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Abstract: The marine microalga Nannochloropsis oculata has garnered significant interest as a potential
source of lipids, both for biofuel and nutrition, containing significant amounts of C16:0, C16:1,
and C20:5, n-3 (EPA) fatty acids (FA). Growth parameters such as temperature, pH, light intensity,
and nutrient availability play a crucial role in the fatty acid profile of microalgae, with N. oculata
being no exception. This study aims to identify key variables for the FA profile of N. oculata grown
autotrophically. To that end, the most relevant literature data were gathered and combined with our
previous work as well as with novel experimental data, with 121 observations in total. The examined
variables were the percentages of C14:0, C16:0, C16:1, C18:1, C18:2, and C20:5, n-3 in total FAs, their
respective ratios to C16:0, and the respective content of biomass in those fatty acids in terms of ash
free dry weight. Many potential predictor variables were collected, while dummy variables were
introduced to account for bias in the measured variables originating from different authors as well as
for other parameters. The method of multiple imputations was chosen to handle missing data, with
limits based on the literature and model-based estimation, such as using the software PHREEQC and
residual modelling for the estimation of pH. To eliminate unimportant predictor variables, LASSO
(Least Absolute Shrinkage and Selection Operator) regression analysis with a novel definition of
optimal lambda was employed. LASSO regression identified the most relevant predictors while
minimizing the risk of overfitting the model. Subsequently, stepwise linear regression with interaction
terms was used to further study the effects of the selected predictors. After two rounds of regression,
sparse refined models were acquired, and their coefficients were evaluated based on significance. Our
analysis confirms well-known effects, such as that of temperature, and it uncovers novel unreported
effects of aeration, calcium, magnesium, and manganese. Of special interest is the negative effect of
aeration on polyunsaturated fatty acids (PUFAs), which is possibly related to the enzymatic kinetics
of fatty acid desaturation under increased oxygen concentration. These findings contribute to the
optimization of the fatty acid profile of N. oculata for different purposes, such as production of, high
in PUFAs, food or feed, or production of, high in saturated and monounsaturated FA methyl esters
(FAME), biofuels.

Keywords: de novo synthesis; heavy metals; lipid induction; nitrogen starvation; oxygen; parametric
methods; phosphate starvation; polar lipids; statistical analysis; TAG

1. Introduction

Nannochloropsis oculata has emerged as a promising microalga for the production of
high-value biomolecules, particularly long-chain polyunsaturated fatty acids (LC-PUFA),
such as C20:5, n-3 or eicosapentaenoic acid (EPA) [1,2]. EPA, as a key component of the fatty
acid (FA) profile, plays a vital role in human health and nutrition, offering benefits such as
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cognitive enhancement, mental health improvement, and cardiovascular protection [3]. Ad-
ditionally, under stressful conditions, such as nitrogen limitation, N. oculata can accumulate
large amounts of saturated FAs, primarily C16:0 or palmitic acid, and monounsaturated
FAs like C16:1 or palmitoleic acid, both of which are suitable for biodiesel production [4].
Therefore, adjustment of the cultivation conditions according to the end goal is critical for
industrial scale production.

The FA composition of N. oculata can be affected by various factors, including temper-
ature, light intensity, pH, and the type of reactor used for cultivation [1,5,6]. Temperature
plays a significant role in the FA composition of N. oculata, with total lipid content in-
creasing with temperature, while polyunsaturated fatty acid (PUFA) levels decrease and
saturated fatty acid (SFA) levels increase [5]. Optimal growth and total lipid productivity
for N. oculata have been reported at 20–25 ◦C, with the highest EPA production achieved
between 14–20 ◦C [5,7].

Light intensity is another factor that can influence the FA profile of N. oculata. Su et al.
reported that irradiance of 500 µmol photons m−2 s−1 resulted in the highest total lipid
productivity [8]. In another study, Martínez-Macias et al. found that saturating light
intensity reduced the levels of SFAs and increased the combined levels of monounsaturated
fatty acids (MUFAs) and PUFAs, although the variation was marginal [6]. Additionally, the
type of reactor used for cultivation had a great impact on the FA profile, as demonstrated
by the same authors, who observed a decrease in PUFAs (20:5n-3) and (20:4n-3) when using
a tubular reactor instead of an Erlenmeyer flask [6].

The pH and light period during cultivation have also been shown to impact the FA
composition and antioxidant capacity of N. oculata [1]. The study revealed that optimal con-
ditions for productivity and biomass composition varied, and that further investigation is
necessary to better understand the effects of these variables on the FA profile. Additionally,
a plethora of other factors including metal concentration [9], CO2 levels [10], agitation [11],
light color [12], and magnetic fields [13] have a demonstrated effect on the fatty acid content
of Nannochloropsis and other microalgae. Evaluating the effects of these factors on the FA
composition of N. oculata is crucial for optimizing its cultivation conditions and maximizing
its potential as a source of biofuels and high-value biomolecules.

In the era of big data, the challenge of variable selection from large numbers of
variables, often exceeding the number of observations, is a pressing issue in many scientific
fields. Parametric methods, such as the Least Absolute Shrinkage and Selection Operator
(LASSO) regression, have emerged as powerful tools to address this challenge [14]. LASSO
regression, a type of linear regression that uses shrinkage, is particularly adept at handling
high-dimensional data, as it performs both variable selection and regularization to enhance
the prediction accuracy and the interpretability of the statistical model it produces. The
LASSO algorithm’s underlying principle revolves around striking a balance between the
complexity of the model and its predictive capability. By adding a penalty term proportional
to the absolute values of the regression coefficients, LASSO effectively encourages the
reduction of less impactful coefficients to exactly zero. This property not only aids in
selecting relevant variables but also guards against overfitting, a common concern in
situations where the number of variables surpasses the available observations.

The versatility of LASSO finds application in a multitude of scientific domains. In the
realm of genomics, LASSO aids in discerning the genetic markers that are truly relevant to
certain traits or diseases from the noise in high-throughput genetic data [15]. In economics,
it assists in untangling the intricate relationships between numerous economic indicators,
contributing to more accurate predictive models [16]. Additionally, LASSO’s utility extends
to fields like climate science, where it aids in identifying the pivotal climatic variables
driving specific environmental phenomena [17].

However, real-world datasets often contain missing values, which can introduce bias,
reduce the efficiency of the statistical analyses, and lead to a loss of information. Multiple
imputations, a flexible and widely applicable type of approach, have been proposed to
handle missing data [18]. This method replaces each missing value with a set of plausible
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values to generate multiple complete datasets. The variability between these imputations
reflects the uncertainty about the right value to impute. Pooling methods such as Rubin’s
rule are then used to combine the results obtained from each of these datasets, providing
a single estimate and confidence interval that incorporate both within-imputation and
between-imputation variability, thus yielding valid statistical inferences that properly
reflect the uncertainty due to missing values [18].

The goal of the current study is to identify the key growth variables influencing
the FA profile of N. oculata using data obtained from different experiments conducted
under various conditions and reactor types, as well as the relevant literature data. To
comprehensively analyze the relationships between growth variables and the FA profile
of N. oculata, we employed LASSO regression analysis and stepwise linear regression,
inspired by the recently developed High Dimensional Selection with Interactions (HDSI)
algorithm, which aims to incorporate interaction terms in LASSO regression [19]. Stepwise
linear regression is a computationally intensive but powerful method for creating sparse
models. The combination of LASSO regression with stepwise regression should provide
a thorough examination of the complex relationships between growth variables and the
FA profile of N. oculata, setting the stage for future optimization efforts. By employing
this specific combination of advanced regression techniques, we aim to provide valuable
insights into the modulation of N. oculata FA profile for different purposes, such as the
production of high-value PUFA-rich biomass, suitable for food or feed, or rich in saturated
and monounsaturated FAs biomass, with a lipid profile suitable for biofuels.

2. Results

The methodology followed is presented in Figure 1 and extensively discussed in the
Materials and Methods section. Briefly, original data were combined with data from the
literature. Additional variables were added to account for data origin, nitrogen source,
and the temporal profile of selected variables. Upper and lower limits were chosen for
missing data using in-house developed models and educated assumptions. LASSO analysis
with multiple imputations for the missing data was performed to reduce the variables to
only a fraction of their initial number (115) in order to assist the subsequent selection of
significant interactions with stepwise linear regression. In total, two rounds of LASSO
regression and two rounds of stepwise regression were performed. Refined sparse models
were finally acquired with pooling of multiple coefficients with Rubin’s rule. A full list of
the variables included in the analysis, with their descriptions and coded names, is provided
in the Supplementary Materials (S1).
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Figure 1. Methodology followed during the analysis presented in this article.

2.1. First Round of LASSO Regression

The results of the first round of LASSO regression (Tables 1–3) are presented in the
paragraphs below.

For the percentage of C14:0 in total FAs (C14:0) (Table 1), its ratio to C16:0 (C14:0/C16:0),
and its percentage in the biomass in terms of ash free dry weight (AFDW) (C14:0%AFDW),
the selected variables were potassium concentration (cK), phosphate concentration (cPO4),
CO2 partial pressure (pCO2), 4-day average CO2 partial pressure (pCO2_4DaysAv), tem-
perature (T), 2-day average aeration rate in volumes of air per working volume per minute
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or vvm (VVM_2DaysAv), 4-day average dissolved CO2 concentration (CO2aq_4DaysAv),
light intensity (LI), and 4-day average photon flux per volume (LV_4DaysAv). All of these
variables had a positive effect, except for VVM_2DayAv and LV_4DaysAv.

Table 1. Results of the 1st round of LASSO regression for C14:0, C16:0, C16:1, C18:1, C18:2
and C20:5n3.

Variable * C14:0 C16:0 C16:1 C18:1 C18:2 C20:5n3

cBOH3 − +

cCa −
cCu +

cFe + −
cK −

cMn + + +

cMg +

N-source NO3 + −
N-source Urea +

cNO3 +

cNO3_2DaysAv −
cNO3_3DaysAv +

cUrea_2DaysAv −
cUrea_4DaysAv +

cNa −
cNa_3DaysAv +

cPO4 +

cPO4_4DaysAv +

cSO4

cSi +

T + + −
T_2DaysAv

T_3DaysAv −
T_4DaysAv +

Aeration + + + − −
pH +

pH_4DaysAv +

CO2aq_4DaysAv −
HCO3_2DaysAv −

LI + −
LV − +

LV_3DaysAv +

LV_4DaysAv −
LP + + + −

* Positive signs indicate positive LASSO coefficients, whereas negative signs indicate negative LASSO coefficients.
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Table 2. Results of the first round of LASSO regression for C14:0/C16:0, C16:1/C16:0, C18:1/C16:0,
C18:2/C16:0, and C20:5n3/C16:0.

Variable * C14:0/C16:0 C16:1/C16:0 C18:1/C16:0 C18:2/C16:0 C20:5n3/C16:0

cBOH3 +

cMn +

cMg +

cNO3_3DaysAv +

cNa_4DaysAv +

cPO4_4DaysAv +

cSi + +

S +

T + −
Aeration −

LI −
LV +

LV_4DaysAv +

LP −
* Positive signs indicate positive LASSO coefficients, whereas negative signs indicate negative LASSO coefficients.

Table 3. Results of the first round of LASSO regression for C14:0%AFDW, C16:0%AFDW,
C16:1%AFDW, C18:1%AFDW, C18:2%AFDW, and C20:5n3%AFDW.

