–alginate scaffold
could be prepared from solutions of physiological pH. This approach provided a favorable
environment for incorporating proteins with less risk of denaturation. Moreover, alginate
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scaffolds can deliver heparin-binding angiogenic factors or a combination of growth factors
such as VEGF, PDGF-BB, and TGF-B1 in various tissue-regeneration processes [77].

The degradation time and mechanical properties can also be successfully regulated
by the molecular weight of alginate—the higher the molecular weight, the slower the
degradation rate, which influences the mechanical properties of biomaterial via structural
changes [78,79]. As research has shown, the potential of alginate in regenerative medicine
is very promising; thus, the demand for alginate-based biomaterials is still rising [80–82].
Tested alginate-based materials indicate possible vascularization, low inflammatory re-
sponse, degradation, and protection of wounds from bacterial infection. Depending on
the character of a wound, the wound dressing should maintain accurate properties; for
example, in some cases, it should provide a moist occlusion dressing to help the skin
heal in a shorter time. There are many kinds of alginate-based wound dressings, such as
hydrogel, sponges, and electrospun mats [83–85]. The antiseptic capability and decreased
tissue regeneration time provided by better cosmetic repair of the wounds, as well as easy
gel-forming ability, are the significant advantages of alginates in this field [86]. Moreover,
alginate-based materials in various forms, such as microspheres or injectable hydrogels, are
used in cartilage regeneration and broadly defined tissue engineering [87–94]. Furthermore,
reconstructive bone therapy that utilizes adequate scaffolds with growth factors or cells
may improve the process of tissue regeneration [95–100]. Several studies have shown that
alginate is successfully used in scaffolds to improve healing [100–107]. Alginate materials
are commonly used in drug delivery systems as colloidal particles, hydrogels, porous
scaffolds, and polyelectrolyte complexes, as well as microspheres [108–112].

4.4. In Dentistry

Alginate materials are well used in dentistry as adhesives and impression materials
that can be painted or sprayed on the tissue. Before use, alginates are provided in powder
form, which can be mixed with water. It is crucial to use demineralized water because
metal cations can affect the accuracy and setting of the alginate. The obtained mixture
should be creamy, without air in it. After this step, the mixture can be placed in the patient’s
arch, and then alginate can flow into the cavities and record details. After a short time,
the dentition fingerprint is taken by a quick snap, washed, disinfected, and stored in a
waterproof package. However, the impression materials should not be stored for too long
because of possible dental inaccuracies in time [113–119]. The double impression technique
uses thermo-plastic pastes that are composed of fluid paste and basic paste which, before
usage, should be activated with proper catalysts. The elastomers are more stable than
alginates but require a good and quick technique of application [120]. Digital fingerprinting
techniques are promising alternatives to the standard techniques in order to obtain the
most precise fingerprint and durable material [121]. The summary of alginate applications
is shown in Figure 6.

4.5. In Environmental Protection

The industrialized environment produces waste containing heavy metals, which enter
the trophic chain and are transferred from soil, water, plants, and animals to humans [122].

Heavy metals accumulate in the organism and can cause changes in protein synthesis,
disturbances in ATP production, and, in the end, carcinogenic changes [123]. To prevent
heavy metal ions from transferring to the environment, a study showed that alginate-based
materials could be low-cost and effective adsorbents for heavy metals such as Pb (II), Cu (II),
and Cd (II) from aqueous solutions as they contain carboxyl and hydroxyl groups [124].

Although sodium alginate has some restrictions, such as thermal degradation and
poor stability, the modifications and alginate composites help to provide the expected
characteristics for each application [125]. Heavy metal ion adsorption is based on physic-
ochemical interactions between metal ions and the functional groups on the surface of
the adsorbent, including electrostatic interactions, chelation, complexation, reduction, and
ion exchange. In alginate-based adsorbents, hydroxyl groups are responsible for these
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interactions [126]. The heavy metal retention capacity is dependent on the pH value of
the solutions comprising metals, which have an influence on the surface charge of ab-
sorbates and adsorbents. Low pH values cause the decreased adsorption of metals such as
Cd2+, Cu2+, Zn2+, Co2+, and Ni2+, whereas due to deprotonation, anionic metals such as
Au(CN)2−, AuCl4−, PtCl34−, CrO2

