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Abstract: In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the
action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for
effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and
associated enzyme systems are essential for the advancement of biotechnological chitin valoriza-
tion. Through combined investigation of the chitin-induced secretome with differential proteomic
and transcriptomic analyses, a holistic system biology approach has been applied to unravel the
chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of
the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic
polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed
a distinct translation pattern with significant upregulation of glucosamine transport, metabolism,
and chemotaxis-associated proteins. While the differential transcriptomic results suggested the
overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected
protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over
350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bac-
terium could be identified through a three-way systems biology approach. Based on the cumulative
data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.

Keywords: chitinase; transcriptomics; proteomics; omics; chitin; chitinolytic; glycosidic hydrolase
family 18; lytic polysaccharide monooxygenase

1. Introduction

Chitin, the most abundant marine polysaccharide, is composed of β-1,4-glycosidic
linked N-acetylglucosamine, and to a lesser extent glucosamine monomers. Representing
one of the major components of crustacean and insect exoskeletons, radulae of mollusks,
and algal and fungal cell walls, 109–1011 t are estimated to be biosynthesized annually [1].

In addition to its biodegradability and biocompatibility, chitin and even more so the
deacetylated, biologically active form, chitosan, exhibit antimicrobial, antitumoral, and
anti-inflammatory properties, rendering them invaluable products for e.g., the biomedical,
cosmetic, food, textile, and paper industries [2,3].

With increasing demand for seafood and the rapid growth of its respective industries,
crustacean shell waste streams (originating from shrimp, crab, prawn, or lobster fisheries)
have a lasting negative impact on ecosystems when disposed of in vast amounts into the
ocean or landfills, as commonly practiced [4,5]. Its rigid, crystalline structure renders chitin
insoluble, therefore requiring multimodal enzymatic conversion into smaller chitooligosac-
charides (COS) to be metabolized by marine or soil organisms. Biological degradation of
recalcitrant crustacean shell waste is delayed by calcium carbonate naturally interspersed
in between the chitin scaffold, thereby decreasing the surface area for enzymes to act upon,
as reflected in the low bioconversion rates of environmental microorganisms [6]. Chitin
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content and enzymatically relevant physiochemical characteristics, such as the degree of
acetylation or solubility, are heavily dependent on the shell waste source material [7]. Crab
and lobster exoskeletons naturally contain more calcium carbonate [8,9] in contrast to
shrimp [10] or prawns. Furthermore, distinct chitin allomorphs are present, including the
predominant and structurally more robust α-isoform, alongside the less common β-isoform
found, for instance, in squid pens [11], each requiring different compositions of enzyme
cocktails to be hydrolyzed.

Chemical chitin extraction methods are commonly applied on an industrial scale, being
both economical and effective [12]. However, they result in hazardous waste streams and
unspecific, complex product spectra, which fashion them inapt for high-tech applications
and environment-friendly mass production [13].

Therefore, biotechnological extraction methods [14] and enzymatic hydrolysis of shell
waste streams are clearly favorable. However, slower conversion rates, higher production
costs, and reusability still pose challenges to overcome at an industrial scale, which is why
the investigation of novel chitinases is of utter importance.

Vast chitin accumulations in both soil and marine sediments are prevented by chiti-
nolytic organisms, which have evolved sophisticated systems to compete for and exploit
the recalcitrant polysaccharide as a carbon and nitrogen source [1]. They are equipped
with the enzymatic tools to sense chitin, adhere to it, secrete hydrolases and import the
degraded chitooligomers for catabolic assimilation [15]. The chitinolytic machinery—that is
all enzymes involved in chitin metabolism—was estimated to comprise up to 100 enzymes
and is yet to be understood in its entirety [16–18].

In this study, we used our previously isolated and genome-sequenced bacterium
Jeongeupia wiesaeckerbachi [19], which is closely related to Jeongeupia naejangsanensis [20].
Due to the high-resolution genome data available in our group, we chose this microor-
ganism as a model to investigate and characterize its extensive chitinolytic machinery
for the first time, using a three-way systems biology approach: First, the most abun-
dant extracellular chitin-active (interacting with chitin or COS molecules) enzymes were
identified through LC-MS/MS analysis of the average secretome with colloidal chitin
and crab shell chitin as inducers of the chitinolytic enzyme machinery, respectively. Re-
sults were critically evaluated by means of combined in silico signal peptide analyses
through SignalP 6.0 and SecretomeP 2.0, considering classical and non-classical secretion
pathways, respectively. To illuminate the catabolic adaptations in response to chitin intra-
cellularly, comparative proteomic and transcriptomic analyses were conducted. Applying
glucose and chitin minimal growth conditions, distinct mRNA and protein expression
patterns were revealed through next-generation sequencing and mass spectrometry, re-
spectively, suggesting the involvement of over 600 transcripts and 200 enzymes in the
intracellular chitin response of J. wiesaeckerbachi. Based on these cumulative results, we
propose a simplified holistic model for the chitinolytic machinery of the Gram-negative
genus Jeongeupia that is exceedingly more complex than previously assumed. The pri-
mary gene sequences provided by our synergistic systems biology approach provide
the basis for further biochemical enzyme characterizations using a recombinant enzyme
production approach.

2. Results and Discussion
2.1. Extracellular Proteomics
2.1.1. Predicted Chitinolytic Machinery of J. wiesaeckerbachi and Subcellular Localization

When cultivated in minimal media with chitin as the exclusive carbon source,
Jeongeupia wiesaeckerbachi secretes chitinolytic enzymes, which break down the environmen-
tal chitin and allow for its import and assimilation. Although this strategy is well described
in both fungi and bacteria [21,22], a multitude of export pathways have been identified for
the latter, with the Sec and Tat systems noted as major facilitators [23–25]. As previously
demonstrated [19], the investigated strain’s genome contains 13 glycoside hydrolases of
family 18 (GH18) [26,27], which imply not only chitinases (EC 3.2.1.14) of classes III and V
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but also non-catalytic, accessory proteins. Furthermore, six β-N-acetyl-hexosaminidases,
three of which could be attributed to either the GH3 or GH20 family, three GH19 chitinases,
and a single lytic polysaccharide monooxygenase (LPMO, AA10; formerly CBM33) are
present on a genetic level. An analysis using SignalP 6.0 [28] revealed that only two out
of the 13 GH18 did not exhibit an N-terminal signal sequence (gene IDs 635 and 1746),
whereas another two signal peptides predictions had comparably lower confidence val-
ues of 46% (gene ID 371) and 76% (gene ID 1841), respectively (Table S1). Regarding the
residual putative chitinolytic system, the LPMO, two of the three GH19 (gene IDs 1077
and 302) and merely one of the six β-N-acetyl-hexosaminidases (gene ID 1731) likewise
present a leader sequence at their respective N-termini. In conclusion, only 8 out of the
23 enzymes, which form the predicted chitinolytic machinery, do not display a localization
signal at all, with two additional inconclusive proteins. Further, all enzymes are predicted
to be translocated by the standard secretory Sec-pathway and preprocessed by the leader
peptidase I, except for one GH18 (gene ID 2137), which is predicted to be a lipopeptide with
a leader peptidase II specific signal peptide instead. In silico analysis using the NetGPI 1.1
glycosylphosphatidyl-inositol anchoring prediction tool revealed no attachment of any of
the chitinolytic enzymes to the bacterial cell surface [29].

2.1.2. The Vast Majority of the Chitinolytic System Was Detected Extracellularly

As expected, there was a complete absence of proteins in the culture supernatant
when J. wiesaeckerbachi was cultured on glucose as a carbon source. This was confirmed
by SDS-PAGE and spectrophotometry (results not shown). Due to the absence of proteins,
these glucose control samples were rejected as impracticable for the secretome analysis.
By contrast, the secreted enzyme amounts were significantly increased when chitin-based
substrates were added as an inducing carbon substrate in the medium. Here, protein
samples were isolated, purified, and subjected to mass spectrometric-based proteomic
analysis. In this instance, all detected peptides were regarded as potentially relevant.
To introduce a control mechanism, which might minimize the effects of cell lysis during
cultivation and sample preparation, only proteins that were verified in all samples were
taken into consideration for subsequent bioinformatic evaluations.