Variable *,** C14:0%AFDW C16:0%AFDW C16:1%AFDW C18:1%AFDW C18:2%AFDW C20:5n3%AFDW

cBOH3 − +

cCo −
cCu +

cFe +

cK + + +

cMn +

N-source Urea +

cNO3_3DaysAv − +

cNO3_4DaysAv −
cUrea_2DaysAv − −
totalN_4DaysAv +

cPO4_4DaysAv − + − −
cSO4 −
pCO2 +

pCO2_2DaysAv +

pCO2_3DaysAv +

pCO2_4DaysAv + +

T −
T_3DaysAv +

Aeration + + + −
VVM
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Table 3. Cont.

Variable *,** C14:0%AFDW C16:0%AFDW C16:1%AFDW C18:1%AFDW C18:2%AFDW C20:5n3%AFDW

VVM_2DaysAv − −
pH_2DaysAv −
pH_4DaysAv +

CO2aq_2DaysAv +

CO2aq_4DaysAv + + +

LI + + + +

LV_4DaysAv + +

LP +

DW_2DaysAv +

DW_4DaysAv + + +

* Positive signs indicate positive LASSO coefficients, whereas negative signs indicate negative LASSO coefficients;
** AFDW: Ash Free Dry Weight.

For the percentage of C16:0 in total FAs (C16:0) and its percentage in the biomass in
terms of ash free dry weight (C16:0%AFDW), the selected variables were boron concen-
tration (cBOH3), cobalt concentration (cCo), cK, nitrate as a nitrogen source (N-source
NO3), 3-day average nitrate concentration (cNO3_3DaysAv), 2-day average urea concentra-
tion (cUrea_2DaysAv), sodium concentration (cNa), 4-day average phosphate concentra-
tion (cPO4_4DaysAv), sulfate concentration (cSO4), 3-day average CO2 partial pressure
(pCO2_3DaysAv), T, 3-day average temperature (T_3DaysAv), the presence of aeration
(Aeration), VVM_2DaysAv, pH (pH), 4-day average pH (pH_4_DaysAv), CO2aq_4DaysAv,
LI, light period (LP), and 4-day average biomass concentration in terms of ash free dry
weight (DW_4DaysAv). cBOH3, cCo, NO3_3DaysAv, Urea_2DaysAv, cNa, cPO4_4DaysAv,
cSO4 andVVM_2DaysAv had a negative effect, while the rest of the variables displayed a
positive effect.

For the percentage of C16:1 in total FAs (C16:1), its ratio to C16:0 (C16:1/C16:0), and
its percentage in the biomass in terms of ash free dry weight (C16:1%AFDW), the selected
variables were iron concentration (cFe), cK, manganese concentration (cMn), magnesium
concentration (cMg), cNO3_3DaysAv, 4-day total nitrogen concentration (totalN_4DaysAv),
cPO4_4DaysAv, cSO4, silicon concentration (cSi), pCO2_4DaysAv, T, T_3DaysAv, Aera-
tion, pH_4_DaysAv, CO2aq_4DaysAv, 2-day average dissolved bicarbonate concentration
(HCO3_2DaysAv), LI, photon flux per volume (LV), LP, and DW_4DaysAv. All of these
variables had a positive effect, except for cK, T_3DaysAv and HCO3_2DaysAv.

For the percentage of C18:1 in total FAs (C18:1), its ratio to C16:0 (C18:1/C16:0), and
its percentage in the biomass in terms of ash free dry weight (C18:1%AFDW), the selected
variables were copper concentration (cCu), cFe, cMn, 2-day average nitrate concentration
(cNO3_2DaysAv), 4-day average nitrate concentration (cNO3_4DaysAv), Urea_2DaysAv,
3-day average sodium concentration (cNa_3DaysAv), 4-day average phosphate concen-
tration (cPO4_4DaysAv), 2-day average CO2 partial pressure (pCO2_2DaysAv), Aeration,
2-day average dissolved CO2 concentration (CO2aq_2DaysAv), LI, 3-day average photon
flux per volume (LV_3DaysAv), LV_4DaysAv, LP, and DW_4DaysAv. cFe, NO3_2DasAv,
NO3_4DasAv, Urea_2DaysAv, and cPO4_dDaysAv had a negative effect, while the rest of
the variables displayed a positive effect.

For the percentage of C18:2 1 in total FAs (C18:2), its ratio to C16:0 (C18:2/C16:0), and
its percentage in the biomass in terms of ash free dry weight (C18:2%AFDW), the selected
variables were calcium concentration (cCa), cCu, cMn, NsourceNO3, urea as a nitrogen
source (NsourceUrea), nitrate concentration (cNO3), 4-day average urea concentration
(cUrea_4DaysAv), cPO4_4DaysAv, 4-day average temperature (T_4DaysAv), Aeration, 2-
day average pH (pH_2DaysAv), LV, LV_4DaysAv, and 2-day average biomass concentration
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average biomass concentration in terms of ash free dry weight (DW_2DaysAv). All of these
variables had a positive effect, except for cCa, NsourceNO3, Aeration, and pH_2DaysAv,
which had a negative effect.

For the percentage of C20:5, n-3 in total FAs (C20:5n3), its ratio to C16:0 (C20:5n3/C16:0),
and its percentage in the biomass in terms of ash free dry weight (C20:5n3%AFDW), the
selected variables were cBOH3, cNO3_3DaysAv, 4-day average sodium concentration
(cNa_4DaysAv), cPO4_4DaysAv, cSi, salinity (S), T, Aeration, CO2aq_4DaysAv, LI, and
LP. T, Aeration, CO2aq_4DaysAv, LI, and LP had a negative effect, while the rest of the
variables showed a positive effect.

In summary, the 1st round of LASSO regression removed most of the initial variables,
with the remaining variables being related to well-established growth parameters, such
as temperature, pH, CO2 partial pressure, light intensity or nutrient concentration or
less studied parameters such as metal concentration and light period. One variable that
emerged as important is the presence of aeration, which exerted a negative effect on both
C18:2 and C20:5, n-3. The full dataset of results of the 1st LASSO regression round is
provided in the Supplementary Materials (S2).

2.2. First Round of Stepwise Regression

During the first round of stepwise regression, the variables that were selected and
presented above were fitted to linear models with interactions in a stepwise manner. The
algorithm starts from a model including all the main effects and interactions and excludes
or adds terms one at a time. As the process continues, only the most significant terms
remain. It is a computationally intensive process, but it is a powerful method that can
handle multicollinearity better than simple linear regression and was thus preferred. It is
also similar to the bootstrapping method used by Jain and Xu in their HDSI algorithm [19].
The first round of stepwise regression was only an intermediate stage, therefore its results
are provided in the Supplementary Materials (S3).

2.3. 2nd Rounds of LASSO and Stepwise Regression

The second round of LASSO regression included the main effects and interactions
present in the models resulting from the first round of stepwise regression. This resulted in
a reduced number of main effects and interactions. The main effects that were present in
the models, either individually or as part of an interaction, were included in the second
and final round of stepwise regression. However, only the most notable interactions (as
described in the Materials and Methods section) were included to prevent overfitting. The
second round of stepwise regression further reduced the number of terms resulting in
sparse interpretable models. Only the results for the final models (Tables 4–9) are presented
below (and the full dataset in Supplementary Materials S3), while the results of the second
round of LASSO are provided in the Supplementary Materials (S2).

C14:0 was notably influenced by T, exhibiting a positive effect (mean p-value < 0.05).
A secondary factor (trimmed p-value < 0.05) was the positive interaction of T with cPO4.
cPO4 also contributed to the model with a positive coefficient, albeit with a p-value
exceeding 0.05.

Conversely, cPO4 was absent from the model for C14:0/C16:0, but its interaction with
cK was notable (p-value < 0.05) with a positive coefficient. The only other term in this
model, besides the intercept, was cK, which also had a positive coefficient.

The model for C14:0%AFDW was primarily influenced by variables related to aer-
ation rate and CO2 supply. Both pCO2_4DaysAv and VVM_2DaysAv exhibited notable
negative effects (mean p-value < 0.05), while their interaction had a notable positive ef-
fect. CO2aq_4DaysAv and its interaction with pCO2_4DaysAv also had a negative effect
(p-value >> 0.05).
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Table 4. Stepwise regression results for the C14:0 fatty acid percentage, its ratio to C16:0 and its percentage in biomass in terms of AFDW.

C14:0 C14:0/C16:0 C14:0%AFDW

Estimate * p-value ** Estimate * p-Value ** Estimate * p-Value **

(Intercept) 2.0 × 100 ± 5.4 × 10−1 0.028 ± 0.018 † (Intercept) 1.4 × 10−1 ± 9.6 × 10−2 0.133 ± 0.271 † (Intercept) 1.1 × 100 ± 4.0 × 10−2 0.000 ± 0.000 †
cPO4 8.5 × 102 ± 3.6 × 103 0.943 ± 0.231 cK 4.4 × 100 ± 9.4 × 100 0.811 ± 0.383 pCO2_4DaysAv −4.1 × 100 ± 1.1 × 100 0.030 ± 0.150 †

T 1.6 × 10−1 ± 4.6 × 10−2 0.001 ± 0.002 † cK:cPO4 9.6× 104 ± 1.2 × 104 0.000 ± 0.000 † VVM_2DaysAv −7.2 × 10−2 ± 8.8 × 10−3 0.000 ± 0.000 †
cPO4:T 5.6 × 102 ± 2.4 × 102 0.061 ± 0.230 † CO2aq_4DaysAv −6.2 × 100 ± 4.6 × 101 0.981 ± 0.136

pCO2_4DaysAv:VVM_2DaysAv 2.2 × 101 ± 3.4 × 100 0.000 ± 0.000 †
pCO2_4DaysAv:CO2aq_4DaysAv −1.1 × 101 ± 2.8 × 102 0.883 ± 0.317

R2 *** 0.32 ± 0.02 R2 *** 0.2 ± 0.03 R2 *** 0.52 ± 0.01

* Pooled standard deviation (Rubin’s rule); ** Bold values indicate mean p-value value below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value below 0.05;
*** Adjusted values.

Table 5. Stepwise regression results for the C16:0 fatty acid percentage and its percentage in biomass in terms of AFDW.