4−, and SeO2
4− indicate increased adsorption [127].
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Next to heavy metal ions, environmental pollution is also caused by synthetic dyes
entering water systems. The pharmaceutical, paper, textile, and food industries use syn-
thetic dyes in tons, but due to improper processing, it is considered a major environmental
problem as it is highly toxic [128]. Cationic dyes can interact with negatively charged cell
membranes and can easily transfer into the cell cytoplasm [129]. Anionic dyes are less toxic
than cationic dyes. Crystal violet dye is a common basic dye used in the textile, veteri-
nary, and food industries [130]. Crystal violet dye is regarded as a mutagen and mitotic
poison [131,132]. Magnetite alginate beads constitute a promising, efficient, and low-cost
method for the removal of crystal violet dye from aqueous solutions. The limitation of using
alginate individually is that the sorbent without magnetite showed a low regeneration
capacity and could be used one time with proper efficiency. Magnetite alginate can be
effectively used up to four times using 0.01 M HCl, which means the sorbent is a promising
alternative for removing dye from industrial wastewater [133]. Magnetic alginate beads
also have potential to be used as a sorbent for lanthanum (III) from the aqueous solutions
regenerated by 0.1 M CaCl2 with optimal efficiency [134]. Lanthanum is used in catalysts,
batteries, and the ceramics industry [135,136] due to its unique physicochemical proper-
ties. The occurrence of this chemical element is rare. It can be found in monazite, cerite,
bastnasite, and allanite earth [137].

Nevertheless, high concentrations of lanthanum entering the environment, especially
water, is considered toxic waste. Therefore, it is necessary to develop adsorbents to ef-
ficiently remove lanthanum from water to protect the environment and recover a rare
chemical element.

BioRender.com


Mar. Drugs 2023, 21, 353 9 of 26

5. Comparison of Existing Knowledge in the Field of Alginate-Based Materials

The structure of alginates has a significant number of free hydroxyl and carboxyl
groups located along the polymer chain; thus, in contrast to neutral polysaccharides, they
have two types of functional groups that can undergo modification. The modification
process can lead to a change in the properties of a mentioned compound. There are several
methods that are commonly used regarding hydroxyl groups, such as alginate-reductive
amination, copolymerization, coupling cyclodextrin units, sulfation, and oxidation. Other
possibilities, including modification in carboxyl groups, use amidation, esterification, and
Ugi reaction [138,139].

Novel techniques use cryotropic gelation with non-deep freezing of the solution
containing proper precursors, its storage while frozen and thawing, and obtaining cryogels.
Cryogels have a high amount of interconnected macropores as well as gigapores, where
sizes are up to 100 µm. These pores are created by growing crystals in the solvent [140].
The method of cryogelation can be divided into cation-free or ionotropic cryogelation. In
the extraction process, alginate is surrounded by a non-solvent that can strengthen the
polymer structure. However, supercritical drying to obtain macroporous alginate has not
been conducted yet [141–146]. In the 1960s, several laboratories used non-solvent-induced
Phase Separation by Loeb and Sourirajan [147], in which a polymer solution separates into
polymer-rich and polymer-lean phases as the solubility of the macromolecules decreases
because of the addition of non-solvent. This technique is used in polymer technology to
diversify a set of synthetic and non-synthetic polymers [148]. Recently, the non-solvent
features of solvents were used to improve the strength of the alginate material [149–151].
Carbon dioxide-induced gelation is a method that obtains even giant monoliths [152]. It
began in 1990 and was performed by Draget et al. [153]. The modification of this method
was recently developed by Gurikov et al. [154,155]. Another method is based on the
generation of protons via water electrolysis in a water solution of sodium alginate. The
crosslinking process of alginate can be delivered using Ca2+ or Fe3+ cations [156]. There
were also approaches for electrospinning alginate in concentrated solutions of calcium,
magnesium, or barium salts [157]. The literature shows that alginate is biocompatible, non-
toxic, and biodegradable when administered orally [158]. However, there is a disagreement
when it comes to intravenous alginate administration. Tests have shown that there was a
foreign body and fibrosis reaction while using it intravenously [159,160], while different
reports have showed a slight or no response at all after using alginate implants [161]. In
most cases, alginate after free-flow electrophoresis purification does not cause foreign body
reactions [162]. The immunogenic response to alginate by intravenous administration may
be caused by toxic contaminants from commercial alginates [163].