The assessment of the extracellular proteins of three biological Jeongeupia wieaeckerbachi
replicates in minimal media with colloidal chitin and one sample with unbleached crab shell
chitin revealed that peptide fragments of 8 out of the 13 GH18 were abundant extracellularly
in all samples (Table 1). If the substrates are regarded separately, a minimum of eleven
GH18 were present in the (crab α-chitin derived) colloidal chitin-supplied triplicates’
supernatant, while the unbleached α-chitin from decalcified crab shells only induced the
secretion of eight chitinases. This observation is consistent with investigations of the
Cellvibrio japonicus Ueda107 secretome, which recruits fewer enzymes for α-chitin vs. β-
chitin conversion [30]. However, in this study, we utilized two different α-chitin derived
substrates with varying degrees of crystallinity. Furthermore, half of the commonly secreted
chitinases were among the top 10 most significant proteins, on average, emphasizing their
importance in the metabolic response to a chitin-rich environment. Interestingly, both
GH18 without a predicted signal peptide were among the commonly secreted enzymes
in minimal media with chitin (gene IDs 635 and 1746), indicating a potential non-classical
export mechanism [28,31].

Other chitinoplastic (chitin structure-altering) or chitin-active enzymes shared between
all secretome replicates involve a putative chitobiose transport system substrate-binding
protein (chiE), a FAD-binding oxidoreductase predicted as being AA7 (chitooligosaccharide
oxidase (EC 1.1.3.-)) by dbCAN 3.0 [32], a glucosamine kinase, a hexosaminidase, and
one lytic polysaccharide monooxygenase (Table 1, lower half). The latter is known to
be a crucial, copper-dependent and oxygen-driven auxiliary enzyme for hydrolysis of
recalcitrant substrates, such as cellulose and chitin [33–37].
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Table 1. Top 10 most significant extracellular proteins on average, detected in all four samples with
chitin as exclusive carbon and nitrogen source. Additionally, chitinoplastic enzymes among the
commonly secreted proteins (386 in total) are provided with their respective significance rank in the
lower half of the table.

Rank Gene ID Significance Score
−10logP (Average)

Annotation
(PGAP and dbCAN 3.0)

Complementary
Annotation (KO)

1 pgaptmp_000837 631.37 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

2 pgaptmp_001746 602.58 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

3 pgaptmp_002871 595.18
branched-chain amino acid

ABC transporter
substrate-binding protein

livK; branched-chain amino acid
transport system

substrate-binding protein

4 pgaptmp_001064 582.92 TonB-dependent receptor
xylulose-5-phosphate/fructose-6-

phosphate
phosphoketolase

5 pgaptmp_000389 582.37 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

6 pgaptmp_000021 560.63 MBL fold metallo-hydrolase sdsA1; linear primary-alkylsulfatase
[EC:3.1.6.21]

7 pgaptmp_002723 550.72 TonB-dependent
siderophore receptor

TC.FEV.OM; iron complex
outermembrane recepter protein

8 pgaptmp_000441 548.21 sugar ABC transporter
substrate-binding protein

chiE; putative chitobiose transport
system substrate-binding protein

9 pgaptmp_001471 525.48 porin NA

10 pgaptmp_000366 523.85 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

49 pgaptmp_002996 394,47 FAD-binding oxidoreductase
(AA7) NA

56 pgaptmp_001732 385.83 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

57 pgaptmp_000635 384.40 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

58 pgaptmp_000444 383.76 ATPase gspK; glucosamine kinase [EC:2.7.1.8]

91 pgaptmp_003083 326.35 glycosyl hydrolase family
18 protein E3.2.1.14; chitinase [EC:3.2.1.14]

107 pgaptmp_000269 308.55
carbohydrate-binding

domain-containing protein
(GH20)

HEXA_B; hexosaminidase [EC:3.2.1.52]

134 pgaptmp_000148 284.47 lytic polysaccharide
monooxygenase cpbD; chitin-binding protein

198 Pgaptmp_000371 238.27 glycosyl hydrolase family
18 protein NA

2.1.3. The Lytic Polysaccharide Monooxygenase of the Auxiliary Activity Enzyme Family
10 Seems to Play a Minor Role in α-Chitin Hydrolysis of Jeongeupia spp.

Surprisingly, the LPMO’s significance score (or final peptide score, −10logP) provided
by the MS/MS peptide identification software PEAKS [38] was rather low, with an average
significance rank of 134 throughout all samples. The relatively low LPMO abundance is
in concordance with a study by Mekasha et al. [34], which investigated optimal enzyme
ratios for a Serratia marcescens-based chitin saccharification cocktail. According to the
study, 15% of the auxiliary monooxygenase is optimal for shrimp or β-chitins, whereas
2% is ideal when hydrolyzing crab or α-chitins, the latter of which applies to this study’s
substrates. Interestingly, the significance score of the LPMO was considerably lower in
the unbleached crab shell chitin sample (−10logP of 127.55), compared to those with crab
chitin-derived colloidal chitin (−10logP of 245–407). These findings are consistent with
the results of the aforementioned study [34], where the LPMO appeared only moderately
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relevant for α-, as opposed to the generally preferred β-chitin conversion [39]. The exact
opposite was reported for chitinase synergy experiments in Streptomyces griseus, where the
SgLMPO10F exhibited enhanced activity levels on the more stable and crystalline α-chitin
over β-chitin [39], resulting in a 30-fold increased substrate solubility. Consequently, the
substrate specificity of lytic chitin monooxygenases must be assessed for every enzyme
variant. Hereby, the identity of the only surface-protruding aromatic residue in the binding
cleft, either Tyrosine (for β-chitin) or Tryptophan (for α-chitin), is reported to influence
substrate binding strength [40].

Jeongeupia wiesaeckerbachi’s LPMO was more abundant in the amorphous, colloidal
chitin-induced secretomes compared to the more crystalline, unbleached crab shell growth
conditions. However, no assertions regarding its activity levels can be made, which will be
the focus of future work in our lab. Whether the low LPMO abundance in the crab shell-
induced secretome is correlated with the enzyme’s low specificity and activity towards
α-chitin, or if inhibitory effects of secondary compounds in the unbleached crab shells on
chemotaxis and related signal cascades came into effect, remains unclear, but this might
prompt relevant questions for industrial applications of unprocessed crustacean waste.

2.1.4. Promising Candidate Proteins for Recombinant Expression Studies

Apart from the obviously chitinoplastic enzymes, a branched-chain amino acid ABC
transporter substrate-binding protein (BCAA-ABC-SBP), two TonB-dependent (siderophore)
receptors, a class B metal beta-lactamase (MBL) fold metallo-hydrolase, and a porin were
present in the top 10 most significant extracellular proteins. Among these, the porin’s
function as an outer membrane channel is the most obvious. Knock-out experiments would
have to show which (potentially chitinolytic) enzymes would not be present in the secre-
tome anymore and thus are transported through that specific porin. According to domain
analysis with InterProScan [41,42], the two as TonB-dependent receptors annotated proteins
exhibit large β-barrel domains and might represent ligand gated channels or porins, thus
serving as secretion facilitators. The BCAA-ABC-SBP is predicted to have high similarity to
the Ile/Leu/Val-binding ABC transporter subunit. It might be upregulated and secreted
due to the presence of amido-residues in the environment (media). Unspecific binding
to, and import of, N′N′-diacetylchitobiose is possible [16,43], but a role in chemotaxis,
pathogenicity, export, o surface motility cannot be eliminated entirely for the superfamily
of ABC transporters [44–46]. The involvement of the MBL fold-metallo hydrolase in chitino-
plastic activities would have to be studied with knockout or expression experiments since
typical functions of this superfamily comprise totally different hydrolytic activities such as
alkylsulfatase, as suggested by KEGG annotation and InterProScan results (Table 1).

2.1.5. In Silico Analyses May Aid in Reduction of Cell-Lysis Derived False-Positives

A similar, abovementioned study from Tuveng et al. [30] investigated the secretome
of C. japonicus on α- and β-chitin-rich biomass with a sophisticated method to ensure
cell-free secretomes [47]. With approximately 400 secreted enzymes, depending on the
substrate, the secretome was comparable in size to this study, with 386 proteins shared by
all samples, although we could not methodically eliminate cell lysis. To compensate for this,
we followed the example of Tuveng et al. and conducted an in-silico signal peptide analysis
of the putative secretome, thus verifying or challenging their extracellular localization.