C16:0 C16:0%AFDW

Estimate * p-Value ** Estimate * p-Value **

(Intercept) −6.9 × 100 ± 7.5 × 100 0.197 ± 0.250 (Intercept) −8.0 × 100 ± 3.6 × 100 0.118 ± 0.205 †
cK 1.0 × 103 ± 1.2 × 103 0.562 ± 0.494 cK 1.4 × 103 ± 2.4 × 102 0.004 ± 0.058 †

NsourceNO3 3.2 × 100 ± 3.5 × 100 0.520 ± 0.496 NsourceNO3 2.0 × 10−1 ± 7.9 × 10−1 0.932 ± 0.247
cNO3_3DaysAv 8.5 × 101 ± 5.8 × 102 0.978 ± 0.146 cPO4_3DaysAv −2.7 × 104 ± 4.2 × 103 0.000 ± 0.000 †

cNa −3.4 × 100 ± 6.2 × 100 0.749 ± 0.431 pCO2_3DaysAv 2.9 × 10−2 ± 1.6 × 100 0.960 ± 0.194
cPO4_3DaysAv −1.2 × 102 ± 3.6 × 103 0.990 ± 0.097 Aeration 1.8 × 10−1 ± 7.0 × 10−1 0.933 ± 0.245

Aeration 5.4 × 100 ± 6.4 × 100 0.553 ± 0.495 VVM_2DaysAv −4.5 × 10−1 ± 7.7 × 10−2 0.000 ± 0.000 †
VVM_2DaysAv −6.0 × 10−1 ± 4.2 × 10−1 0.307 ± 0.461 † pH 2.1 × 10−2 ± 1.7 × 10−1 0.984 ± 0.124

LI −2.6 × 10−4 ± 2.3 × 10−3 0.987 ± 0.110 pH_4DaysAv −1.5 × 10−1 ± 3.4 × 10−1 0.792 ± 0.399
LP 2.3 × 100 ± 3.4 × 100 0.673 ± 0.467 CO2aq_4DaysAv 3.6 × 101 ± 1.9 × 102 0.958 ± 0.200

DW_4DaysAv −1.7 × 10−2 ± 1.8 × 10−1 0.990 ± 0.096 pCO2_3DaysAv:VVM_2DaysAv 1.5 × 101 ± 6.9 × 100 0.057 ± 0.224 †
NsourceNO3:T_3DaysAv 5.1 × 10−2 ± 1.1 × 10−1 0.824 ± 0.380 Aeration:LI 2.0 × 10−2 ± 1.7 × 10−3 0.000 ± 0.000 †

cNO3_3DaysAv:cNa −3.2 × 103 ± 2.4 × 103 0.263 ± 0.440 †
cNO3_3DaysAv:VVM_2DaysAv −1.0 × 102 ± 1.8 × 102 0.737 ± 0.440

T:pH 8.0 × 10−2 ± 1.1 × 10−2 0.000 ± 0.000 †
Aeration:LI 5.5 × 10−3 ± 9.3 × 10−3 0.717 ± 0.449
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Table 5. Cont.

C16:0 C16:0%AFDW

Estimate * p-Value ** Estimate * p-Value **

Aeration:LP 5.3 × 100 ± 4.6 × 100 0.375 ± 0.483 †
pH:LI 1.3 × 10−4 ± 4.6 × 10−4 0.922 ± 0.266

R2 *** 0.51 ± 0.00 R2 *** 0.59 ± 0.01

* Pooled standard deviation (Rubin’s rule); ** Bold values indicate mean p-value value below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value below 0.05;
*** Adjusted values.

Table 6. Stepwise regression results for the C16:1 fatty acid percentage, its ratio to C16:0, and its percentage in AFDW biomass.

C16:1 C16:1/C16:0 C16:1%AFDW

Estimate * p-Value ** Estimate * p-Value ** Estimate * p-Value **

(Intercept) 2.8 × 101 ± 4.1 × 10−1 0.000 ± 0.000 † (Intercept) 1.3 × 100 ± 1.7 × 10−1 0.000 ± 0.000 † (Intercept) 2.4 × 101 ± 3.8 × 100 0.000 ± 0.000 †
cNO3_3DaysAv −2.8 × 100 ± 1.6 × 102 0.990 ± 0.098 cMn 2.6 × 104 ± 2.5 × 104 0.430 ± 0.488 cMg −1.1 × 101 ± 3.5 × 101 0.907 ± 0.284

LV −1.8 × 10−6 ± 3.5 × 10−5 0.997 ± 0.056 cMg 3.4 × 100 ± 6.2 × 100 0.767 ± 0.423 cNO3_3DaysAv −5.9 × 103 ± 1.9 × 103 0.064 ± 0.243 †
cNO3_3DaysAv:LV −5.9 × 10−1 ± 2.0 × 10−1 0.008 ± 0.081 † cNO3_3DaysAv −1.7 × 101 ± 3.9 × 101 0.832 ± 0.372 cPO4_4DaysAv −1.5 × 103 ± 5.7 × 103 0.937 ± 0.244

totalN_4DaysAv −5.1 × 100 ± 1.2 × 101 0.771 ± 0.415 cSi −8.0 × 104 ± 5.5 × 104 0.291 ± 0.435 †
cPO4_4DaysAv 2.7 × 102 ± 6.8 × 102 0.861 ± 0.345 pH_4DaysAv −1.8 × 100 ± 3.1 × 10−1 0.000 ± 0.000 †

cSi 9.7 × 103 ± 5.5 × 103 0.233 ± 0.423 † LI −1.7 × 10−2 ± 5.7 × 10−3 0.063 ± 0.244 †
pCO2_4DaysAv 6.1 × 10−4 ± 1.1 × 10−2 0.997 ± 0.055 DW_4DaysAv −4.6 × 10−1 ± 4.5 × 10−1 0.483 ± 0.481

T −1.7 × 10−3 ± 1.3 × 10−2 0.964 ± 0.184 cNO3_3DaysAv:pH_4DaysAv 5.8 × 102 ± 2.0 × 102 0.069 ± 0.242 †
T_3DaysAv 4.0 × 10−4 ± 1.1 × 10−2 0.948 ± 0.217 cSi:LI 8.2 × 102 ± 1.6 × 102 0.000 ± 0.000 †

Aeration −8.2 × 10−3 ± 4.1 × 10−2 0.960 ± 0.195 pCO2_4DaysAv:DW_4DaysAv 2.3 × 100 ± 5.2 × 10−1 0.001 ± 0.001 †
pH_4DaysAv 6.7 × 10−4 ± 5.3 × 10−3 0.984 ± 0.123

CO2aq_4DaysAv −6.3 × 10−1 ± 4.9 × 100 0.981 ± 0.136
HCO3_2DaysAv 2.5 × 10−3 ± 3.1 × 10−2 0.994 ± 0.078

cFe:cNO3_3DaysAv 6.7 × 105 ± 1.6 × 106 0.843 ± 0.363
cMg:LV −4.3 × 10−4 ± 7.7 × 10−5 0.000 ± 0.000 †

cNO3_3DaysAv:cPO4_4DaysAv 3.7 × 105 ± 3.7 × 105 0.449 ± 0.492
totalN_4DaysAv:HCO3_2DaysAv −3.6 × 101 ± 1.0 × 102 0.880 ± 0.320

totalN_4DaysAv:LV −2.4 × 10−3 ± 2.8 × 10−3 0.504 ± 0.489
T:Aeration −5.1 × 10−3 ± 4.9 × 10−3 0.465 ± 0.497

T:pH_4DaysAv −3.9 × 10−3 ± 5.5 × 10−3 0.318 ± 0.464 †
T_3DaysAv:pH_4DaysAv 7.4 × 10−4 ± 5.7 × 10−3 0.510 ± 0.496

Aeration:LP −7.5 × 10−2 ± 9.0 × 10−2 0.578 ± 0.493

R2 *** 0.09 ± 0.01 R2 *** 0.71 ± 0.00 R2 *** 0.56 ± 0.02

* Pooled standard deviation (Rubin’s rule); ** Bold values indicate mean p-value value below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value below 0.05;
*** Adjusted values.
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Table 7. Stepwise regression results for the C18:1 fatty acid percentage, its ratio to C16:0, and its percentage in biomass in terms of AFDW.

C18:1 C18:1/C16:0 C18:1%AFDW

Estimate * p-Value ** Estimate * p-Value ** Estimate * p-Value **

(Intercept) −2.1 × 100 ± 1.4 × 100 0.189 ± 0.115 (Intercept) 1.4 × 10−2 ± 5.9 × 10−2 0.509 ± 0.321 (Intercept) 2.7 × 10−1 ± 2.7 × 10−1 0.521 ± 0.129
cNO3_2DaysAv −5.7 × 102 ± 7.2 × 102 0.464 ± 0.498 cNa_3DaysAv 1.6 × 10−1 ± 1.4 × 10−1 0.404 ± 0.480 † cNO3_2DaysAv −1.9 × 102 ± 1.9 × 102 0.507 ± 0.499
cNO3_4DaysAv −5.0 × 102 ± 6.7 × 102 0.527 ± 0.499 CO2aq_2DaysAv −3.2 × 10−1 ± 3.3 × 100 0.990 ± 0.095 cNO3_4DaysAv −1.8 × 102 ± 1.9 × 102 0.494 ± 0.499
cNa_3DaysAv 8.4 × 100 ± 3.2 × 100 0.036 ± 0.179 † cNO3_2DaysAv:LI −1.8 × 10−1 ± 1.8 × 10−1 0.473 ± 0.499 pCO2_2DaysAv 8.1 × 10−2 ± 4.4 × 10−1 0.964 ± 0.184

cPO4_4DaysAv 5.1 × 101 ± 9.8 × 102 0.997 ± 0.055 cNO3_4DaysAv:LI −1.5 × 10−1 ± 1.6 × 10−1 0.527 ± 0.499 Aeration 1.2 × 100 ± 2.9 × 10−1 0.016 ± 0.006 †
pCO2_2DaysAv 6.0 × 100 ± 1.6 × 100 0.000 ± 0.000 † cNa_3DaysAv:LP 6.6 × 10−2 ± 1.0 × 10−1 0.685 ± 0.460 CO2aq_2DaysAv −1.4 × 101 ± 6.4 × 101 0.954 ± 0.209
CO2aq_2DaysAv −6.6 × 102 ± 4.7 × 102 0.192 ± 0.379 † Aeration:LV_4DaysAv 1.3 × 10−5 ± 5.5 × 10−7 0.000 ± 0.000 † LI 4.1 × 10−4 ± 1.3 × 10−3 0.897 ± 0.303

LI −2.3 × 10−5 ± 4.4 × 10−4 0.997 ± 0.057 Aeration:LP 1.4 × 10−1 ± 3.2 × 10−2 0.005 ± 0.007 † LV_4DaysAv −2.3 × 10−5 ± 6.8 × 10−5 0.897 ± 0.304
LV_3DaysAv −3.3 × 10−5 ± 1.9 × 10−4 0.967 ± 0.178 DW_4DaysAv −1.0 × 10−3 ± 1.9 × 10−2 0.997 ± 0.055

DW_4DaysAv 1.0 × 10−2 ± 1.3 × 10−1 0.993 ± 0.080 pCO2_2DaysAv:LV_3DaysAv 5.9 × 10−4 ± 9.8 × 10−5 0.012 ± 0.100 †
cNa_3DaysAv:LV_3DaysAv 1.0 × 10−4 ± 4.2 × 10−4 0.913 ± 0.281 LV_3DaysAv:DW_4DaysAv 2.0 × 10−5 ± 3.9 × 10−5 0.760 ± 0.427

Aeration:LV_4DaysAv 3.3 × 10−4 ± 1.0 × 10−4 0.087 ± 0.281 † LV_4DaysAv:DW_4DaysAv 4.2 × 10−5 ± 2.4 × 10−5 0.240 ± 0.427 †
Aeration:LP 5.4 × 100 ± 1.1 × 100 0.000 ± 0.000 †

R2 *** 0.81 ± 0.00 R2 *** 0.74 ± 0.00 R2 *** 0.82 ± 0.00

* Pooled standard deviation (Rubin’s rule); ** Bold values indicate mean p-value value below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value below 0.05;
*** Adjusted values.

Table 8. Stepwise regression results for the C18:2 fatty acid percentage, its ratio to C16:0 and its percentage in biomass in terms of AFDW.