Polymers with charge density can be mucoadhesive agents [164–166]. Polyanionic
polymers are reportedly more effective as bioadhesives than polycation polymers or non-
ionic polymers [164]. Therefore, alginate with carboxylic groups is a promising mucoad-
hesive agent. Compared to chitosan, polylactic acid, carboxymethyl cellulose alginate
has the highest mucoadhesive strength [165]. Although alginate is successfully used in
many applications in food, cosmetics, dentistry, and medicine, the form of calcium alginate
has its limitations. However, the method used to obtain the form of calcium alginate is
simple; the loss of the compound during this process by bonding the created pores is signif-
icant [167,168]. Therefore, there are many reports in the literature about the crosslinking
process of alginate. Sodium alginate [169–171] or sodium alginate with gelatin or ovalbu-
min [172] was crosslinked with aldehydes [169]. Chan et al. in 2002 [169] used pentane
diol with two aldehyde groups to create crosslinkage between two alginate molecules by
the formation of two hydroxyl groups via pentanedial. Other methods discussed in this
chapter overcome the limitations caused by a relatively large pore size and instability in
higher pH environments [163]. Developing new systems for nanotechnology using natural
biopolymers is an open issue [173]. We can expect that alginate will play an important role
in this field as well.
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Currently, alginate-based materials are gaining more recognition. The scientific litera-
ture in the year 2000 had a total of 2020 results for the words “alginate” and “environment”
together and 45 results for “alginate-based, environment” for products with an alginate base
in environmental remediation (see Figure 7). In the year 2022, the number of publications
in the first example raised to 36,300, while in 2023, the results numbered 15,800, whereas
the number of publications for products based on alginate was 6300 for the year 2022 and
3000 for the year 2023. The results were obtained using the Google Scholar database in both
cases, including the abstract, title, and keywords. The total list of publications was 367,047
(date of access: May 2023).
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(search for words “alginate” and “environment” together) and products based on alginate in this
field (search for the phrase “alginate-based” and “environment”). Data are provided from Google
Scholar database (in both matters including abstract, title, and keywords); accessed on 18 April 2023.

Alginate-based materials in medicine in the years 2000–2023 showed a comparatively
large increase. The total amount of publications in the Google Scholar database when
searching for the phrases “alginate” and “medicine” together and “alginate-based” and
“medicine” in one search yielded 291,449 results (see Figure 8). Comparatively, in the year
2000, the total sum of the scientific articles for both searches was 1786, whereas the results
for alginate-based products were significantly lower (36) than the findings for the phrases
“alginate” and “medicine” (1750). By the end of 2022, the total findings raised to 34,800,
whereas in May 2023, it was 15,350.

According to research findings, alginate is commonly used in cosmetics, although
in scientific articles, the combination of the words “alginate” and “cosmetics” as well as
“alginate-based” with the phrase “cosmetics” yielded fewer results than in medicine and
environmental fields—the number of publications in the years 2000–2023 was 68,648 (see
Figure 9). The reason for this could be a lack of results published by cosmetic companies.
Compared to the year 2000, the list of scientific articles including the mentioned phrases
rose from 301 to 10,880 by the end of 2022, whereas in May 2023, the number was 4282.
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In recent decades, alginate applications in the food industry have gained recognition.
In early 2000, the results for “alginate” and “food” as well as alginate-based products in
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food industry applications described as “alginate-based” and “food” yielded 1505 scientific
articles, whereas by the end of 2022, the number was 35,450, and in May 2023, it was 14,780
(see Figure 10).
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The comparison of existing knowledge on alginate-based materials indicates that
the greatest recognition was in the years 2000–2023, where alginate composites gained
applications in environmental remediation (367,047 total results) and the medical field
(291,449 total results). The food industry is also evolving, which yielded 277,054 publica-
tions on this subject. The lowest number of publications was in the cosmetic field, with
68,648 publications, although the cosmetic industry may not publish many results. The
comparison of the number of scientific articles with alginate-based products in the field
of environmental protection, medicine, food, and cosmetics in terms of scientific articles
showed that the greatest number was published by the environmental (30,767) and medical
fields (24,279), whereas fewer publications were available in cosmetic (5692) and food
fields (24,334).