In this bioinformatic analysis, we applied the SecretomeP 2.0 and SignalP 6.0 [28,48]
software packages, which revealed (Figure 1) that 38% were predicted to be translocated
via the classical pathways Sec, TAT, or Pilin, and 12% were predicted to be exported by
non-classical pathways, when removing all proteins with a secP score of >0.5 that were
also predicted to be secreted classically. In other words, only 50% of the presented minimal
chitin-secretome, shared by all samples independent of the supplied chitin form, could be
confirmed to be secreted with biocomputational tools, when placing more weight on the
SignalP 6.0 algorithm [28] for all five classical secretion pathways over SecretomeP 2.0 [48].
This approach can be justified by the fact that N-terminal secretory signal peptides can
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be predicted more reliably due to the presence of conserved motifs, which non-classically
secreted proteins lack altogether. These are predicted by SecretomeP 2.0 based on specific,
pathway-independent protein features instead, including amino acid composition, sec-
ondary structure, and degree of predicted structural disorder [48]. Since this represents a
more complex task, with substantially less experimentally verified data to feed the neural
network, the margin for error in non-classical translocation prediction is naturally higher
compared to that of N-terminal signal peptide prediction tools [49].
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Figure 1. Predicted signal peptides of Jeongeupia wiesaeckerbachi in the chitin-induced extracellular
proteome. Enzymes predicted to be translocated with the classical secretory pathways Sec, TAT,
and Pilin or non-classical pathways (“Other”) by SignalP 6.0 are illustrated on the left side. The
sum of all classically secreted enzymes (SignalP), non-classically secreted enzymes predicted by
SecretomeP 2.0 with scores of >0.5, and actual non-classically secreted enzymes through comparison
of the two algorithms are on the right. Non-secreted enzymes are assembled by the total minimal
chitin induced proteome count (386) subtracted by the sum of all classical (148) and non-classical (44)
translocated enzymes.
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However, secondary or even tertiary functions of cytosolic or periplasmatic enzymes
are described in the literature as so-called moonlighting proteins, which can be accom-
panied by an unexpected localization inside or outside the cell [50]. For instance, the
nucleosome protein histone H1, widely known for its involvement in chromatin struc-
turing, can also function as a thyroglobulin receptor on the outer membrane surface of
macrophages [51]. Factoring this phenomenon and potentially unknown secretory mecha-
nisms into the description of the current dataset, probably an excess of 50% of the commonly
detected extracellular proteins are exported. Furthermore, while additional analysis with
LipoP 1.0 predicted 207/386 of the secretome to be localized in the cytosol [52], it assigned
generally low confidence scores of 0.2 for all of these proteins. Of the two previously men-
tioned GH18 without a signal peptide, one of the two (gene ID 1746) could be confirmed as
non-classically exported, hinting at yet-to-be-elucidated translocation pathways that evade
our current knowledge and descriptive factors.

We then investigated whether the top 10 most significant proteins found in the secre-
tome (Table 1) were real hits or false positives due to cell lysis events. Deploying the SignalP
6.0 [28] results for classical secretion pathways and our SignalP 6.0-corrected SecretomeP
2.0 [48] prediction results for non-classical secretion pathways (Figure 1), we concluded that
all detected extracellular proteins were real hits. Especially the five non-chitin utilization-
associated proteins comprising a BCAA-ABC-SBP (gene ID 2871), two TonB-dependent
(siderophore) receptors (gene IDs 1064 and 2723), a class B metal beta-lactamase (MBL) fold
metallo-hydrolase (gene ID 21), and a porin (gene ID 1471) had to be verified to confirm
the validity of the dataset. According to SignalP 6.0 [28], four out of these five proteins
are predicted to be secreted by means of the classical SEC pathway. To this end, three
proteins (gene IDs 21, 1064, and 1471) were anticipated to be guided outside the bacterial
cell with a signal peptide of type I, except for the BCAA-ABC-SBP, being directed by a
lipoprotein signal peptide of type II. In contrast, the TonB-dependent siderophore receptor
(gene ID 2723) was predicted by SecretomeP 2.0 [48] to be exported non-conventionally.
Of the chitin utilization-associated proteins, including four glycosyl hydrolase family
18 proteins (gene IDs 366, 389, 837, and 1746) and the sugar ABC transporter substrate-
binding protein (gene ID 441), all proteins were predicted to be exported classically with a
signal peptide of type I, except for the non-classically exported GH18 (gene ID 1746), as
mentioned above.

2.1.6. Highly Abundant Chitinases Exhibit Two Carbohydrate-Binding Modules

Lorentzen et al. discovered a Gram-negative bacterium in an abandoned ant hill
with an unprecedentedly rich chitinase arsenal [53]. During investigation of its secre-
tome, they observed that an increased fraction (93%) of upregulated chitinases contained
two carbohydrate-binding modules of the Pfam family 5/12 (CBM5/12). Interestingly,
this aligns well with our results, where 3 out of the 4 top 10 most abundant GH18 in the
minimal secretome also exhibited one CBM5 and one CBM12, each. For the remaining
chitinases or enzymes of hitherto unknown functions, no correlation between the amount
of CBM5/12 and abundance could be determined.

2.2. Differential Intracellular Protein Expression Using Chitin and Glucose Media
2.2.1. The Intracellular Chitin Response Specializes in Glucosamine Utilization and Cell
Maintenance over Hydrolysis

Investigation of the intracellular proteome of Jeongeupia wiesaeckerbachi unraveled
distinct expression patterns when either chitin or glucose was used as respective carbon
sources (Figure 2). A total of 203 putative proteins, depicted in the heatmap or volcano
plot, were upregulated at least two-fold with a significance value of 20% and above,
corresponding to a p-value of <0.05, with chitin.
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Figure 2. Heatmap (A) and volcano plot (B) of the differential intracellular proteomic analysis of
Jeongeupia wiesaeckerbachi with chitin and glucose minimal media. (A) The heatmap was generated
with PEAKS studios with the following parameters: Fold Change >2, Significance >20, Significance
method ANOVA. Upregulated proteins are depicted in red and downregulated proteins in green.
(B) Volcano plot of the same dataset. Dots in red represent proteins with a fold change >2 and a
significance of >20% under glucose media; blue dots represent proteins, which are upregulated under
chitin media conditions applying the same statistic thresholds. The top 5 most significant proteins
are labelled with their respective gene ID. Refer to Table 2 for detailed information on gene functions.

Strikingly, the five topmost significantly expressed proteins could be linked to chito-
biose import, chemotaxis, nitrogen metabolism, and a PrkA family protein serine kinase,
the latter of which has been reported to be involved in carbon catabolite repression through
mediation of the concomitant signal transduction as well as general stress response [54,55]
(Table 2, top).

Closer inspection of the five topmost upregulated proteins in a colloidal chitin-rich
environment uncovered a short chain hydrogenase/oxidoreductase [56], an inclusion
body family protein, indicating high expression stress, which in turn results in misfolded
enzymes [57,58]. Moreover, a substrate-binding protein was detected, which might be
related to signal transduction or chemotaxis [59]. Additionally, two proteins of unknown
function (Table 2, middle section) could be assigned; these represent promising targets for
expression and characterization studies.
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Table 2. Top 5 most significantly and top 5 most variably expressed proteins in the intracellular
differential proteomics analysis of Jeongeupia wiesaeckerbachi with chitin as sole carbon and nitrogen
source. Additionally, glucosamine metabolism-related proteins, which were upregulated in chitin
medium are listed. Refer to Heatmap and volcano plot for a more holistic view of the data (Figure 2).

Gene ID Significance Log2 Fold
Change

Annotation
(PGAP and dbCAN3.0)

Complementary
Annotation (KO)

pgaptmp_000442 67.67 11.11 sugar ABC transporter
substrate-binding protein

chiE; putative chitobiose
transport system

substrate-binding protein

pgaptmp_000441 65.26 11.11 sugar ABC transporter
substrate-binding protein

chiE; putative chitobiose
transport system

substrate-binding protein
pgaptmp_000337 64.6 50 nitrate reductase subunit beta Identical
pgaptmp_003318 63.33 10 PrkA family serine protein kinase identical

pgaptmp_000602 62.16 14.29 methyl-accepting
chemotaxis protein identical

pgaptmp_001215 49.26 50 SDR family oxidoreductase NA

pgaptmp_002582 41.03 50 inclusion body family protein aidA; nematocidal protein
AidA

pgaptmp_001847 32.45 50 substrate-binding
domain-containing protein

rbsB; ribose transport system
substrate-binding protein

ggaptmp_000878 30.95 50 hypothetical protein NA
pgaptmp_000237 39 33.33 hypothetical protein NA

pgaptmp_000269 47.03 14.29 carbohydate-binding
domain-containing protein (GH20)