C18:2 C18:2/C16:0 C18:2%AFDW

Estimate * p−Value ** Estimate * p-Value ** Estimate * p-Value **

(Intercept) 1.6 × 101 ± 7.6 × 10−1 0.000 ± 0.000 † (Intercept) 7.4 × 10−1 ± 4.1 × 10−2 0.000 ± 0.000 † (Intercept) 4.4 × 10−1 ± 1.3 × 10−1 0.191 ± 0.392 †
cCa −9.3 × 102 ± 6.1 × 101 0.000 ± 0.000 † cCa −4.1 × 101 ± 3.4 × 100 0.000 ± 0.000 † LV −3.2 × 10−5 ± 1.7 × 10−5 0.887 ± 0.310

cPO4_4DaysAv 3.3 × 103 ± 6.7 × 103 0.795 ± 0.398 cMn 2.0 × 104 ± 1.2 × 104 0.270 ± 0.444 † LV_4DaysAv −2.9 × 10−5 ± 5.0 × 10−5 0.706 ± 0.453
Aeration −4.5 × 100 ± 3.8 × 10−1 0.000 ± 0.000 † cNO3 6.2 × 101 ± 7.2 × 100 0.000 ± 0.000 † DW_2DaysAv 1.4 × 10−1 ± 5.6 × 10−2 0.099 ± 0.284 †

cMn:T_4DaysAv 4.4 × 104 ± 6.3 × 103 0.000 ± 0.000 † cPO4_4DaysAv 1.2 × 102 ± 3.6 × 102 0.890 ± 0.313 cCa:pH_2DaysAv −2.7 × 10−2 ± 4.8 × 10−1 0.997 ± 0.055
Aeration −1.8 × 10−3 ± 2.2 × 10−2 0.993 ± 0.081 cMn:T_4DaysAv 7.3 × 103 ± 7.3 × 102 0.000 ± 0.000 †

cMn:T_4DaysAv 1.7 × 102 ± 3.9 × 102 0.837 ± 0.370 cMn:DW_2DaysAv 2.5 × 103 ± 1.0 × 104 0.940 ± 0.232
Aeration:pH_2DaysAv −3.0 × 10−2 ± 3.2 × 10−3 0.007 ± 0.081 † LV:DW_2DaysAv 2.9 × 10−5 ± 8.2 × 10−6 0.003 ± 0.058 †

LV_4DaysAv:DW_2DaysAv 7.4 × 10−6 ± 1.5 × 10−5 0.810 ± 0.392

R2 *** 0.79 ± 0.00 R2 *** 0.72 ± 0.01 R2 *** 0.87 ± 0.02

* Pooled standard deviation using Rubin’s rule; ** Bold values indicate mean p−value value equal or below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value
equal or below 0.05; *** Adjusted values.

Table 9. Stepwise regression results for the C20:5n-3 fatty acid percentage and its ratio to C16:0.

C20:5n3 C20:5n3/C16:0

Estimate * p-Value ** Estimate * p-Value **

(Intercept) 5.0 × 101 ± 4.3 × 100 0.000 ± 0.000 † (Intercept) 3.0 × 100 ± 7.2 × 10−1 0.000 ± 0.000 †
cNO3_3DaysAv 7.2 × 102 ± 1.7 × 103 0.843 ± 0.363 cBOH3 6.0 × 101 ± 2.3 × 102 0.936 ± 0.238
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Table 9. Cont.

C20:5n3 C20:5n3/C16:0

Estimate * p-Value ** Estimate * p-Value **

cNa_4DaysAv −2.1 × 10−1 ± 3.9 × 100 0.997 ± 0.058 cNO3_3DaysAv −5.4 × 100 ± 4.8 × 101 0.987 ± 0.111
S 3.1 × 10−3 ± 5.8 × 10−2 0.997 ± 0.057 T −5.4 × 10−2 ± 2.7 × 10−2 0.008 ± 0.058 †
T −7.4 × 10−1 ± 1.8 × 10−1 0.001 ± 0.002 † Aeration −7.1 × 10−1 ± 1.9 × 10−1 0.047 ± 0.211 †

Aeration −1.1 × 101 ± 3.5 × 100 0.003 ± 0.001 † LP −8.4 × 10−1 ± 8.1 × 10−1 0.268 ± 0.441 †
LP −7.6 × 100 ± 4.7 × 100 0.127 ± 0.307 † cNO3_3DaysAv:cNa_4DaysAv −6.5 × 101 ± 7.3 × 102 0.369 ± 0.477 †

cNO3_3DaysAv:S 1.1 × 102 ± 5.4 × 101 0.157 ± 0.363 † cNO3_3DaysAv:S 9.2 × 100 ± 1.1 × 101 0.410 ± 0.492
T:LP −2.9 × 10−2 ± 1.4 × 10−1 0.892 ± 0.303 T:LP 7.0 × 10−3 ± 3.4 × 10−2 0.600 ± 0.480

Aeration:LI −1.0 × 10−2 ± 8.0 × 10−3 0.233 ± 0.351 Aeration:LI −2.1 × 10−5 ± 1.3 × 10−4 0.975 ± 0.151
Aeration:LP −3.2 × 10−2 ± 1.5 × 10−1 0.953 ± 0.211

R2 *** 0.42 ± 0.00 R2 *** 0.42 ± 0.01
* Pooled standard deviation using Rubin’s rule; ** Bold values indicate mean p-value value equal or below 0.05, while the dagger symbol (†) indicates trimmed mean (80%) of p-value equal or below 0.05; *** Adjusted values.
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Parameters with positive mean coefficients in the model for C16:0 included cK,
NsourceNO3 and its interaction with T_3DaysAv, NO3_3DaysAv, Aeration, LP, the in-
teractions between pH and both T (p-value < 0.05) and LI, as well as the interactions
of Aeration with both LI and LP (trimmed mean p-value < 0.05). Negative influences
were observed for cNa, cPO4_3DaysAv, VVM_2DaysAv (trimmed mean p-value < 0.05),
LI, DW_4DaysAv, and the interactions of NO3_3DaysAv with both cNa (trimmed mean
p-value < 0.05) and VVM_2DaysAv.

For C16:0%AFDW, the positive effect of cK, the negative effect of cPO4_3DaysAv,
the negative effect of VVM_2DaysAv, and the positive effect of the interaction between
Aeration and LI were notable (mean p-value < 0.05). A secondary factor (trimmed mean
p-value < 0.05) was the positive effect of the interaction between pCO2_3DaysAv and
VVM_2DaysAv.

The model for C16:1 contained, apart from an intercept, only NO3_3DaysAv and LV,
both of which had a negative effect (p >> 0.05), as well as their interaction, which had a
notable negative effect (mean p-value < 0.05).

Conversely, the model for C16:1/C16:0 contained the largest number of terms from
all models presented in this article, the most notable of which were the negative interac-
tion between cMg and LV (p-value < 0.05), the interaction between T and pH_4DaysAv
(trimmed mean p-value < 0.05), which presented a negative effect, and cSi (trimmed mean
p-value < 0.05), which had a positive effect. Other terms with a positive effect (p > 0.05) were
cMn and cMg, cPO4_4DaysAv and its interaction with NO3_3DaysAv, pCO2_4DaysAv,
T_3DaysAv and its interaction with pH_4DaysAv, pH_4DaysAv, HCO3_2DaysAv and the
interaction between cFe and NO3_3DaysAv. The remaining terms had a negative effect
(p > 0.05) and included totalN_4DaysAv as well as its interactions with both HCO3_2DaysAv
and LV, T and its interaction with pH_4DaysAv, CO2aq_4DaysAv and the interaction be-
tween Aeration and LP.

C16:1%AFDW was influenced by many of the same parameters as C16:1/C16:0, like
cMg and cPO4_4DaysAv, which, in that case, had negative effects (p-value > 0.05). cSi also
appears with an opposite effect (negative), which is, akin to the case of C16:1/C16:0, mod-
erately important (trimmed mean p-value < 0.05). NO3_3DaysAv and its interaction with
the pH_4DaysAv presented moderately significant effects (trimmed mean p-value < 0.05),
negative and positive respectively. pH_4DaysAv had a notable negative effect (mean
p-value < 0.05), while the interactions between cSi and LI, and between pCO2_4DaysAv and
DW_4DaysAv had strong positive effects (mean p-value < 0.05). LI and the DW_4DaysAv
showed negative effects (p-value > 0.05).

The most important (mean p-value < 0.05) terms for C18:1 were NO3_3DaysAv,
pCO2_2DaysAv, and the interaction between the Aeration and LP, all of which had a posi-
tive effect. The interaction between Aeration and LV_4DaysAv also had a positive effect
(trimmed mean p-value < 0.05), while CO2aq_2DaysAv had a negative effect (trimmed mean
p-value < 0.05). Other negative influences (p-value > 0.05) were those of NO3_2DaysAv and
NO3_3DaysAv, CO2aq_2DaysAv, LI, and LV_3DaysAv. The remaining terms had positive
effects (p-value > 0.05) and included cPO4_4DaysAv, DW_4DaysAv and the interaction
between can_3DaysAve and LV_3DaysAv.

Aeration dominated the model of C18:1/C16:0 with its positive interactions (mean
p-value < 0.05) with both LV_4DaysAv and LP, while cNa_3DaysAv also had a positive
effect (trimmed mean p-value < 0.05). The interaction between cNa_3DaysAv and LP had a
positive effect (p-value > 0.05), while negative influences (p-value > 0.05) were observed for
CO2aq_2DaysAv and the interactions of cNO3_2DaysAv and cNO3_4DaysAv with LI.

Aeration was also important for C18:1%AFDW with a notable positive effect (mean
p-value < 0.05), while the interaction of pCO2_2DaysAv with LV_3DaysAv was also
notable. The interaction between LV_4DaysAv and DW_4DaysAv was moderately im-
portant (trimmed mean p-value < 0.05) with a positive effect. Other terms included
in the model were cNO3_2DaysAv and cNO3_4DaysAv, both with a negative effect,
LV_4DaysAv and DW_4DaysAv (both with negative effect), pCO2_3DaysAv (positive
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effect), CO2aq_2DaysAv (negative effect), LI (positive effect), and the positive interactions
of DW_4DaysAv with both LV_3DaysAv and LV_4DaysAv.

The model of C18:2 was primarily influenced by cCa, Aeration, and the interaction
between cMn and T_4DaysAv, with the first two having a significant (mean p-value << 0.05)
negative effect and the third showing a positive effect (mean p-value << 0.05). cPO4_4DaysAv
was also included in the model and had a positive effect (p-value > 0.05).

The negative effects of cCa (mean p-value << 0.05) and the interaction between the
Aeration and pH_2DaysAv (mean p-value < 0.05), as well as the positive effect of cNO3
(mean p-value << 0.05), were the most important effects in the model for C18:2/C16:0,
while cMn had a moderately important positive effect (trimmed mean p-value < 0.05).
cPO4_4DaysAv and the interaction between cMn and T_4DaysAv had positive effects,
while Aeration had a negative effect, all with p-value larger than 0.05.

The interactions between cMn and T_4DaysAv (mean p-value << 0.05) and between LV
and DW_2DaysAv (mean p-value < 0.05), both of which were positive, had the most notable
effects on C18:2%AFDW. DW_2DaysAv was included in the model with a moderately
positive effect (trimmed mean p-value < 0.05), while its interactions with both LV_4DaysAv
and cMn also had a positive effect (p-value > 0.05). LV, LV_4DaysAv and the interaction
between cCa and pH2DaysAv had negative effects (p-value > 0.05).

Similar to the case of C18:2, Aeration was a notable term for C20:5n3, with a negative
effect (mean p-value < 0.05). The other notable term was T, also with a negative effect. LP
had a moderately important negative effect (trimmed mean p-value < 0.05), while the inter-
action between NO3_3DaysAv and S had a positive effect (trimmed mean p-value < 0.05).
NO3_3DaysAv and S had positive effects (p-value > 0.05), while cNa_4DaysAv, LP and its
interaction with the T, and the interaction between Aeration and LI all had negative effects
(p-value > 0.05).