6. Alginate-Based Materials: The State of Innovation

Current and future applications of alginate are determined by their gel-forming ability
in the presence of cations. These undemanding conditions and well-known properties
of alginates in both liquid and gel phases make them exceptional compared to other
biomaterial polysaccharides. Pectins are supposed to be similar in their sol/gel transition,
but this phenomenon is not well-known or commonly used, such as in alginates [174].

Nowadays, sequential structures of alginates and their composition can be manip-
ulated through enzymatic modification. The epimerases used in this process can highly
improve the functional properties of alginates as biomaterials and thereby extend their
applications [175]. Enzymatically engineered alginates are a promising future issue as they
are more elastic, compact, and less permeable, and most importantly, they are eminently
stable in physiological conditions. Moreover, the connection between a proper polymer
nanostructure and its properties may stand as a model for other polymer-based material
systems [175].
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Although the alginate hydrogels obtained by non-conventional methods such as
cryogelation, non-solvent phase separation, carbon-dioxide-induced and photo-induced
gelation, as well as methods using non-metal crosslinkers, constitute an attractive and
promising alternative to future developments, these methods require more attention and
research to better understand the mechanisms and their directions [176].

Current advances in alginate-based materials using both conventional and non-
conventional methods are listed in Table 1.

Table 1. Recent advances in alginate-based materials.

Year Invention Description Application Field References

2023 SA/Co-MOF

Cobalt-based metal-organic
framework (Co-MOF) nanoparticles

with ammonia-sensitive and
antibacterial functions introduced
into sodium alginate (SA) matrix

Intelligent active
packaging material Food industry [177]

2023 Ce–Cu@Alg

A novel hydrogel-beads-based
copper-doped Cerastodermaedule

shells@Alginate biocomposite for
highly fungicide sorption from

aqueous medium

New generation
biosorbent for

utilizing pesticides
from wastewater

Environmental
protection [178]

2023
Alginate hydrogel
hemp nonwoven

composite

An eco-friendly material with
anti-inflammatory hemp and

alginate hydrogel
Wound dressings Medicine [179]

2023 (PCL)/calcium
alginate (CA)

Three-dimensional fibrous scaffolds
consisting of poly(ε-caprolactone)

and calcium alginate used to induce
keratinocyte differentiation through

the action of calcium leaching

Transplantable
skin substitutes Tissue engineering [180]

2023

Sodium
alginate–carnauba

wax film
containing calcium

ascorbate

A new type of edible composite
film with water-blocking agent

carnauba wax, plasticizer glycerin,
antioxidant, and nutritional

enhancer sodium ascorbate on the
basis of traditional sodium alginate

composite film

Fresh-cut fruit
preservation Food industry [181]

2023

Alg/Gel/
mMWCNTs
conductive

scaffolds

Novel hybrid conductive scaffold
based on alginate/gelatin/

carboxylated carbon nanotubes

Nerve
regeneration Tissue engineering [182]

2023 (AAC) gel

Alginate–attapulgite–calcium
carbonate gel adsorption in

bacterial biodegradation of used
engine oil

Adsorptive
granular formulas
for bioremediation
of used engine oil

Environmental
protection [183]

2023

PVA/SA/biochar
beads with

Chryseobacterium sp
H5 immobilization

Polyvinyl alcohol (PVA)/sodium
alginate (SA)/biochar bead with

functional microbe immobilization

Effective
bioremediation of

thiamethoxam
contamination

Environmental
protection [184]

2023 (CuO-Fe3O4-
Fe0/Abs)

Fe0 Embedded alginate beads and
coated with CuO-Fe3O4

Sustainable
catalyst for

photo-Fenton
degradation of

oxytetracycline in
wastewater

Environmental
protection [185]
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Table 1. Cont.