HEXA_B; hexosaminidase
[EC:3.2.1.52]

pgaptmp_000439 29.33 11.11 carbohydrate ABC
transporter permease

chiG; putative chitobiose
transport system
permease protein

pgaptmp_000437 25.84 10 polysaccharide deacetylase
family protein

pgdA; peptidoglycan-N-
acetylglucosamine

deacetylase [EC:3.5.1.104]

pgaptmp_000281 41.14 8.33 polysaccharide deacetylase
family protein NA

pgaptmp_001323 29.95 8.33 beta-N-acetylhexosaminidase (GH3)
nagZ; beta-N-

acetylhexosaminidase
[EC:3.2.1.52]

pgaptmp_000635 60.05 5.56 glycoside hydrolase family
18 protein chitinase [EC:3.2.1.14]

pgaptmp_002871 59.65 5.56
branched-chain amino acid

ABC transporter
substrate-binding protein

identical

pgaptmp_000440 39.29 5.26 Sugar ABC transporter permease
chiF; putative chitobiose

transport system
permease protein

pgaptmp_003368 4.62 1.30 N-acetylglucosamine-specific PTS
transporter subunit IIBC

nagE; N-acetylglucosamine
PTS system EIICBA or EIICB

component [EC:2.7.1.193]

Further, glucosamine metabolism-related enzymes, which were upregulated intracellu-
larly by Jeongeupia wiesaeckerbachi under chitin induction, included four transport proteins,
two hexosaminidases, two polysaccharide deacetylases, and a single chitinase belonging to
GH18 (Protein accession number 635), which was also detected extracellularly despite its
lack of a signal peptide, indicating a potential moonlighting function or an unconventional
translocation pathway [50].
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2.2.2. Comparison of Intra- and Extracellular Chitin-Induced Proteomics

The datasets of the significantly and at least two-fold upregulated intracellular proteins
and all extracellular proteins in the chitin-rich environment were functionally annotated
and classified according to GO-terms with BlastKOALA [60] and subsequently compared
(Figure 3). Thereby, approximately 71% of the proteins could be annotated and assigned to
the appropriate functional category, while 29% enzymes are of an as-yet unknown function.
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Figure 3. Functional classification of intra- and extracellular proteins of Jeongeupia wiesaeckerbachi
under chitin conditions according to GO-terms. Both datasets were gathered in quadruplicates.
Intracellular proteomics data were evaluated differentially to glucose-supplied cells, with significance
values >20% and >2 log2 fold changes; refer to the heatmap (Figure 2). Extracellular proteins
depicted were shared amongst all samples. Category counts are shown in each individual pie chart.
Totals under the pie charts refer to the annotated fractions of the total protein entries submitted to
BlastKOALA, with 203 intracellularly and 386 extracellularly, corresponding to approximately 70%
annotated proteins each.

The extracellular proteome exhibited a larger fraction of genetic information processing
and energy metabolism proteins, whereas the intracellular proteome possessed a higher
fraction of environmental information processing proteins.

It is important to note that although the total number of extracellular proteins is higher
than that of intracellular proteins in Figure 3, this can be ascribed to the differences in
statistical methodology. The intracellular colloidal chitin-induced proteomics data were
evaluated differentially to glucose negative controls, with strict statistical thresholds of >2
log fold changes and >20% significance values, whereas all detected extracellular proteins
shared among every sample were considered. Expectedly, when inspecting total MS/MS
protein detection counts, the number of common intracellular proteins far exceeded that of
extracellular proteins with 1475 opposed to 386.

2.2.3. Challenges and Benefits of Biocomputational Approaches

Data evaluation and statistical methodology heavily influence the results of system
biology experiments. If the dataset were evaluated with a laxer threshold, considering
every intracellular protein to be upregulated 1.2-fold (or 20%) instead of 2-fold (or 100%)
for example, a total of 257 proteins instead of 203 could be considered. Subsequently, this
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would translate to approximately 21% more proteins to be considered as either influenced
by or directly involved in the intracellular chitin metabolism of J. wiesaeckerbachi, exem-
plifying the difficulty of bioinformatic data evaluation. Hence, subsequent experimental
validation is required to conclude the precise role of individual proteins. However, wet
lab approaches are inherently slow and costly. Additionally, when looking at complex
systems, such as the chitinolytic machinery, which appears to consist of an interplay of over
200 intracellular proteins, knock-out mutant guided experimental validation, for example,
would be unfeasible to achieve in a time- and cost-efficient manner.

2.3. Differential Transcriptomics
2.3.1. Distinct Transcription Patterns Highlight the Increased Burden of the Metabolic
Chitin Response

Illumina Novaseq 6000-guided cDNA-library sequencing of Jeongeupia wiesaeckerbachi
culture duplicates in glucose or colloidal chitin minimal media yielded 18.65–21.71 million
high quality reads. On average, 93.8% of these were unique reads and 96.8% could be
mapped to the provided genome. Please refer to Table S2 for detailed information on the
sequencing metrics.

Biocomputational evaluation of the differential transcriptomes revealed distinct tran-
scription patterns in response to the respective carbon sources, as evident in the heatmap
(Figure 4A). The volcano plot (Figure 4B) visualization serves to elucidate the three core
statements of the dataset, that an increased gene count was upregulated more significantly
and at higher expression rates with chitin compared to glucose substrate.
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Figure 4. Differential transcriptomics results of Jeongeupia wiesaeckerbachi supplied with glucose or
chitin. (A) Heatmap of the top 1000 most variable transcripts detected in duplicates, (B) Volcano plot
of the differential transcriptomic dataset. The respective top 5 most significantly transcribed genes in
glucose (red dots) or chitin (blue dots) media are labelled with their gene accession number.
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In total, 600 transcripts were upregulated at least 20% or 1.2-fold and with an adjusted
p-value of <0.1 with chitin in contrast to 468 with glucose as the carbon source. The increased
gene recruitment, paired with the extraordinarily abundant chitinolytic machinery of the
investigated organism [19], leaves room for speculation regarding whether the Jeongeupia
genus specializes in chitin as a primary carbon source. In contrast to D-glucose, chitin
exhibits a more rigid, less accessible and acetylated structure, which plainly requires more
enzymes for degradation, deacetylation, and finally, assimilation. Moreover, terrestrial
bacteria compete with fungi for soil nutrients, and co-evolution lead to the development of
antagonistic mechanisms, such as antibiotics in fungi and cell-wall targeting chitinases in
bacteria [61].

When explicitly looking at the five topmost significantly upregulated transcripts
(Table 3), no obviously chitinoplastic genes are listed. Rather, a general NirD/YgiW/YdeI
family stress tolerance protein encoding gene, two type IVb pilin encoding genes, an inner
membrane FtsX-like permease, and a protein of unknown function were detected. YgiW is
known to convey hydrogen-peroxide resistance in E. coli, but it functions as a general stress
response protein to external stimuli [62]. In Jeongeupia spp., it might play a central role in
the chitin stress response, rendering it a promising target for knockout experiments.

Table 3. Top 5 most variable transcripts of Jeongeupia wiesaeckerbachi in minimal media with colloidal
chitin as exclusive carbon source. Transcripts were sorted according to the five lowest FDR (false
discovery rate) corrected p-values. Additionally, all detected glycosyl hydrolase genes, which were
upregulated under chitin media conditions, are listed. Refer to Table S3 in the Supplementary Data
for more information on differentially upregulated glucose transcripts.

Carbon Source Rank Adjusted
p-Value

log2 Fold
Change Gene ID Annotation

(PGAP and dbCAN3.0)

Chitin

1 1.44 × 10−72 6.34 pgaptmp_000221 NirD/YgiW/YdeI family stress
tolerance protein

2 6.13 × 10−69 6.83 pgaptmp_001590 Flp family type IVb pilin
3 8.63 × 10−61 6.58 pgaptmp_001589 Flp family type IVb pilin
4 5.63 × 10−48 4.22 pgaptmp_001089 FtsX-like permease family protein
5 3.56 × 10−47 3.93 pgaptmp_000589 hypothetical protein

Chitin

26 2.02 × 10−34 3.45 pgaptmp_000680 peptidoglycan-binding protein (GH19)
52 1.15 × 10−26 2.77 pgaptmp_000371 glycosyl hydrolase family 18 protein

102 4.18 × 10−20 2.54 pgaptmp_000306 carbohydate-binding
domain-containing protein (GH20)

294 8.38 × 10−13 1.80 pgaptmp_000836 glycosyl hydrolase family 18 protein
309 2.1 × 10−12 1.90 pgaptmp_001841 glycosyl hydrolase family 18 protein
348 1.08 × 10−11 2.25 pgaptmp_002137 glycosyl hydrolase family 18 protein
448 4.33 × 10−10 2.92 pgaptmp_000372 glycosyl hydrolase family 18 protein
453 4.9 × 10−10 1.66 pgaptmp_000302 chitinase (GH19)
678 2.83 × 10−7 1.32 pgaptmp_001746 glycosyl hydrolase family 18 protein

Type IV pili (T4P) are multifunctional protein filaments, populating the surface of
many bacteria and archaea [63]. Through rapid assembly and disassembly, T4P enable
twitching motility for directed movement towards substrates upon external stimuli but
are also involved in the Type II secretion system, DNA uptake, and biofilm formation [64].
The FtsX-like permease family are predicted transmembrane proteins that can release, for
example, lipoproteins from the cytosol to the periplasm in an ATP-dependent manner
(refer to UniProt accession P57382). Nonetheless, six out of the thirteen genome-encoded
GH18 [19] were upregulated during exposure to colloidal chitin, albeit on surprisingly low
ranks, underpinning the intra- and extracellular proteomic results. In addition, two of the
three GH19 type chitinases and one of the three GH20 hexosaminidases exhibited increased
transcript rates.