Aeration and T had the most notable effects on C20:5n3/C16:0, both negative (mean
p-value < 0.05), similarly to C20:5n3, while LP and the interaction between NO3_3DaysAv
and cNa_4DaysAv had moderately important negative effects (trimmed mean p-value < 0.05).
cBOH3, the interaction between NO3_3DaysAv and S, and the interaction between T and
LP all had positive effects (p-value > 0.05). On the other hand, NO3_3DaysAv and the
interactions of Aeration with LI and LP all had negative effects (p-value > 0.05).

The second rounds of LASSO and stepwise regression, which included the main effects
and interactions derived from the initial models, yielded succinct and interpretable results.
Aeration emerged as a pivotal factor consistently influencing the fatty acid composition
across various species. It exhibited diverse effects, forming positive interactions with
specific variables, such as LV_4DaysAv and LP, while also displaying negative interactions
with others. This underscores the importance of aeration control in manipulating fatty
acid profiles.

Mineral ions, notably calcium, magnesium, and potassium, played a discernible role
in determining fatty acid composition. Their effects were evident through main effects as
well as interactions, further highlighting their significance in lipid metabolism regulation.
Temperature exhibited significant interactions with several parameters, often leading to
shifts in fatty acid profiles. This suggests that temperature management could be a valuable
strategy for manipulating lipid production in N. oculata.

Nitrogen, especially nitrate, emerged as an influential factor affecting fatty acid pro-
files. Its interactions with other variables, such as LV and pH_4DaysAv, demonstrated
the intricate involvement of nitrogen in lipid synthesis pathways. Additionally, CO2-
related variables contributed to the models, indicating the relevance of CO2 supply in lipid
metabolism. The presence of both positive and negative effects underscores the complexity
of CO2’s role in fatty acid production.

In conclusion, the refined models resulting from the second rounds of LASSO and
stepwise regression emphasized the consistent significance of aeration, ion concentrations,
temperature, nitrogen sources, and CO2-related variables in shaping the fatty acid composi-
tion of N. oculata. These findings provide valuable insights into the potential manipulation
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of lipid profiles for various applications, from biodiesel production to nutritional sup-
plementation. The ensuing discussion will delve into the mechanistic underpinnings of
these observed effects, connecting them to broader metabolic pathways and potential
implications for bioprocess optimization.

3. Discussion

In the results section, coded names were used for the variables studied in this article.
For the ease of readers focusing on the discussion, variables in this section will be addressed
with their original names.

3.1. Multi-Level Effects of Temperature

Temperature had a positive effect on C14:0 and C16:0, with increasing temperatures
and phosphate concentrations acting synergistically to increase the percentage of C14:0
in total FAs, while temperature seems to enhance the positive effect of increasing pH on
C16:0. On the other hand, C16:1 was influenced by temperature in a non-trivial way, with
some temperature related terms having a positive effect and others negative. The most
significant of them, however, the interaction between temperature and the 4-day average
pH, had a negative coefficient. On the other hand, there is a definitive strong negative
effect of temperature on C20:5, n-3, both in terms of its percentage in total FAs and its ratio
to C16:0. The positive effect of temperature on the accumulation of saturated FAs and its
negative effect on PUFAs is well documented in Nannochloropsis [1,7,20], while exceptions
exist [20]. However, a few remarks on the specific effects of temperature and its interplay
with pH and CO2 concentration can still be made.

K1 and K2 of the CO2 equilibrium increase with temperature and salinity [21–23]. On
the other hand, Henry constant for CO2 decreases with temperature, which limits CO2
transfer from the supplied air to the liquid, while salinity also has a negative but less
pronounced effect [24,25]. As K1 and K2 increase, the CO2 equilibrium shifts towards
bicarbonate and carbonate, respectively, for a given value of pH. Conversely, for given
values of K1 and K2, an increase in pH (and therefore a decrease in proton concentration)
will shift the CO2 equilibrium towards bicarbonate or carbonate, respectively. Microalgae
like Nannochloropsis utilize carbon concentrating mechanisms, which equip the enzyme
carbonic anhydrase, one of the fastest enzymes in nature, to rapidly convert bicarbonate to
CO2 upon demand in the chloroplast [26]. Thus, for saturated FAs accumulation, condi-
tions favoring the shift of the equilibrium towards bicarbonate, such as high temperature
(for example above 30 ◦C) and moderate pH (for example between 7 and 8.5), might be
more important than those promoting the initial dissolution of CO2 in water. On the other
hand, increasing temperature might disproportionately increase the respiration rate of
the cells comparatively to photosynthesis, and thus negatively impact total biomass and
total lipid productivity [26]. Therefore, increasing light availability would be beneficial
at high temperatures to increase the photosynthetic rate. No interaction was observed
between temperature and light supply in any case. There were, however, positive inter-
actions between the presence of aeration or CO2 partial pressure and light intensity, light
period, or the light flux per volume in the cases of C16:0 and C18:1. That highlights the
importance of light under increased carbon supply for the accumulation of saturated and
monosaturated FAs.

3.2. Aeration Has a Negative Effect on PUFAs

On the other hand, the interaction between aeration and light intensity or light period
was negative for C20:5, n-3. Most importantly, the effect of aeration was significantly
negative for both the C20:5, n-3 percentage in total FAs and its ratio to C16:0, while the
presence of aeration also had a strong negative effect on C18:2. That could simply reflect the
disproportionate accumulation of saturated or monosaturated FAs under stress conditions
and increased carbon and light availability compared to the synthesis of PUFAs. Another
possibility however could be that the absence of aeration itself has a positive effect on the
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biosynthesis of PUFAs. A mechanistic explanation for that scenario could be related to the
cascade of enzymes involved in PUFA synthesis. The desaturation of carbon bonds for the
synthesis of unsaturated FAs is catalyzed by desaturases, enzymes that require molecular
oxygen [27,28]. The more double bonds, the more desaturation steps are involved, and
thus the more oxygen is required. Therefore, if desaturation is upregulated from increased
oxygen concentration, which would be the case in a non-aerated autotrophic microalgal
culture, its effect would be more important as the number of double bonds increase, which
is compatible with the results presented in this article, with the effect of aeration being
positive for saturated FAs, positive or slightly negative for C16:1 and C18:1 and significantly
negative for C18:2 and C20:5, n-3. Readers not familiar with photosynthesis might find the
increase in oxygen under non-aerated conditions nontrivial, but it is a well-established fact
that dissolved oxygen levels rapidly rise in well illuminated microalgal cultures, which is
a problem in large scale cultivation addressed with the use of costly equipment, such as
degasser columns [29,30].

Dark or cold treatment, but not a combination of them, has also been shown to trigger
de novo C20:5, n-3 biosynthesis in N. oceanica [31]. In this specific study, aeration was
applied only at the control temperature setting (28–32 ◦C), while cultures in cold conditions
(15 ◦C) were shaken manually twice per day (personal communication with corresponding
author). Therefore, the observed positive effect of low temperature could be at least partially
attributed to the same mechanism proposed above. The observed positive effect of darkness
is also in agreement with our results, specifically with the negative effect of light period
in PUFAs. The lack of positive interaction between low temperature and darkness further
supports the idea that oxygen is responsible for the positive effect of decreasing temperature
on PUFAs content, since in the absence of light there is no production of oxygen and thus
only the positive effect of darkness remains, while increased oxygen solubility might also
have a positive influence. These results are compatible with the observations of Harris and
James, who were some of the first researchers to suggest that oxygen concentration directly
affects fatty acid desaturation independently from temperature [32]. They observed an
increase in FA desaturation in bulb tissue with either decreasing temperature or increased
oxygen concentration, but the same was not observed in plant leaf tissue and Chlorella
vulgaris. They also observed that in dark conditions increased oxygen concentrations
enhanced FA desaturation also in leaf tissue and C. vulgaris. They concluded that the
observed effect of low temperature in FA desaturation can be attributed to the increase in
oxygen solubility.

While the effect of temperature is straightforward, since decreasing temperature
increases oxygen solubility in water, the effects of aeration depend on the net oxygen mass
balance in the culture. Ronda et al. measured the dissolved oxygen concentration and
gamma-linolenic acid (C18:3, n-6) biomass content of Arthrospira platensis in a not-well
illuminated bubble column photobioreactor [33]. They observed an increase in dissolved
oxygen concentration and C18:3, n-6 with increasing aeration rate. They attributed the
positive effect of aeration to C18:3, n-6 to the increased dissolved oxygen. This demonstrates
the complicated interplay of aeration, illumination, and biomass concentration or reactor
geometry, since if the light availability is not adequate to support photosynthesis in a
significant portion of the reactor, the net oxygen mass balance is negative in comparison
to the equilibrium concentration, in which case increased aeration results in a higher
dissolved oxygen concentration. The same is observed in heterotrophic production of
PUFAs from microalgae and yeast, where the negative effects of oxygen depletion are well
established [28,34,35]. In the context of the present study, our analysis suggests, probably
for the first time in microalgal research, that under light replete conditions, a termination of
aeration induces biosynthesis of PUFAs by the increase in intracellular oxygen.

Another way that oxygen could influence the fatty acid profile is the enzymatic or
non-enzymatic oxidation of PUFAs to oxylipins, a class of molecules that act as mediators
and have bioactive properties beneficial to human health [36]. Oxidative conditions such
as those present under elevated oxygen concentration and saturating light intensity could
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enhance oxylipin synthesis, which could cause an observed reduction in the abundance of
the respective fatty acid. While light intensity was negatively associated with PUFAs in the
current study, the negative effect of the presence of aeration is not compatible with increased
oxylipin synthesis, since an increase in PUFAs is observed under non-aerated conditions,
which, as mentioned before, would lead to an increase in oxygen concentration. Regardless,
the magnitude of the potential effect of oxylipins to the observed fatty acid profile and
lipid concentration cannot yet be assessed due to the relative sparsity of information on the
formation of oxylipins under different growth conditions in Nannochloropsis oculata or other
microalgae. Future studies should focus on this very interesting class of molecules.

3.3. Cell Wall Stability Might Also Be Related to the Effects of Aeration

Another explanation for the negative effect of the presence of aeration on the content of
PUFAs could be related to the shear stress caused by aeration. Polyunsaturated fatty acids
are present in the cell membranes, which are attached to the cell wall via the cell cortex [37].
Calcium, which plays a role in cell wall stability in plants, had a significant negative effect
of both C18:2 percentage in total FAs and its ratio to C16:0. Calcium starvation has been
show to significantly increase the total lipid content of Chlorella, while the C18:2 percentage
in total FAs decreased [38]. In freshwater microalgae, calcium can trigger homeoviscous
adaptation by toughening the cell wall and leading to an increase in the cell membrane
fluidity via accumulation of PUFAs [39]. The results presented here suggest that reduction
of calcium concentration to levels lower than that of seawater (~0.01 M or 0.41 g L−1) might
have a similar effect for marine microalgae, since the maximum calcium concentration in
the current study was that of seawater. Additionally, calcium is important in the signaling
of nitrogen starvation via its presence on membrane sensor proteins. Reduction of calcium
concentration might limit the response to nutrient starvation and thus the accumulation of
saturated FAs, and, in return, lead to an increase in the relative abundance of PUFAs [40].