Year Invention Description Application Field References

2017 SCGG
Sodium

alginate/ß-cyclodextrin/graphene
oxide nanocomposite adsorbent

Bioremediation
of dyes

Environmental
protection [186,187]

2016 SA/acrylic
acid/TiO2

Sodium alginate/acrylic
acid/titanium dioxide

composite hydrogel

Bioremediation
of dyes

Environmental
protection [188]

2013
GO/SA/

polyacrylamide
ternary hydrogel

Graphene oxide/sodium
alginate/polyacrylamide

ternary hydrogel

Bioremediation
of dyes

Environmental
protection [189,190]

2016 SA-CMC Alginate–carboxymethyl cellulose
gel beads

Bioremediation of
heavy metals:

Pb (II)

Environmental
protection [191]

2018 CA-BMB Ca-alginate entrapped
ball-milled biochar

Bioremediation of
heavy metals Cd2+

Environmental
protection [192]

2019 Alg-g-PNIPAAm
Alginate-g-poly(N-

isopropylacrylamide)
graft copolymer

Bioremediation of
heavy metals

Cu (II)

Environmental
protection [193]

2019 FeNPs-CaAlg Iron nanoparticles–calcium alginate
hydrogel membrane

Bioremediation of
heavy metals:

Cr (VI)

Environmental
protection [194]

2019 Alg-B Porous alginate beads
Bioremediation

of heavy
metals: Hg2+

Environmental
protection [195]

2023 (Ca/Fe)-LDH-SA
beads

Calcium/iron-layered double
hydroxides–sodium

alginate nanoadsorbent

Bioremediation of
antibiotics:

Amoxicillin

Environmental
protection [196]

2023 Lys-protein
nanomaterial

Lysozyme protein
modified nanomaterials

Bioremediation of
bacteria and
antibiotics

Environmental
protection [197,198]

2023
Carboxymethyl

chitosan/sodium
alginate hydrogel

Hydrogel based on carboxymethyl
chitosan/sodium alginate with the

ability to release simvastatin for
chronic wound healing

Wound healing Medicine [199]

2016 Hap-GMs-
CaCO3-GDL

Injectable alginate/hydroxyapatite
gel scaffold combined with

gelatin microspheres

Bone tissue
regeneration

Tissue
engineering/

Medicine
[200]

2017 Fullerenol/
Alg Hydrogel

Injectable fullerenol/
alginate hydrogel

Cardiovascular
tissue regeneration

Tissue
engineering/

Medicine
[201]

2021 Silk nanofibril/
GelMA-alginate

Double-layer micro-patterned
bioadhesive based on silk

nanofibril/GelMA–alginate

Stroma tissue
engineering of
human cornea

Tissue
engineering/

Medicine
[202]

2019
Ca-alginate-

PEGMA/A. vera/
M. oleifera

Alginate–PEG methyl ether
methacrylate–moringa oleifera–aloe

vera scaffolds
Wound healing

Tissue
engineering/

Medicine
[203]

2022 OA-CC hydrogels
Self-crosslinkable oxidized

alginate–carboxymethyl
chitosan hydrogels

Dental enamel
regeneration

Tissue
engineering/

Dentistry
[204]

2014 PNIPAAm
Doxorubicin-loaded alginate-g-
poly(N-Isopropylacrylamide)

micelles

Cancer imaging
and therapy Medicine [205]
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The food industry is searching for intelligent, active packaging to maintain and mon-
itor the freshness of food, especially meat. Recently, the development of cobalt-based
metal–organic nanoparticles that exhibit sensitivity to ammonia and have antimicrobial
properties in combination with sodium alginate have helped to control the freshness of
food. Shrimp spoilage was monitored by the color of alginate-based material turning
from pale pink to brownish black [177]. The novel combination of an alginate–carnauba
wax film with calcium ascorbate helped preserve fresh-cut apples for a longer period of
time compared to a conventional alginate composite. Carnauba wax improved the water
resistance of fresh-cut fruits and sodium ascorbate improved the nutritional value of food,
worked as an antioxidant, and prevented apples from browning, whereas glycerin as a
plasticizer enhanced the flexibility of the film. Though sodium alginate–carnauba wax
film with calcium ascorbate indicated good preservative values for fresh-cut apples, the
research should be extended to other types of food for practical applications [181].