Mar. Drugs 2023, 21, 448 13 of 25

2.3.2. Low Protein-mRNA Correlation between the Intracellular Datasets

The inquiry for the top hits shared between the proteomic and transcriptomic datasets
revealed intriguingly little correlation between upregulated transcripts and detected
protein levels.

Refer to Table A1 in the Appendix A for the extensive evaluation results and Table S3
in the Supplementary Data for the most significantly upregulated genes with glucose.

The discrepancy between mRNA and protein abundancies is a well-reported challenge
in the systems biology domain and has been subject of intense scientific discussions [65].

With correlation coefficients of about 0.77 in E. coli, where one mRNA molecule
corresponds to 102–104 respective protein molecules, transcript concentrations were long
thought to be unreliable proxies for the prediction of corresponding protein levels and
activities [66,67]. Variations of mRNA levels reflect approximately 29% of variations in
cellular protein concentration [68]. Translation of genes into proteins, with mRNAs as
mediating templates, is an immensely complex process with a multitude of influencing
factors: (1) sequence-based translation efficiency, influenced by codon bias or chromatin
structure, (2) translation rate modulation through genetic regulatory elements including
feedback repression, (3) highly dissimilar protein turnover rates, which are dependent
on the ubiquitin–proteasome pathway and temperature, among other things, (4) protein
synthesis delay, (5) protein transport, disconnecting measured transcript and enzyme levels
through spatial separation in a given compartment, and (6) transcript measurement noise
on a methodological level [65,67,69].

When comparing proteome and transcriptome datasets regarding their validity, pro-
teins are more closely related to the phenotype of a cell as a functional expression of its
origin gene. Additionally, they are more robust ex vivo, immune to non-functional mRNA
artefacts, and outperform transcriptomics in gene function prediction. Nonetheless, tran-
script concentrations still offer valuable information about imminent protein biosynthesis
requirements of a cell [70].

2.3.3. Chitin Metabolism Transcript Upregulation Is Time Dependent

A similar study from Monge et al. concerning the chitinolytic system of C. japonicus
revealed strong upregulation of chitin degradation-implicated transcripts [71], occupying
the top seven most strongly upregulated gene ranks. According to the authors, the up-
regulation of chitinoplastic genes was more pronounced in the exponential growth phase
than the early stationary phase. The latter finding provides a methodological explanation
for the relatively low fold changes and adjusted p-value rankings of J. wiesaeckerbachi’s
chitin conversion-related mRNAs. In this study, cultures for transcriptomic investigation
were grown on minimal colloidal chitin medium for three days when the majority of
the insoluble substrate particles were hydrolyzed, which interfered with RNA extraction.
Furthermore, sufficient biomass and concomitant RNA yields, required by the external
RNA-sequencing provider Eurofins Genomics, cannot be achieved earlier under these
growth conditions. Therefore, the cells were most likely in the (mid to late) stationary phase
when relevant transcripts were already degraded. In E. coli, mRNA is degraded within
5–10 min [66], therefore transcript levels resemble the recent transcription activity whereas
protein levels reflect the accumulated long-term expression. It is further reported that
different proteins have distinct optimal concentrations in the cell, which might have been
reached and transcription thereof inhibited at this point in time, since protein residence
times often exceed that of a cell life cycle anyway [72,73].

Saito et al. conducted a study on the co-transcriptional regulation of chitinase genes in
the genome of Streptomyces coelicolor A3(2) with Northern blot hybridization, using labelled
anti-sense RNAs [74]. Their results demonstrated that colloidal chitin-induced chitinase
transcription reaches a maximum after 4 h, emphasizing the importance of temporal
expression patterns. Interestingly, only five of the eight genome-encoded chitinase mRNAs
could be detected experimentally in varying concentrations, deploying either colloidal
chitin or chitobiose. This is in accordance with the several non-traceable chitinolytic
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machinery-implicated transcripts or proteins of J. wiesaeckerbachi, suggesting either specific
substrate dependence, non-functionality, or even superfluity of certain genes. In a follow-
up study, Saito et al. elaborated that the multiplicity of chitinases in Streptomyces spp. has
developed through domain deletion and gene duplication [75], which might be extrapolated
to other chitinase-rich genera like Jeongeupia [19,76].

Pathways connected with high protein cost, such as the chitinolytic machinery, are
tightly regulated by fine-tuned transcriptional programs to not unnecessarily waste cel-
lular energy and resources [77]. A GntR family transcription factor [78], annotated as
N-acetylglucosamine utilization regulator by the KO database, is located just upstream
(gene ID 443) of the chitobiose transport system genes (gene IDs 439–442). It was neither
found to be upregulated in our transcriptome, which captured the RNA concentrations
after three days, nor in the intracellular proteome within the same time frame. Nonetheless,
the chitobiose transport proteins under the control of the N-acetylglucosamine utilization
regulator were upregulated significantly intracellularly Table 2). Again, this emphasizes
the temporal delay between transcription and protein synthesis of genetic regulators and
their target proteins, as well as protein longevity, given sufficiently low turnover-rates.

The search for additional transcripts involved in gene regulation uncovered 18 upregu-
lated mRNAs in total (Table S4), with 6 >2-fold upregulated mRNAs under colloidal chitin
growth conditions after three days of cultivation. Among them are two transcriptional
regulators of the families Rrf2 and GntR (gene IDs 2638 and 2797), two σ70 family RNA
polymerase factors (gene IDs 299 and 2681), one anti σ70 factor (gene ID 300), and one
hypothetical transcription factor (gene ID 237) according to SWISS-MODEL [79], which
was also upregulated 33-fold in the intracellular chitin-induced proteome.

3. Materials and Methods
3.1. Chemicals and Consumables

All chemicals were supplied from Sigma-Aldrich (Darmstadt, Germany), and general
consumables were obtained from VWR (Darmstadt, Germany). All necessary buffers and
enzymes for next-generation genome sequencing were shipped from Pacific Biosciences
(Menlo Park, CA, USA). High molecular weight DNA was extracted with the Quick-DNA™
HMW MagBead Kit from Zymo Research (Freiburg, Germany). HMW gDNA shearing was
conducted with g-TUBEs (Covaris, Woburn, MA, USA).

3.2. Colloidal Chitin and Media Preparation

Colloidal chitin (CC) was prepared according to Murthy and Bleakley [80] with slight
modifications. A total of 20 g of crab shell chitin powder (Sigma-Aldrich) was incrementally
added to 150 mL 37% HCl under moderate stirring, increasing the viscosity of the solution.
When the viscosity decreased sufficiently, more chitin was carefully added. The slur
was then incubated for 2–3 h at room temperature under moderate stirring, evading
the formation of foam. Afterwards, the non-viscous, fully dissolved chitin of an intense
brown color was slowly poured into 2 L of ice-cold deionized water (diH2O) in a 5 L glass
beaker and vigorously stirred, rapidly swelling to white colloidal chitin. The solution was
incubated overnight at 4 ◦C without stirring and neutralized the following day through
the addition of excessive amounts of diH2O and subsequent centrifugation in a Beckman
JLA8.1000 rotor for 15 min at 10,000× g until a supernatant pH of 5 was reached. CC was
harvested and kept in the refrigerator until its utilization for liquid chitinase screening
media (CSM) or agar plates. The recipe was adapted and modified from [81,82]: 20 g/L
(2% w/v) CC, 0.7 g/L K2HPO4, 0.3 g/L KH2PO4, 0.5 g/L MgSO4 · 5H2O, 10 mg/L FeSO4 ·
7H2O, and 20 g/L agar (optional), adjusting to pH 6.5 for plates or 7 for liquid medium.
After autoclaving, 1 mg/L ZnSO4 and MnCl2 were added from sterile filtrated stock
solutions prior to the pouring of agar plates/inoculation of liquid media.
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3.3. Bacterial Strains

The previously described chitinolytic bacterium Jeongeupia wiesaeckerbachi retrieved
from environmental samples was utilized for all experiments; its genome is available on
NCBI, under the BioSample accession ID SAMN35557021.