Another parameter that could be related to the stability of the cell wall is silicon, which
was significant for C16:1. Silicon is an important element for diatoms, which rely on it to
create their frustules. In non-diatom microalgae like Ochrophyta, which contain the genus
Nannochloropsis, silicon either is a component of structures in the cell or is accumulated in a
non-localized manner [27]. Potassium is another critical nutrient for microalgae, playing
a role in various cellular processes including enzyme activation, osmoregulation, and
pH regulation. Potassium concentration and its interaction with phosphate had strong
positive effect on C14:0/C16:0 and the C16:0 biomass content, respectively. Potassium
nitrate increases lipid accumulation in comparison to sodium nitrate [41,42]. These results
suggest the important roles of silicon and potassium in biofuels production.

3.4. Novel Effects of Magnesium and Manganese

Other micronutrients that were highlighted as significant in this study were magne-
sium and manganese, the former with a positive effect on C16:1, particularly via its notable
negative interaction with the light flux per volume, and the latter with its strong positive
effect on all parameters related to C18:2, especially via its interaction with temperature.
Magnesium is a component of chlorophyll and thus one of the most critical micronutrients
in photoautotrophic organisms. It is also important for ribosome stability and an activator
of ribulose biphosphate carboxylase (RuBisCO) among other enzymes. Magnesium depri-
vation led to the highest monounsaturated FA content in Auxenochlorella protothecoides in
one study [43]. The interaction of magnesium and light appears with a moderate severity
index in a multivariable study of mixotrophic cultivation of algae isolated from a lentic
system [44]. In the current study, the observed negative interaction of magnesium con-
centration with the light flux per volume could indicate that magnesium concentration
upregulates chlorophyll production, which could lead to excessive light uptake under high
light availability. Indeed at magnesium limited conditions increase in its concentration
leads to increase in chlorophyll content [38]. However, the data used in this study did
not include magnesium deprived conditions, since magnesium is abundant in sea water



Mar. Drugs 2023, 21, 483 17 of 30

and added in adequate amounts in artificial sea water. Thus, the results of the current
study might indicate a novel effect of magnesium at high concentrations. Manganese is
an essential micronutrient for microalgae, as a component of PSII and enzyme cofactor,
but is also considered a heavy metal. Manganese depletion can lead to an increase in
polyunsaturated FAs in Nannochloropsis oceanica [9], which was not observed in the cur-
rent study, despite the presence of manganese-depleted data points [45]. On the contrary,
manganese had a (previously undocumented) strong positive effect on C18:2. Possible
explanations are the upregulation of enzymes in the FA metabolism or upregulation of
antioxidant enzymes like manganese superoxide dismutases [46], which could limit lipid
peroxidation [28]. Lipid peroxidation increases with temperature, which, together with the
strong positive interaction of manganese concentration with temperature, supports this
idea [47].

3.5. Stressful Effects of Excessive Aeration Rate

An important parameter for saturated FAs and thus biodiesel production seems to
be the aeration rate and its interplay with the partial CO2 pressure. While the presence of
aeration is necessary for saturated FAs accumulation, excessive aeration rate seems to have
a negative impact, which is alleviated with increasing CO2 partial pressure, as indicated
by the positive interaction between aeration rate and the CO2 partial pressure. This is
observed for both the C14:0 and C16:0 biomass contents. These results are supplemen-
tary to those of Spolaore et al. who studied the effect of aeration rate between 0.02 and
0.25 vvm, under ambient CO2 concentration, and reported the maximum of this range
as the optimal value [48]. Additionally, those results agree with the data presented by
Ajala and Alexander [11], who studied separately the effects of aeration and agitation on
the proximate composition of N. oculata and other microalgae under a high CO2 partial
pressure (2% or 0.02 atm at ambient pressure). Specifically, they presented the effects of
shaking, aeration, and stirring, which indicate that at moderate and high aeration rates, the
increase in agitation rate either by shaking or stirring initially increased the lipid content
and after a certain threshold had a negative effect. On the other hand, a rise of aeration rate
from 0.15 to 2 vvm increased the lipid content. These results might also be relevant to the
negative effect of aeration on PUFA content, since, as discussed, an increase in saturated
FAs will result in the decrease in the relative PUFA content.

3.6. Nitrogen and Phosphate Stress Effects Agree with Well-Established Knowledge

The effects of nitrogen and phosphate concentration were mostly in line with the
existing literature, with nitrate being the most important N-source but also the most preva-
lent in the dataset. Interestingly, the negative effect of nitrogen concentration was more
pronounced for C16:1 and C18:1 than for C16:0. In Nannochloropsis C16:0, C16:1, and C18:1
are the main components of TAGs [49,50], where they accumulate under stress, especially
under nitrogen starvation, via de novo synthesis through the acyl-CoA-dependent pathway,
or via conversion of membranes [51]. On the other hand, C18:2 and C20:5, n-3 are mainly
present in polar lipids [50], and they are accumulated under conditions requiring mem-
brane plasticity, such as low temperatures, while they are negatively affected by nutrient
limitation. However, PUFAs might also be synthesized de novo during nutrient starvation
and transferred to TAGs [51–53]. Such an effect was not observed in the final results pre-
sented in this article, since all variables for the biomass content of C20:5, n3 were excluded
after the second round of LASSO regression, while nitrate or phosphate concentrations
were not included in the model for C18:2 biomass content.

However, the first round of LASSO (MinMSE) indicated a negative effect of all vari-
ables related to phosphate concentration on the biomass content in C20:5, n-3, which agrees
with the findings of Matsui et al., who reported maximum accumulation of C20:5, n-3 at
the initial stages of phosphate starvation [50]. Interestingly, in contrast to nitrate starvation,
phosphate starvation seems to be more important for C16:0 than for C16:1 and C18:1,
according to the final models. Shi et al. presented data showing a significant increase in
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C16:0 and C18:1 FA percentages after day 2 and day 4 of phosphate starvation, respectively,
while no noticeable change was observed for C16:1 [54]. Interestingly, the 3-day average
phosphate concentration was included in our models for C16:0 FA percentage and biomass
content, while the 4-day average appeared in the models for C16:1 and C18:1.

It could also be argued that the positive effect of biomass concentration on the biomass
content in C18:2 might be related to nutrient starvation, since increasing biomass concentra-
tion will increase the consumption rate of resources. It seems to be more related, however,
to the protective effects of cell shading under high light availability as it is indicated by the
strong positive interaction with the light flux per volume, which has a negative coefficient
in the model.

In conclusion, the results presented agree with well-known facts of the FA profile
and content of N. oculata, such as the effects of temperature and nutrient starvation, while
less well-established effects reported for other Nannochloropsis species, such as those of
potassium and manganese, were demonstrated for the first time in N. oculata. Novel
findings include the effect of magnesium on C16:1/C16:0, the effect of calcium on C18:2, and
the negative effect of the presence of aeration in PUFA content, which could be attributed
to different mechanisms, possibly due to an increase in dissolved oxygen concentration,
similar to that occurring under low temperatures.

4. Materials and Methods

A total of 121 observations were used in the analysis presented in this paper, out of
which 30 came from novel experiments, 24 came from our previous work, and 67 came
from other writers. The full dataset is provided in the Supplementary Materials (S1).

The next sections describe the growth conditions and analyses performed to the novel
experiments, the methodology for data collection and processing, and, finally, the statistical
methods used to evaluate the effects of different predictor variables to the fatty acid profile.

4.1. Chemicals and Reagents

NaNO3 (PanReac, Barcelona, Spain) and NaH2PO4·2H2O (Honeywell, Tokyo, Japan)
were used as nitrogen and phosphorus sources, respectively, while the trace elements
Na2EDTA (Sigma, St. Luis, MO, USA), FeCl3·6H2O (Acros Organics, Geel, Belgium),
CuSO4·5H2O (Sigma), ZnSO4·7H2O (Sigma), CoCl2·6H2O (Fisher Scientific, Waltham, MA,
USA), MnCl2·4H2O (Acros Organics), and Na2MoO4·2H2O (Chem-Lab NV, Zedelgem,
Belgium) were used for media preparation. Cyanocobalamin, Thiamine HCl, and Biotin
were procured from Sigma-Aldrich. Chemicals used for analysis included ammonium
bicarbonate (Sigma), HPLC-grade chloroform (Honeywell) and HPLC-grade methanol
(Fisher Scientific).

4.2. Microalgal Species & Cultivation Conditions

Nannochloropsis oculata, was originally provided by the Laboratory of Zoology (De-
partment of Biology, University of Patras, Greece) and was maintained as previously
described [1,2]. Inoculum volume of 10 mL of the maintenance cultures was used to inoc-
ulate Erlenmeyer flasks of 500 mL capacity with 450 mL working volume. The medium
used was four-times concentrated f/2 medium without silicate or vitamins. Initial pH was
adjusted to 8 with addition of 1 N NaOH before the inoculation under a UV-sterilized
laminar flow cabinet. Ambient air, filtered with a sterile 0.2 µm Whatman PTFE air filter,
was provided at a rate of ~2.8 vvm, which also provided mixing, while light was supplied
continuously from below at an intensity ~100 µmol m−2 s−1, measured at the illuminated
surface, by 6000 K white LED light bulbs. After 15 days, these cultures were collected and
used to inoculate new cultures at various conditions at an initial chlorophyll concentration
of 5–6 mg Chl a L−1. Three sets of experiments were carried out.

The first set aimed to study the effects of light intensity, aeration, and salinity. The dura-
tion of this experiment was 7 days, temperature was set to 20 ◦C, and other conditions were:
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1. Aeration, 350 µmol m−2 s−1 and 60 ppt (mg L−1) salinity.
2. Aeration, 90 µmol m−2 s−1 and normal seawater salinity (~38 ppt).
3. Lack of aeration, 90 µmol m−2 s−1 and 60 ppt salinity.
4. Lack of aeration, 90 µmol m−2 s−1 and normal seawater salinity.

The same arrangement as that described for the pre-cultures was used, while the flasks
subjected to non-aerated conditions were airtightly sealed with rubber stoppers.

The second set of experiments also had the same arrangement as that used for pre-
cultures, targeted the effects of temperature, initial pH, and light period, and was comple-
mentary to a published article of our group [1]. Each day, the pH was adjusted to a specific
setpoint with HCl or NaOH. The duration of this experiment was 5 days, light intensity
was fixed to ~100 µmol m−2 s−1, and the rest of the conditions were:

1. Initial pH 9.5, 20 ◦C, light period 12:12 (12 h light and 12 h dark).
2. Initial pH 6.5, 20 ◦C, light period 24:0 (continuous light).
3. Initial pH 8, 27.5 ◦C, light period 12:12.
4. Initial pH 8, 27.5 ◦C, light period 24:0.
5. Initial pH 6.5, 35 ◦C, light period 12:12.
6. Initial pH 9.5, 35 ◦C, light period 24:0.

The third experiment was a trial culture in a flat panel photobioreactor. Artificial
sea water (ASW) with a brackish level of salinity enriched with 4 times concentrated
f/2 medium [1] was used. The composition of the ASW (without the f/2 nutrients) was
2.71 g L−1 MgSO4·7H2O, 0.67 g L−1 KCl, 0.33 g L−1 CaCl2·2H2O and 16.67 g L−1 NaCl.
The reactor was continuously illuminated from one side with a 4000 K LED panel, with the
light intensity at the inner illuminated surface measured at 195 ± 28 µmol m−2 s−1, which
corresponded to ~2249 µmol photons per second per m3 of working volume. Aeration
with ambient air was provided at the bottom of the reactor with a horizontal sparger at
a rate of ~0.33 vvm. Ambient temperature had little variation during the day and was
measured daily, while pH was also monitored daily. The experiment lasted for 10 days,
while biomass was collected for fatty acid profiling at days 5 and 7. Total Suspended Solids
(TSS), nitrate concentration and total phosphorus concentration were also monitored daily
as described below.