Alginate-based materials are also used to prevent environmental pollution. A new-
generation biosorbent for the utilization of pesticides has been invented. Novel composites
using Cerastodermaedule shells with copper and alginate were used to facilitate dynamic
thiabendazole pesticide adsorption from water. This alginate-based material with copper
indicates a high affinity to benzimidazole molecules, which can effectively adsorb pesticides
from wastewater [178]. Recently, the development of a novel catalyst made of zero-valent
iron (Fe0) dispersed and immobilized on alginate beads with CuO-Fe3O4 proved to be an
efficient material for removing oxytetracycline from wastewater, and the optimal conditions
for the degradation of antibiotics were studied [185].

Thiametoxam, the second-generation neonicotinoid insecticide, is considered a major
threat to ecosystems. The bioremediation of thiametoxam is possible by using a highly
thiametoxam-degradating Gram-negative aerobic bacterium called Chrysebacteriumsp H5.
The development of polyvinyl alcohol with sodium alginate and biochar, which constitutes
an adsorbent with rich porosity, large specific surface area, and great microbial immobiliza-
tion matrix, resulted in the effective bioremediation of thiametoxam from wastewater [184].

The pollution of used engine oil is considered an environmental threat. The biodegra-
dation of used engine oil can be possible according to novel research. Alginate–attapulgite–
calcium carbonate constituted a proper matrix for used engine oil sorption with Ochrobac-
terium intermedium LMG 3301, Ochrobacterium intermedium LMG 330, and Bacillus paramy-
coides MCCC1A04098 (BC) immobilization [183].

The invention of a sodium alginate/ß-cyclodextrin/graphene oxide nanocomposite
adsorbent enabled the removal of methylene blue dyes, rhodamine b, methyl violet dyes,
and methyl orange dyes, which constitute organic environmental pollutants. According
to the literature, at proper conditions such as dose and pH value, the removal rate of
methylene blue dye using this nanocomposite can reach 84.98% [186]. The mechanism of the
dye’s adsorption via the sodium alginate/ß-cyclodextrin/graphene oxide nanocomposite is
based on non-covalent (π−π interactions) and electrostatic interactions, as well as hydrogen
bonding [187]. The high efficiency of the method using nanocomposite, its biodegradability,
and low-cost operations are the reasons it provides significant potential in industrial water
treatment and environment remediation [186].

Another invention that allowed the adsorption of methylene blue dye from water
solutions was a sodium alginate/acrylic acid/titanium dioxide composite hydrogel, which
had an adsorption rate in the range of 91.4–99.4%. The negatively charged surface of
titanium dioxide repulses carboxylate ions, which yields more free area for cationic dye
adsorption [188].

Graphene oxide/sodium alginate/polyacrylamide ternary hydrogel, due to the signif-
icant properties of graphene oxide—such as the capability of creating strong non-covalent
interactions with organic dyes and large surface area—makes the composite a great adsor-
bent in water treatment applications and can be used for environmental protection [189].

Heavy metal water pollution is extremely dangerous for marine ecosystems due
to toxicity and bioaccumulation in marine organisms. Heavy metals can pass to water
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reservoirs from industrial waste and soils as an effect of acidic rain and release heavy
metal ions to lakes, rivers, and groundwater, causing major threats to humans and marine
life [190].

The adsorption of heavy metal ions represents an open issue in the field of alginate-
based materials. Novel alginate–carboxymethyl cellulose gel beads can remove Pb2+