3.4. Proteomics
3.4.1. Culture Conditions

I. Precultures
Jeongeupia wiesaeckerbachi was streaked out onto CSM-agar (pH 6.5, 2% CC (w/v)) from

axenic cryostocks. The precultures were prepared by placing one colony each into 150 mL
baffled shaking flasks holding 20 mL tryptic soy broth. Cultivations were carried out in an
incubation shaker (New Brunswick Innova 44, Eppendorf, Hamburg, Germany) at 28 ◦C
and 120 rpm overnight. Cell densities were determined spectrophotometrically, measuring
the absorption at 600 nm wavelength in 2 mL cuvettes (Nano Photometer NP80, IMPLEN,
Munich, Germany).

II. Intracellular Protein Investigation
The main cultures were prepared in 500 mL baffled shaking flasks holding 50 mL of

either CSM (pH 7, 2% CC (w/v)) or modified CSM with 0.5% (w/v) glucose and 1% (w/v)
NH4Cl instead of colloidal chitin. Sufficient bacterial cell amounts were washed twice in
sterile phosphate buffered saline (PBS) prior to media inoculation to an OD600 of 0.05.
Cultivation parameters identical to those of the precultures (28 ◦C, 120 rpm) were selected,
with incubation times of one (glucose-fed) or three days (chitin-fed), respectively, to acquire
enough cell mass. Both carbon sources (glucose or colloidal chitin) were tested in biological
quadruplicates, equating to eight samples in total.

III. Extracellular Protein Investigation
In order to examine the enzymes secreted into the culture medium, 500 mL CSM in 5 L

baffled shaking flasks was inoculated with Jeongeupia wiesaeckerbachi to an OD600 of 0.05 in
biological triplicates. Additionally, one flask was prepared with CSM containing 2% (w/v)
processed crab shell chitin (unbleached) instead of CC as the sole C and N source. After
three days at 28 ◦C and 120 rpm, the cultures were centrifuged at 10,000× g for 10 min. The
supernatants were sterile filtered with a 0.22 µm syringe filter and concentrated using a
tangential flow filter membrane (MWCO 10 kDa; Omega 10K Membrane, Pall Cooperation,
New York, NY, USA) and a peristaltic pump (Masterflex P/S Model 910-0025, Thermo
Scientific, Menlo Park, CA, USA) to a volume of 10–15 mL. Afterwards, 10 kDa MWCO
centrifugal filter units (Centriprep, Merck Millipore, Darmstadt, Germany) were applied to
further concentrate the secreted crude enzyme mixes to a final volume of approximately
1 mL per sample. Protein concentrations were measured with a photometer based on
260/280 nm absorption ratios (Nano Photometer NP80, IMPLEN, Munich, Germany). Of
these protein extracts, 15 µL were transferred into a new reaction tube, mixed with 5 µL
4 × SDS-sample buffer, and boiled for 5 min at 95 ◦C.

3.4.2. Whole Cell Protein Extraction

The protocol for protein extract and precipitation was slightly modified from Engelhart-
Straub and Cavelius [83]. Bacterial cultures were harvested through centrifugation at
8000× g for 10 min, and the media supernatant was discarded. The cells were subsequently
washed twice with 5 mL of sterile PBS, resuspended in 600 µL PBS, and transferred to
2 mL micro reaction tubes. Afterwards, cell lysis was induced by horizontal vigorous
shaking (Vortex Genie 2, Scientific Industries, Bohemia, NY, USA) for 30 min with fine
glass beads, supported by 1:3 (v/v) Protein Extraction Reagent Type 4 (Sigma-Aldrich,
St. Louis, MO, USA). After centrifugation at 14,000× g for 30 min, protein precipitation
was achieved through the addition of 1:1 (v/v) 20% trichloroacetic acid in HPLC-grade
acetone (w/v), supplemented with 10 mM DL-1,4-Dithiothreitol (DTT). The samples were
vigorously vortexed and then incubated at −20 ◦C for one hour. Following centrifugation
at 14,000× g for 10 min at 4 ◦C, the protein pellets were washed twice with HPLC-grade
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acetone supplemented with 10 mM DTT and air dried under a sterile bench. Lastly, the
protein pellets were resuspended in 450 µL 8 M urea with 10 mM DTT and homogenized
with a micro pestle suitable for 2 mL micro reaction tubes. Of this protein extract, 15 µL
were transferred into a new reaction tube, mixed with 5 µL 4 × SDS-sample buffer, and
boiled for 5 min at 95 ◦C.

3.4.3. Tryptic In-Gel Digestion and LC-MS/MS Analysis

The extracted proteins from whole cells were resolved by SDS-PAGE and subsequently
digested with trypsin. The resulting peptides were then separated by reversed-phase
chromatography and detected with a mass spectrometer as described next.

The tryptic in-gel digestion protocol and LC-MS/MS analysis with a timsTOF Pro mass
spectrometer, coupled with a NanoElute LC System (Bruker Daltonik GmbH, Bremen, Ger-
many) equipped with an Aurora column (250 × 0.075 mm, 1.6 µm; IonOpticks, Melbourne,
Australia), were adapted from Fuchs et al. and Engelhart-Straub and Cavelius [83,84]:
One-dimensional 12% SDS PAGEs with short stacking gels were deployed to transfer 10 µL
of each whole cell protein extract into the resolving gel matrix. Hereby, it is crucial to leave
several empty wells between the different conditions (glucose/chitin) to prevent sample
migration. Refer to the Supplementary Materials for the full protocol.

The mobile phase consisted of two solvents for reverse-phase chromatography: (A) 0.1%
formic acid and 2% acetonitrile in water and (B) 0.1% formic acid in acetonitrile, which was
added linearly with a constant flow rate 0.4 µL/min. Both separation cycles started at 2%
of B (v/v). For the less complex extracellular protein mixtures, a short gradient was carried
out: t = 25 min and 17% B (v/v), t = 27 min and 25% B, t = 30 min and 37% B, with t = 33 min
and a hold at 95% B for 10 more minutes. In case of the more complex intracellular protein
compositions, a longer separation cycle of 100 min was selected: t = 60 min and 17% B,
t = 90 min and 25% B, t = 100 min and 37% B, and t = 110 min and 95% B with a hold at
95% B for 10 more minutes. The oven temperature was kept at a constant 50 ◦C during
measurements.

3.4.4. Bioinformatic Analysis

The PEAKS studio software (v.10.6, build 20201221) was utilized for evaluation of the
MS/MS tandem spectrometry data of tryptic digested peptides, deploying the annotated
genome of Jeongeupia wiesaeckerbachi (BioSample accession ID SAMN35557021) as the
reference for protein identification [38]. The following “Database search” parameters were
applied: a precursor mass of 25 ppm using monoisotopic mass and a fragment ion of
0.05 Da for the error tolerance; trypsin as a digestion enzyme; a maximum of two missed
cleavages per peptide; a maximum of three variable PTM (post-translational modification)
per peptide and estimation of FDR (false discovery rate) with decoy fusion was allowed.
For the protein identification, 1.0% FDR with at least one unique peptide per protein was
selected. The intracellular glucose and colloidal chitin sample groups were differentially
quantified with PEAKSQ, applying a mass error tolerance of 20.0 ppm, an ion mobility
tolerance of 0.05 Da, and a retention time shift tolerance of 6 min (auto detect). The fold
change and significance were set to 2 and 20, respectively. All proteins were exported and
utilized for manual evaluation and plot creation.

The R-Studio software with the ggplot2 package served as the main tool for the
creation of plots, if not stated otherwise [24,25].