4.3. Analytical Measurements

Nitrate and total phosphorus concentration was measured daily at the filtered growth
medium obtained from the TSS measurement. Nitrates were measured spectroscopically at
220 and 275 nm [55], while total phosphorus was measured as orthophosphates with the
ascorbic acid method after hydrolyzation under low pH [55].

4.4. Biomass Composition Analysis
4.4.1. Biomass Collection

At the end of each run, wet biomass was obtained via centrifugation at 3780× g
for 7 min (Hermle, Z 366), washed with 0.5 M ammonium bicarbonate [56], freeze-dried
(Telstar, LyoQuest), and stored in a desiccator. Ash content was then measured according
to Standard Methods [55]. Subsequently, freeze-dried biomass was weighted and subjected
to extraction and transesterification of FAs as described below.

4.4.2. Fatty Acid Profiling and Quantification

Fatty acids were converted to their respective methyl esters (FAMEs) with the one-step
in situ transesterification method of Indarti et al., as modified by Levine et al. [57,58],
and subsequent analysis was made on a GC (Agilent Technologies, 7890A) equipped
with a detector (FID) and a capillary column (DB–WAX, 10 m × 0.1 mm × 0.1 µm), as
previously described [59]. To quantify the produced FAMEs, a reference standard (FAMQ-
005, Accustandard) and an internal standard solution (C17: 0, Sigma) were used [59].
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4.5. Choice of Regression Techniques and Data Preparation

The goal of the research presented in this paper was the selection of important variables
for the fatty acid profile of Nannochloropsis oculata in a non-excluding manner. To that end,
all of the available literature data was collected, evaluated, and combined with our own
data. The end result was a dataset with a very large number of predictor variables, which
increased further in number due to the introduction of dummy variables with the one-hot
method in order to take into account categorical variables and fixed effects, as well as the
use of 2-, 3-, and 4-day averages for some numerical variables, like pH, to include the
history of growth conditions of the model [60]. Therefore, a regression method that can
handle many predictors with a relatively small number of observations was necessary.
LASSO regression is ideal for that case, since it is a method that eliminates non-important
variables leading to sparse models while considering the mean squared error. To take into
account interaction terms, a hybrid approach inspired by others was used [19]. In this
hybrid technique, LASSO regression was used to evaluate the significance of variables
or their interactions and reduce their number, while stepwise linear regression was used
both to identify significant interaction terms and to provide the final refined model with
confidence intervals for coefficients.

In the following paragraphs, the methodology used in this paper is presented, starting
with the selection of predictor and response variables, followed by the handling of missing
data, the data preparation steps, the hybrid regression, and the final model evaluation.

4.5.1. One-Hot Encoding

One-hot encoding is a prevalent technique employed in the preprocessing of categori-
cal data for machine learning algorithms. This method addresses the issue of categorical
variables by transforming each category into a new binary feature, thereby enabling more
effective handling by algorithms that require numerical input.

The one-hot encoding process operates by creating binary dummy variables for each
category of the categorical variable. For a categorical variable with n categories, n − 1
binary features are created, each representing a single category. A given category is denoted
by a ‘1’ in its corresponding binary feature and ‘0’ in all of the others. This transformation
results in a binary vector for each category, where the vector length equals the number of
categories in the original variable. To the nth category, only zero values of the n - 1 dummy
variables are assigned.

In the context of this study, one-hot encoding was utilized in two instances, one to
account for the origin of the different datasets used, which were collected from various
research groups, and the second to take into account the nitrogen source type (ammonium,
nitrate or urea). Each research group or nitrogen source type was treated as a category
within a categorical variable, and one-hot encoding was applied to this variable. This
approach allowed for the preservation of crucial information about the data’s origin or
nitrogen source type without imposing an arbitrary ordinal structure that could potentially
bias the subsequent analysis. The resulting binary features were then incorporated into the
data used for regression in subsequent steps, enabling a comprehensive evaluation of the
influence of each research group on the response variable.

4.5.2. Temporal Effects

For selected variables, for which the temporal profile was known or could be estimated,
apart from the value at the day of biomass collection, 3 other variables were generated: the
2-, 3- and 4-day averages. In that way, a sense of evolution through time was incorpo-
rated into the analysis. The reasoning behind this step was that microalgae acclimate to
environmental conditions, and each acclimation state might be influenced differently by
environmental factors.
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4.6. Handling of Missing Data

Handling missing data is a critical step in regression analysis, as the presence of
missing values can lead to biased estimates, loss of efficiency, and complications in the
model-building process. Various strategies exist for dealing with missing data, ranging
from simple methods such as listwise deletion or mean imputation to more sophisticated
techniques such as multiple imputation.

In the context of this study, missing data was addressed using multiple imputation, a
statistically robust method that accounts for the uncertainty associated with missing values.
Multiple imputation works by creating several different plausible imputed datasets and
appropriately combining their results. This approach provides a more accurate estimate
of the uncertainty due to missing data than single imputation methods, as it reflects the
additional variance due to the imputation process.

The imputation process in this study was guided by model-based limits or educated
assumptions. This means that the imputed values were not arbitrary but were based on
logical assumptions about the relationships among variables or derived from statistical
models built on the observed data. This approach ensures that the imputed values are
plausible given the observed data and the assumptions made, thereby reducing the potential
bias introduced by the imputation process.

Regression was performed with each imputed dataset and the results were subse-
quently combined. Below the methodology used to select limits for the imputation of
different missing data types is presented.

4.6.1. Conversion of Cell and Optical Density to Biomass Concentration

Biomass concentration in terms of weight per volume of culture was used instead of
optical density or cell count, since it is of higher practical importance when the microalgae
production is considered and can be easily compared between different studies. Addi-
tionally, optical density can significantly vary with cultivation conditions and the state of
the cell [61], while the same applies to the distribution of individual cell weight [62]. Due
to interference of salt to the biomass concentration measurement in terms of dry weight
(DW) [56], the ash-free dry weight (AFDW) was selected as a better alternative to DW [55].

In some cases, the biomass concentration was provided as a function of time, either
in DW [8,63,64] or AFDW [1,2,65] basis. Original data presented in this article were in the
AFDW basis. DW values were imputed as AFDW assuming 1% and 20% ash content for
the upper and lower limits, respectively, while the AFDW values were repeated in each
imputation dataset unchanged.

In one case, where optical density at 750 nm was provided along with the initial
and final values of biomass concentration [7], the lower limit for biomass concentration
was set by a linear relation between the initial and the final biomass concentration, while
for the upper limit biomass, concentration was assumed to follow the same trend as the
optical density. The initial and final biomass concentrations, used to calculate the time
averaged biomass concentrations, were treated the same as described above, since they
were provided by the authors.

In other cases, the cell density was provided as a function of time along with the final
biomass concentration [6] or with information regarding the biomass productivity, which
could be used to estimate the final biomass concentration [45,66]. In those cases, the initial
biomass concentration was estimated using the cell count and the assumption that the
average single cell weight was 10 pg for the lower limit and equal to the final biomass
weight/cell count for the upper limit [67]. The temporal profile in both cases was assumed
to be the same as the cell count temporal profile, with the lower case following a linear
increase in cell weight from 10 pg to the final cell weight, and for the upper limit a constant
cell weight was assumed.

The treatment of missing biomass concentration for the rest of the cases is explained
in the Supplementary Materials (S4) [50,68,69].
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4.6.2. Estimation of Nitrogen and Phosphate Concentrations

In all cases, the initial nitrogen concentration was known, while some authors also
provided the temporal evolution of nitrogen concentration [1,7,63,65] or provided the final
values or information on the time when it was depleted [2,8,45]. In most cases, nitrate was
the nitrogen source. Data of nitrate consumption and biomass production were used to fit a
second order polynomial model consumption of nitrate vs. biomass concentration change
with R squared 0.97. Predictor variables for the model were initial nitrate and biomass
concentrations. The data indicate that higher initial nitrate and biomass concentrations
lead to higher nitrate uptake, which has also been observed for other species [70], and
which is compatible with nitrate reductase upregulation in the presence of high nitrate
concentrations [71]. The highest dNO3dX value seems to be −0.0065 mg N-NO3 g−1 AFDW.
The model is presented in the Supplementary Materials (S4). The limits for imputation of
nitrate concentration were therefore estimated using the initial nitrate concentration and
the upper/lower limits of biomass concentration for the lower and upper limit for nitrate
concentration respectively. In cases where ammonia or urea were the nitrogen source, the
concentration was either provided by the authors [45,69] or, in one case, assumed to follow
the same trend as nitrate [64].

Data on phosphate availability was more sparse, with less authors providing informa-
tion on the temporal profile or the final values of phosphate concentration [1,2,45,50,65].
The lower limit for imputation was estimated assuming biomass phosphorus content 2.5%
and using the upper biomass concentration limit, while the upper limit was estimated
assuming 0.5% biomass phosphorus content and using the lower biomas concentration
limit. The limits of 0.5 and 2.5% were chosen based on a study on the luxury uptake of
phosphate by Nannochloropsis salina [72].

4.6.3. Estimation of pH and Inorganic Carbon

In this study, missing pH values were estimated using a two-step process: initial
prediction and subsequent refinement. The equilibrium pH was initially approximated
via the iPHREEQC COM module, which was interfaced with Matlab, utilizing the growth
medium’s chemical composition and temperature as inputs. The PHREEQC library llnl.dat
was used, since it is the most suitable for marine systems [73]. Due to expected discrepan-
cies between the predicted and the actual pH values, residual modelling was implemented
as a refinement step. This involved calculating residuals by subtracting 10ˆ(- predicted equi-
librium pH) from 10ˆ(- real pH) in cases where real pH was known. These residual values
were then used to create a linear model in Matlab, with predictors dN, dP (representing the
total consumption of nitrate and phosphate at a given time in mol L−1, respectively) and
the aeration rate in vvm. The resulting model demonstrated an R-squared value greater
than 0.96, indicating a robust estimation of the deviation from the initial predictions, hence
offering a more precise method for pH estimation. This model was utilized only in cases
where ambient air was used for aeration. In cases where the CO2 concentration in the air
feed exceeded that of ambient air, the pH was either provided by the authors or presumed
to be the equilibrium value calculated with PHREEQC. The residual model is provided in
the Supplementary Materials (S4), while information on the iPHREEQC COM module can
be found on the USGS website.

Using the partial pressure of CO2 in the air feed and the medium composition and
temperature, the concentration and speciation of inorganic carbon in the medium was
also estimated using PHREEQC with the llnl.dat library, assuming equilibrium conditions.
While at high biomass densities this might not be true, due to high carbon consumption [74],
equilibrium conditions have been used to describe CO2 mass transfer in lab scale microalgal
cultivation with success in the past [75]. For the novel data presented that involved non-
aerated conditions, inorganic carbon was assumed to be zero after 7 days of cultivation
due to the estimated carbon content of produced biomass. For the other case where no
aeration was applied, the lower limit was also set to zero while the upper limit was that in
equilibrium with air, calculated with PHREEQC as in the rest of the cases [66].
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4.6.4. Assumptions for Illumination Conditions

In all cases, the light intensity measured at the surface of the container used for
cultivation was provided. The type of vessel as well as the working volume and orientation
of the light source were also provided in most cases in the article or by the authors upon
request. In one case, the type of reactor (cylindrical photobioreactor) was mentioned
without any information on dimensions [63]. In that case, diameter was assumed to be
between 5 and 10 cm, based on other examples of similar systems in the market and the
literature. These boundaries were used to set the lower and upper limits for the illuminated
surface, assuming illumination from one side of the reactor. Illumination related variables
used for regression were the light intensity in µmol photons m−2 s−1 and the product of
the light intensity with the illuminated surface divided by the working volume (µmol
photons m−3 s−1), which was used as a measure of the light availability in the culture. All
of the variables considered in this article are detailed in the Supplementary Materials (S1).