ions from wastewater with a 99% adsorption rate. The reason for the high efficiency of
alginate–carboxymethyl cellulose gel beads in the removal of Pb (II) is three adsorption
mechanisms: chemical, physical, and electrostatic. The chemical mechanism is based on
the reaction between functional groups in alginate–carboxymethyl cellulose gel, such as
hydroxyl or carboxyl with Pb2+, whereas physical adsorption is able to occur because of
sodium alginate crosslinking by carboxymethyl cellulose, which provides more adsorption
sites. Electrostatic adsorption uses negatively charged gel beads for positively charged
Pb2+ adsorption on its surface [191]. Ca-alginate entrapped ball-milled biochar showed
excellent Cd2+-adsorption capacity due to the synergetic effect of calcium alginate and
ball-milled biochar [192]. The development of alginate–g-poly(N-isopropylacrylamide)
graft copolymer allows the removal of Cu (II) from water solutions due to the reaction
between carboxyl groups and Cu2+ [193]. The plant-mediated biosynthesis of the iron
nanoparticles–calcium alginate hydrogel membrane played a significant role in the reme-
diation of Cr (VI), whereas the removal rate of Cr (VI) was 99.5% [194]. Porous alginate
beads created by template-assisted emulsion polymerization are efficient for selective Hg2+

adsorption, which provides other excellent proof that alginate-based materials play an
eminent role in environmental protection [195].

Water pollution by Gram-negative and Gram-positive bacteria and antibiotics is an
emerging issue. Using highly adsorptive nanomaterials such as nanosilica or sodium
alginate nanoadsorbent, water remediation is possible. Alginate-based materials can
remediate antibiotics from groundwater, which could be protective for the environment.
The synthesis of calcium/iron-layered double hydroxides–sodium alginate nanoad-
sorbent as a reactive barrier for antibiotic amoxicillin could be useful in permeable
technology adsorption and suitable for removing antibiotics waste from water [196].
Nanosilica adsorbent conduct protein lysozyme adsorption via electrostatic and non-
electrostatic interactions, removing both Gram-negative bacteria such as Escherichia coli,
Gram-positive bacteria such as Bacillus, and the antibiotic levofloxacin [197]. Lysozyme is
a protein with hydrolytic enzyme properties. It can lyse Gram-positive bacteria, whereas
Gram-negative bacteria are protected by an outer membrane; therefore, lysozyme is
not able to lyse these kinds of bacteria in vitro without special conditions and factors,
such as a proper pH value or the addition of EDTA. Although lysozyme does not have
Gram-negative bactericidal properties, it can affect the cytoplasm in Escherichia coli and
lead to its disintegration [198].

Alginate’s application in medicine abounds with inventions for wound dressings
and tissue engineering for nerve regeneration and transplantable skin substitutes. Re-
cently, an alginate hydrogel hemp nonwoven composite was developed for wound healing.
Hemp presents good anti-inflammation properties and also constitutes an eco-friendly
material [179]. Novel hydrogel based on carboxymethyl chitosan/sodium alginate with
simvastatin release ability can be used in the wound healing process. A nanostructure lipid
carrier with encapsulated simvastatin with the matrix containing carboxymethyl chitosan
and sodium alginate works as a barrier against pathogens, helps to prevent excess effusions,
and accelerates the regeneration process. The composite exhibited efficient antibacterial
activity against Staphylococcus aureus and Escherichia coli and indicated biocompatibility
on mouse fibroblasts. The results of the study proved that the drug can be released over
a prolonged period of time, which can be a major advantage in the wound healing pro-
cess [199]. As recent studies have shown, an electrospun polycaprolactone/calcium alginate
scaffold can be useful in skin tissue engineering. The incorporation of calcium alginate
enhances hydrophilicity, fiber crosslinking, and capability to induce attachment for fibrob-
lasts and keratinocyte cells. The non-toxic character of the polymer makes it a suitable
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material for transplantable skin substitutes [180]. The new technology of carboxyl-modified
multi-walled carbon nanotubes was combined with sodium alginate/gelatin composites
in order to enhance the scaffold properties in nerve regeneration. The modifications also
improved the hydrophilic and mechanical properties of the material as well as electrical
conductivity [182].

The potential application of an alginate-based composite gel scaffold doubly integrated
with hydroxyapatite and gelatin microspheres crosslinked by a calcium cation in bone tissue
engineering was confirmed due to its osteoblast activity. The injectable form constitutes a
convenient method for gel administration [200].