The functional characterization of both the secreted and intracellular proteomes was
conducted with the browser-based BlastKOALA (KEGG Orthology And Links Anno-
tation) tool on the KEGG server [60], utilizing the taxonomy ID (taxid) 885864 or the
option “Prokaryote” since the latest update as of May 2023. Carbohydrate-active enzymes
(CAZymes) and carbohydrate-binding modules (CBM) in the proteomes and the transcrip-
tome were predicted with the browser based tool dbCAN 3.0, using the HMMER:dbCAN
(E-Value < 10−15, coverage > 0.35), DIAMOND: CAZy (E-Value < 10−102) and HMMER:
dbCAN-sub (E-Value < 10−15, coverage > 0.35) options [32].
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3.5. Differential Transcriptomics
3.5.1. Culture Conditions

Like during the investigation of the intracellular proteins (see 3.4.1, II), the main
cultures were prepared in 500 mL baffled shaking flasks holding 50 mL of either CSM
(pH 7, 2% CC (w/v)) or modified CSM, with 0.5% (w/v) glucose and 1% (w/v) NH4Cl
instead of colloidal chitin. Sufficient bacterial cell amounts were washed twice in sterile
phosphate buffered saline (PBS) prior to media inoculation to an OD600 of 0.05. Cultivation
parameters identical to those of the precultures (28 ◦C, 120 rpm) were selected, with
incubation times of one (glucose-fed) or three days (chitin-fed), respectively, to acquire
enough cell mass.

3.5.2. RNA Extraction and Quality Control

Bacterial cells were harvested via centrifugation at 6800× g for 10 min. Total cell RNA
was isolated according to the recommendations of the SV total RNA Isolation System Kit
(Promega, Madison, WI, USA). Purity and quantity of the obtained RNA were assessed
per photometer based 260/280 nm absorption ratios (Nano Photometer NP80, IMPLEN,
Munich, Germany). Furthermore, quality numbers were evaluated with the Qubit 4
fluorometer and the Qubit RNA IQ Assay-Kit (Thermo Fisher Scientific; Waltham, MA,
USA). The experiment was performed in biological triplicates, but only two samples per
condition (chitin- or glucose-containing media) were analyzed.

3.5.3. Next Generation Sequencing and Bioinformatic Analysis

The EuroFins Genomics Europe Sequencing GmbH (Constance, Germany) performed
rRNA depletion, cDNA library construction, next-generation sequencing with the Illumina
NovaSeq platform (6000 S4 PE150 XP mode), and the following bioinformatic analyses. Raw
sequencing data were cleansed of rRNA reads with RiboDetector [85]. Adapter trimming,
quality filtering, and per-read quality pruning were executed with fastp [86]. High quality
reads were aligned to the provided J. wiesaeckerbachi genome with STAR [87]. Gene-wise
quantification was achieved by evaluating transcriptome alignments by means of the
software featureCounts [88]. Differential gene expression analysis between the glucose-
fed and chitin-fed sample groups was performed using the R/Bioconductor package
edgeR [89]. Variant calling for SNP and InDel assessment was conducted with Sentieon’s
HaplotypeCaller [90]. Details on the applied software and command line parameters can
be found in the Supplementary Materials (Table S5).

4. Conclusions
4.1. Chitin-Metabolism Causes Profound Genetic Changes

Through a combination of intracellular and extracellular proteomic analyses, the
involvement of 360 unique enzymes within the chitin metabolism of the Gram-negative
bacteria genus Jeongeupia could be demonstrated, deepening our understanding of natural
chitin saccharification systems. Considering all genes with >2-fold increased differential
expression rates and with significance values of >20% (proteomics) or adjusted p-values
of <0.001 (transcriptomics), respectively, 203 intracellular proteins and 244 transcripts
(pseudo gene-adjusted) could be detected. The addition of the 192 extracellular enzymes
that were both monitored among all samples and confirmed in silico to be secreted, followed
by the removal of redundant hits, produces a total of 577 unique genes that were reliably
induced by chitin substrates.

Our previously reported dbCAN 3.0-mediated CAZyme prediction [19,32] disclosed
the existence of thirteen GH18, three GH19, three GH20, and a single LPMO (AA10) in the
genome of Jeongeupia wiesaeckerbachi. Twelve of those thirteen GH18 (all but gene ID 1841),
one GH19 chitinase (gene ID 302), one GH3 hexosaminidase (gene ID 1323), and all three
GH20 hexosaminidases (gene IDs 269, 306 and 1731), in addition to the LPMO (gene ID
148), could be detected in extracellular proteomic samples on colloidal chitin. Intriguingly,
the GH20 were secreted on both crab shell and colloidal chitin substrate, while the GH19
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was only detected in colloidal chitin samples. These results were confirmed and elaborated
through the detection of two GH19 transcripts (gene IDs 302 and 680) in addition to
two GH20 transcripts (gene IDs 269 and 306). Overall, only a single GH19 chitinase (gene
ID 1077) and two of the three GH3 hexosaminidase (gene IDs 308 and 872) genes of the
previously in silico-predicted chitinolytic machinery could not be experimentally verified
to be at least transcribed or translated in an enhanced manner under chitinase-inducing
growth conditions. Remarkably, most of the chitinolytic system was secreted, or at least
exclusively found extracellularly, whereas only a single GH18 (gene ID 635), two GH3
hexosaminidases (gene IDs 308 and 1323), and a single GH20 hexosaminidase (gene ID 269)
could be confirmed in the intracellular proteome.

4.2. Potential Role of Redox Enzymes in Chitin Hydrolysis

Despite the LPMO’s well-understood function to promote the efficiency of syn-
ergistic chitinases on a crystalline substrate [35,91–94], there are reports where its ac-
tivity is uncoupled and may play a role in virulence instead [95–97]. Similarly, the
Jeongeupia wiesaeckerbachi LPMO of family AA10 (gene ID 148) was merely among the
top 150 most significant secreted proteins on average and was ranked considerably lower
in the crab shell chitin sample (opposed to colloidal chitin), specifically. Notably, two addi-
tional predicted AA proteins of families 2 and 7 (gene IDs 1157 and 2996, respectively) were
more abundant throughout all the secretome samples, independent of the respective sub-
strate. Aside from that, a third FAD-dependent oxidoreductase (gene ID 1920) was detected
extracellularly with amorphous chitin, but not crab chitin, suggesting substrate-specific
expression. On an intracellular level, an additional oxidoreductase of the SDR (short-chain
dehydrogenases/reductases) family (gene ID 1215) was upregulated 50-fold, indicating
a general importance of electron transfer chains for bacterial chitin metabolism. Apart
from the redox chemistry catalyzing enzymes and the obvious chitinoplastic GH18/19/20
and LPMOAA10 enzymes, two >8-fold upregulated polysaccharide deacetylases (gene IDs
281 and 437), as detected in the intracellular proteome, could represent promising targets
for characterization studies. Since the deacetylated form of chitin, chitosan, is the desired
molecule for most industrial applications, a strong interest in the targeted and sustainable
enzymatic conversion persists. CAZyme prediction of the collective upregulated proteome
and transcriptome (>20% increase) dataset unraveled several additional CBM5/12 exhibit-
ing enzymes, which are hallmarks for chitin-active proteins (Table A2; refer to Table S6 for
a comprehensive list). Furthermore, the CBM50 or LysM domains have been reported to be
involved in penta-N-acetyl-chitopentaose (pentamer of N-acetylglucosamines) binding [98].
Lastly, some of the secretome-detected GH23 enzymes are of particular interest, being a
family of hydrolases that can comprise chitinase activities (EC 3.2.1.14) [99].

4.3. Chitin-Rich Environments Prompt a Multitude of Methyl-Accepting Chemotaxis and
Motility Proteins

In Vibrio cholerae, a single regulatory noncanonical histidine sensor kinase ChiS was
identified to orchestrate the catabolic chitin response [16,100,101]. However, genome-
wide protein sequence alignment with ChiS did yield no feasible homologies. With the
Vibrio cholerae chitinolytic signal transduction cascade as a role model, an inquiry into highly
transcribed or translated two-component sensor histidine kinases yielded a noteworthy
amount of methyl-accepting chemotaxis proteins (MCP) or aspartate receptors, with high
log2 fold changes and significance. MCPs are the most common bacterial receptors and
mediate transmembrane signal transduction of environmental cues as part of a multiprotein
complex, ultimately leading to chemotaxis towards a more favorable environment [102,103].
Hereby, a correlation between genome complexity, habitat, and the amount of genome-
encoded MCPs (gene IDs 602, 1841, 3352, 246, 3077, 2218; upregulated 14-, 5-, 3-, 2-, 3.5-,
and 1.5-fold, respectively) was observed [104]. Through propagation of conformational
changes over receptor-modulating enzymes like CheR (gene ID 36, 12-fold upregulated)
and a receptor-coupling protein CheW (gene ID 1614, 2.5-fold upregulated), MCPs control
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the sensor histidin kinase CheA (gene ID 138, upregulated 5-fold), which subsequently
phosphorylates the flagellar-motor receptors CheV and CheY (genes ID 134 and 135; upreg-
ulated 5- and 5.5-fold, respectively) [105,106]. Furthermore, a putative transcription factor
(gene ID 237) was upregulated 33-fold with high significance in the intracellular proteome,
suggesting a central role in chitin adaptation.