4.6.5. Selection of Response Variables

Three types of response variables were considered: the percentage of a specific FA
in total FAs, the ratio of that FA to C16:0 [76] that is usually the most abundant FA in
Nannochloropsis [77], and the biomass content in the specific FA in terms of ash free dry
weight [1].

4.7. Data Normalization
4.7.1. Z-Score Normalization

Regularization methods like LASSO regression require normalization of the predictor
variables to ensure that all predictors contribute equally to the model, regardless of their
original scales. Without normalization, a predictor could dominate the model, not because
it is necessarily more important or informative but due to its magnitude. This is particularly
crucial for LASSO regression, which applies a penalty to the coefficients of the predictors
in order to perform variable selection and prevent overfitting. The penalty is based on the
magnitude of the coefficients, so if the predictors are not on the same scale, the penalty
could unfairly affect predictors with larger scales.

Z-score normalization is a good option for normalizing predictors because it not only
brings all predictors onto the same scale (mean of 0 and standard deviation of 1) but also
maintains the distribution and relationships in the data. This makes it easier for LASSO
regression to fairly evaluate the importance of each predictor and make accurate predictions.
The normalization of variables with the Z-score method has as follows:

Xi normalized = (Xi − MEANi)/SDi (1)

where:
Xi are the predictors;
MEANi are the mean values of all the observations for each predictor;
SDi are the standard deviation values for each predictor.

4.7.2. Centering of Response Variables

Centering of response variables is an important step in regularization methods like
LASSO and Ridge regression. The primary reason for this is to ensure that the intercept
term of the model is not penalized. Regularization methods work by adding a penalty term
to the loss function that the model seeks to minimize. This penalty term discourages the
model from assigning too much importance to any one predictor, which can help prevent
overfitting. However, the intercept term in a linear model is not a coefficient that multiplies
a predictor variable but rather represents the expected value of the response variable when
all of the predictors are zero. Penalizing the intercept term could therefore lead to a model
that is biased and does not fit the data well. By centering the response variable (subtracting
the mean from each value), we ensure that the intercept term represents the mean of the
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response variable, and we can safely apply the penalty to the other coefficients without
affecting the intercept. This helps to maintain the interpretability of the model while still
gaining the benefits of regularization. As already mentioned, centering is achieved simply
by subtracting the mean value of the variable from each observation:

Y centered = Y − MEANY (2)

where:
Y is the response variable;
MEANY is the mean value of the response variable.

4.8. LASSO Regression

LASSO (Least Absolute Shrinkage and Selection Operator) regression is a method used
in regression analysis and machine learning to perform variable selection and regularization.
The goal of LASSO regression is to obtain the subset of predictors that minimizes prediction
error for a quantitative response variable. The technique works by imposing a constraint
on the model parameters that causes regression coefficients for some variables to shrink
toward zero. Variables with a regression coefficient equal to zero after the shrinkage process
are excluded from the model. This property of LASSO regression makes it particularly
useful for analyzing datasets with many predictors.

The LASSO method minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a tuning parameter, λ. Mathematically,
this can be represented as:

minimize (1/(2 × n)) × Σ[Y − B0 − Σ[Bi × Xi]]2 + λ × Σ|Bi| (3)

where:
n is the number of observations;
B0 is the intercept term;
λ is a tuning parameter controlling the amount of shrinkage: the larger the value of λ,

the greater the amount of shrinkage;
Bi are the parameter coefficients.
The first part of the equation, (1/2 × n) × Σ[Y – B0 − Σ[Bi × Xi]]2, is the mean squared

error, a measure of the model’s prediction error. The second part, λ × Σ|Bi|, is the L1
penalty, which imposes a cost on the size of the coefficients.

In MATLAB, LASSO regression can be implemented using the “lasso” function. The
function takes as input a matrix X of predictor variables and a vector Y of the response
variable, and returns a vector of coefficients B.

The minimization of the objective function in LASSO regression is typically achieved
using a coordinate descent algorithm. This algorithm works by iteratively optimizing the
objective function over one parameter at a time, holding all other parameters fixed. The
algorithm continues until the change in the objective function is below a certain threshold,
indicating that the solution has converged.

In the context of LASSO regression, the coordinate descent algorithm works by it-
eratively updating each regression coefficient Bi by minimizing the objective function
with respect to Bi, holding all other coefficients fixed. This process is repeated until the
coefficients converge to a solution.

The LASSO method has the advantage of producing simpler and interpretable models
that involve only a subset of the predictors. However, the choice of the tuning parameter
λ is crucial as it determines the level of penalty, and, hence, the number of predictors
in the final model. Instead of using a single λ value, it is common practice to explore a
range of λ values in order to identify the one that optimizes the model. Cross-validation is
frequently employed in this process, with the optimal λ chosen as the one that minimizes
prediction error. Another interpretation of optimal λ is the largest value of λ such that the
mean cross-validated error is within one standard error of the minimum. This value of λ
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is often chosen for model selection because it provides a model that is simpler (i.e., has
fewer predictors) but whose predictive performance is within one standard error of the
best performing model. This is in line with the principle of parsimony, or Occam’s razor,
which prefers simpler models when their performance is not significantly worse than more
complex models.

4.9. Stepwise Regression with Selected Main Effects and Their Interactions

While LASSO regression is a powerful tool for parameter selection, it does not account
for interactions between the different parameters examined. At the same time, interactions
between the main effects might be of great importance and reveal novel aspects of the
relationship between the studied variables. In the current article, a hybrid approach was
followed to deal with these issues. Specifically, initially main effects were chosen with
LASSO regression as described earlier, while a refinement step followed, during which the
main effects chosen with LASSO and their interactions were fitted to a linear model using
stepwise linear regression. This was performed in Matlab using the “stepwiselm” function
and non-normalized data. Stepwise regression allows both for further variable selection
with inclusion of significant interaction terms and comparison between selected variables
via the p-value associated with each one. As in the case of LASSO regression, stepwise
regression was also performed separately for each imputed dataset. In this case, however,
the results were pooled using Rubin’s rule, since within-imputation variance existed.

4.10. Rubin’s Rule

Rubin’s rule is a statistical method that is widely used in the analysis of multiple
imputed datasets. The rule was proposed by Donald Rubin in 1987 and is designed
to account for the uncertainty introduced by the imputation process when calculating
estimates and their variances.

In the context of regression analysis, Rubin’s rule is used to combine estimates from
multiple imputed datasets to produce a single estimate that reflects both the within-
imputation variance and the between-imputation variance. The within-imputation vari-
ance is the average of the variances of the estimates from each imputed dataset, while the
between-imputation variance is a measure of the variability of the estimates across the
different imputed datasets.

The total variance, according to Rubin’s rule, is calculated as the sum of the within-
imputation variance and a corrected form of the between-imputation variance. The correc-
tion factor accounts for the number of imputations. Specifically, the total variance (T) is
calculated as follows:

T = W + (1 + 1/m) × B

where W is the within-imputation variance, B is the between-imputation variance, and m is
the number of imputations.

Once the total variance is calculated, the total standard deviation can be derived by
taking the square root of the total variance. The total standard deviation is a measure of
the total uncertainty of the estimate, taking into account both the uncertainty within each
imputed dataset and the uncertainty between different imputed datasets.

4.11. Post Hoc Analysis

In our study, we employed a multi-step approach to identify significant main effects
and interaction terms, and to generate sparse, interpretable models. This process involved
the use of LASSO regression, stepwise linear regression, and the application of trimmed
mean calculations.

Initially, we utilized LASSO regression as a screening tool to identify important main
effects. This method is known for its effectiveness in dealing with high-dimensional
data and its ability to perform variable selection. We used three distinct criteria in the
LASSO regression: the model that minimizes the mean squared error (MSE), the model
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that balances predictive accuracy and model simplicity (1SE), and a unique approach that
we will refer to as “NoBlocking”.

The “NoBlocking” criterion involves examining the lambda value at which all dummy
variables, accounting for the fixed effects of the data origin, are excluded from the model.
The rationale behind this approach is that the exclusion of these blocking variables indicates
that the original categorical variable, in that case the data origin, is not a significant predictor
in the presence of the other variables in the model. This method should provide a means of
identifying the most influential predictors in the model.

Following the LASSO regression, we performed stepwise linear regression using all
variables selected with the three criteria. This step was crucial in selecting important inter-
action terms, which can often provide additional insights into the relationships between
variables that are not evident when considering main effects alone.

We then conducted a second round of LASSO regression using all the main effects and
interactions present in the models from the previous step. The purpose of this step was
to further reduce the number of variables and assist in the generation of sparse models.
LASSO’s ability to perform variable selection was again leveraged here to help simplify
our models.

In each of these steps, we employed the use of trimmed mean calculations. For p-
values, we focused on the mean rather than the trimmed mean. This is because a low mean
p-value indicates the absence of large outliers and thus a narrower confidence interval,
which is more significant. On the other hand, for variable coefficients, the trimmed mean
was more important than the mean. This is because large outliers greater than zero can give
the impression that a variable is significant, while in reality, it may have been excluded
during LASSO regression.

Finally, we performed a second and final round of stepwise regression. For this step,
we used the main effects that remained in the “NoBlocking” criterion, either individu-
ally or as part of an interaction, and the most important interactions, defined as those
with a trimmed mean value of coefficients greater than zero. This final step resulted in
sparse, interpretable models, providing us with a clear and concise understanding of the
relationships between our variables.

5. Conclusions

The aim of this study was to investigate the available information on the fatty acid pro-
file and content of Nannochloropsis oculata and identify key parameters for the abundance of
selected fatty acids for this species. Novel data combined with information gathered from
the literature was subjected to analysis using advanced regression methods and multiple
imputation for missing data. This is probably the first time that LASSO regression has been
used in the context of research on microalgal composition, and one of the first uses of a
variation of the HDSI algorithm in general. Additionally, a novel approach to treat categori-
cal variables in LASSO regression was introduced. The results agree with well-established
facts regarding the effects of environmental conditions, such as temperature and pH, on
the fatty acid content and profile of N. oculata, while novel observations were made, and
the most important of these is the potential positive effect of the lack of aeration to the
content in PUFAs, especially C20:5, n-3, the most valuable biomolecule produced by Nan-
nochloropsis, with great importance to human nutrition and health. Additional highlights
include the potentially significant (and previously undocumented for this species) effects
of calcium, manganese, and magnesium. The research presented here paves the way for
new experiments that will aim to investigate those effects, potentially contributing to the
production of PUFAs and biofuels from N. oculata and other microalgal species.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md21090483/s1, Table S1: Variables and Data; Table S2:
LASSO Regression Results; Table S3: Stepwise Regression Results; Table S4: Handling of Missing Data.

https://www.mdpi.com/article/10.3390/md21090483/s1
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