Another invention based on incorporating fullerenol nanoparticles into alginate hy-
drogel to receive an injectable cell medium with antioxidant features for cardiovascular
tissue engineering and regenerative medicine applications was discovered in 2017. Using a
modified alginate composite with proper mechanical strength, it is possible to reduce reac-
tive oxygen species (ROS) levels and enhance the retention and survivability of implanted
brown adipose-derived stem cells, which, through the elicitation of angiogenesis, leads
to cardiac function recovery [201]. Robust and double-layer micro-patterned bioadhesive
silk nanofibril incorporated with gelatin methacrylate, which promotes the adhesion of
corneal stroma cells, could be important in the stroma tissue engineering of the human
cornea [202]. Great potential in wound healing could be obtained by scaffolds based
on alginate–polyethylene glycol methyl ether methacrylate in combination with natural
Moringa oleifera and Aloe vera aqueous leaf extracts. Aloe vera’s ability for increased water
uptake, as well as Moringa oleifera’s antioxidant capacity and anti-inflammatory properties,
and Streptococcus aureus’s antimicrobial activity enhances scaffold cell proliferation [203].
Self-crosslinkable oxidized alginate–carboxymethyl chitosan hydrogels could be injectable
cell carriers for dental enamel regeneration. Hydrogels were obtained by crosslinking reac-
tions between oxidized alginate aldehyde groups and carboxymehyl chitosan amino groups.
The hydrogels exhibited cariogenic antibacterial activity, accelerated the healing process,
decreased the risk of infection, and the high in vitro viability of dental epithelial stem cells,
which makes them an excellent carrier for cells with growth factors [204]. Alginate-based
materials exhibit great potential in oncology; for example, doxorubicin, a model anticancer
medication, was successfully encapsulated in alginate–g-poly(N-Isopropylacrylamide) mi-
celles and maintained the sustained release of the drug in 37 ◦C in vitro, reflecting natural
human organism conditions [205].

The application of alginate and its modification may even be unexpected because
the development of new procedures in the future may generate the need for novel
material formation.

7. Conclusions

To summarize, alginates are widely used as biomaterials in the medicine, cosmetic and
food industries, as well as dentistry. The structure of alginates and, therefore, their proper-
ties, can be successfully modified to obtain the desired functions of alginate-based materials.

The alginate-based materials’ capability to incorporate cells and drugs, as well as their
promotion of wound healing, highlight them as a promising issue for tissue engineering.
Alginate composites, such as alginate–chitosan [206] or alginate–polyethylene glycol [207],
alginate–biosilica [208], alginate–ceramics [209], and alginate–proteins, such as collagen,
are known for multiply tissue engineering and medicine applications due to the enhanced
cell adhesion, biocompatibility, tensile strength, and porosity [210]. Biocompatibility and
non-toxicity show that alginate can be safely used in the food and cosmetic industries.

However, there are features that should be improved, for example, obtaining the desired
parameters, such as bioactivity, degradation, and mechanical properties simultaneously.

There is an industry demand for emerging alginate-based materials that imitate the
environment of natural tissues [176], so the application of alginate in biomedical fields
will increase.



Mar. Drugs 2023, 21, 353 18 of 26

Materials that are biodegradable will receive increasing attention in the future, so
alginate, which is biodegradable, is an excellent material in this regard.

The comparison of the number of scientific articles with alginate-based products in
the field of environmental protection, medicine, food, and cosmetics in scientific articles
showed that the greatest number was assigned to the environmental field (30,767) and
medicine (24,279), whereas fewer publications were available in cosmetics (5692) and food
fields (24,334).

The water pollution issue is highlighted as it constitutes an emerging issue, and thus,
seeking new developments based on safe alginate composites that remediate toxic dyes,
antibiotics such as amoxycillin, Gram-positive and Gram-negative bacteria, as well as heavy
metal ions which can accumulate in marine and human organisms, makes alginate-based
materials worthy of attention.

Understanding the chemical structure and physicochemical properties of alginates
and their modifications provides new perspectives for many industry branches, such as
pharmaceutical, medical, cosmetic, and food industries, as well as dentistry and environ-
mental protection. For decades, researchers have looked for a material that can fulfill their
research goals regarding pollution limitation of the natural environment. Due to their
biocompatibility, biodegradability, and chelating ability, alginates are currently at the center
of such attention.
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