Light microscopy imaging (not shown) revealed dense colloidal chitin particle colo-
nization through bacterial cells, implying chemotaxis and possibly pili-mediated twitching
motility, as suggested by the transcriptomics data set. Conceivably, Jeongeupia wiesaeckerbachi
follows a common strategy to secure the released glucosamines against competing soil
bacteria and fungi through the abbreviation of transport routes and immediate substrate-
binding and import [15].

4.4. Schematic Summary of the Cumulative Systems Biology Approach

Based on our combined omics results, we propose a holistic model for the chitinolytic
machinery of Jeongeupia spp., trying to factor in the most relevant findings for chitin
metabolism (Figure 5). In light of the approximately 550 upregulated genes induced through
chitin substrates, the schematic does not claim to be more than a mere approximation of
reality. Nevertheless, it does provide an overview of the putatively involved main enzymes
and avails to appreciate the complex interplay of gene transcription, protein translation, and
signal transduction, which assembles the catabolic chitin response of chitinolytic bacteria.
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lowest log2 fold changes. Table S5: Bioinformatic transcriptomics analysis parameters as performed
and provided by Eurofins Genomics. Table S6: CAZyme prediction of the collective >1.2-fold upreg-
ulated proteomic and transcriptomic results of J. wiesaeckerbachi with chitin substrate, mediated by
dbCAN 3.0.
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Appendix A

Table A1. Evaluation of the J. wiesaeckerbachi transcriptomic dataset regarding correlations with
the intracellular (IC) proteomic dataset and miscellaneous proteins of interest. The “Annotation”
color code depicts: (1) transcripts whose proteins were detected with high log2 fold changes or
significance values in the IC proteomics (yellow), (2) glucosamine metabolism transcripts (light blue),
(3) chemotaxis transcripts (light green) or (4) hydrolase transcripts (light red) with their adjusted
p-value dependent ranking and log2 fold change. Hereby, correlations with the IC proteomics (yellow)
overruled the other colors, descriptive of predicted protein function. The “Rank” color code depicts:
(1) chitin upregulated transcripts (green) and (2) glucose upregulated transcripts (red).

Rank Protein
Accession Identifier

log2Fold
Change Adjusted p-Value Annotation (PGAP and dbCAN 3.0)

7 pgaptmp_002582 4.04 4.84 × 10−46 inclusion body family protein
26 pgaptmp_000680 3.45 2.02 × 10−34 peptidoglycan-binding protein (GH19)
34 pgaptmp_002996 3.48 4 × 10−30 FAD binding oxidoreductase (AA7)
52 pgaptmp_000371 2.77 1.15 × 10−26 glycosyl hydrolase family 18 protein (GH18)
66 pgaptmp_003576 2.71 4.4 × 10−24 methyl-accepting chemotaxis protein

69 pgaptmp_001506 2.77 2.06 × 10−23 PAS domain-containing methyl-accepting
chemotaxis protein

102 pgaptmp_000306 2.54 4.18 × 10−20 carbohydate-binding
domain-containing protein (GH20)

105 pgaptmp_001215 2.40 5.45 × 10−20 SDR family oxidoreductase
127 pgaptmp_003096 3.04 1.03 × 10−18 DUF1631 domain-containing protein
169 pgaptmp_002942 2.09 4.56 × 10−17 cellulase family glycosylhydrolase
228 pgaptmp_003580 2.47 4.69 × 10−15 hydrolase

https://doi.org/10.5281/zenodo.8184099
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Table A1. Cont.

Rank Protein
Accession Identifier

log2Fold
Change Adjusted p-Value Annotation (PGAP and dbCAN 3.0)

239 pgaptmp_001847 2.20 1.4 × 10−14 substrate-binding domain-containing protein
294 pgaptmp_000836 1.80 8.38 × 10−13 glycosyl hydrolase family 18 protein (GH18)
309 pgaptmp_001841 1.90 2.1 × 10−12 glycosyl hydrolase family 18 protein (GH18)
314 pgaptmp_000237 2.21 2.66 × 10−12 hypothetical protein
348 pgaptmp_002137 2.25 1.08 × 10−11 glycosyl hydrolase family 18 protein (GH18)
370 pgaptmp_000470 1.69 2.48 × 10−11 N-acetylglucosamine-6-phosphate deacetylase
394 pgaptmp_000419 2.06 8.64 × 10−11 glutamine amidotransferase
438 pgaptmp_000602 1.60 2.97 × 10−10 methyl-accepting chemotaxis protein
448 pgaptmp_000372 2.92 4.33 × 10−10 glycosyl hydrolase family 18 protein (GH18)
453 pgaptmp_000302 1.66 4.9 × 10−10 chitinase (GH19)
507 pgaptmp_000337 1.64 3.04 × 10−9 nitrate reductase subunit beta
521 pgaptmp_001552 1.43 4.87 × 10−9 FAD-dependent monooxygenase
589 pgaptmp_002133 1.37 3.47 × 10−8 alpha/beta hydrolase-fold protein
678 pgaptmp_001746 1.32 2.83 × 10−7 glycosyl hydrolase family 18 protein (GH18)
691 pgaptmp_000878 1.84 3.37 × 10−7 hypothetical protein
869 pgaptmp_003318 1.82 5.51 × 10−6 PrkA family serine protein kinase

981 pgaptmp_002310 1.04 2.73 × 10−5 basic amino acid ABC transporter
substrate-binding protein

1057 pgaptmp_000437 1.15 6.33 × 10−5 polysaccharide deacetylase family protein

1334 pgaptmp_001731 −0.93 8.50 × 10−4 carbohydate-binding domain-containing protein
(GH20)

1353 pgaptmp_001323 −0.94 9.96 × 10−4 beta-N-acetylhexosaminidase (GH3)
1512 pgaptmp_001504 −0.79 2.89 × 10−3 glycosyl hydrolase family 18 protein (GH18)
1900 pgaptmp_000440 −0.60 2.47 × 10−2 sugar ABC transporter permease
3390 pgaptmp_000441 −0.03 9.32 × 10−1 sugar ABC transporter substrate-binding protein

Table A2. Promising chitinoplastic candidate CAZymes of the collective >1.2-fold upregulated pro-
teomic and transcriptomic results of J. wiesaeckerbachi with chitin substrates, predicted by dbCAN
3.0. AA = auxiliary activity, CBM = carbohydrate binding module, CE = carbohydrate esterase,
EC = extracellular proteomics, IC = intracellular proteomics, GH = glycosyl hydrolase family,
GT = glycosyltransferase, T = transcriptomics. The two sequence homology-based function pre-
diction tools HMMER and DIAMOND are deployed by dbCAN 3.0 with the following parame-
ters: HMMER:dbCAN (E-Value < 10−15, coverage > 0.35), DIAMOND: CAZy (E-Value < 10−102)
HMMER: dbCAN-sub (E-Value < 10−15, coverage > 0.35). SignalP predicts prokaryotes signal pep-
tides of the conventional Sec and TAT translocons, processed with either SPI, SPII or SPIII leader
peptidases, respectively.

Gene ID HMMER dbCAN_sub DIAMOND SignalP Dataset

pgaptmp_000203 N N CBM12+CBM5 Y(1–21) EC
pgaptmp_000437 CE4(62–182) CE4_e257 CE4 Y(1–21) IC/EC
pgaptmp_000464 N N CBM50+GH25 N IC
pgaptmp_001157 N AA2_e1 AA0 N IC/EC
pgaptmp_001255 N CBM12_e3 N Y(1–28) IC/EC
pgaptmp_001722 GH23(474–603) GH23_e952 GH23 Y(1–19) EC
pgaptmp_001840 N N CBM12 Y(1–21) T/EC
pgaptmp_001854 N CBM5_e49 CBM5 Y(1–24) T/EC
pgaptmp_002133 CE1(152–377) N CBM5 Y(1–27) T
pgaptmp_002212 CE2(195–406) CBM5_e51+CE2_e8 CBM5+CE2 Y(1–21) T
pgaptmp_002996 AA7(31–458) AA7_e0 N N T/EC
pgaptmp_003133 N CBM50_e508 CBM50 Y(1–26) IC/EC
pgaptmp_003266 GH23(302–444) GH23_e322 GH23 N IC
pgaptmp_003309 GH23(334–469) GH23_e69 GH23 Y(1–32) T
pgaptmp_003521 N N CBM50 Y(1–24) IC
pgaptmp_003567 N CBM50_e665 N N EC
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