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Abstract: PLK1 is found to be highly expressed in various types of cancers, but the development of
inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary
selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by fo-
cusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model
was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was
then used to select three molecules with strong drug-like characteristics. Scaffold hopping was em-
ployed to reconstruct 98 new compounds with improved drug-like properties and increased activity.
Molecular docking was used to compare the efficient compound abbapolin, confirming the high-
activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-
hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular
dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the
presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium
and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for
PLK1 inhibitors.

Keywords: marine natural compounds; PLK1-PBD; 3D QSAR pharmacophore; molecular docking;
scaffold hopping; virtual screening; molecular dynamics

1. Introduction

The polo-like kinase (PLK) family is a group of serine/threonine protein kinases that
play a crucial role in regulating the cell cycle in eukaryotes. This family consists of five
members: PLK1–PLK5, with PLK1 being the most extensively studied for its regulatory
functions and potential as a drug target. PLK1 has a structure similar to other kinases,
with a serine/threonine kinase domain at the N-terminal and a polo-box domain (PBD)-
repeat sequence at the C-terminal. It contains two drug-binding sites that can be targeted
for inhibitor design. PLK1 is essential for regulating mitosis, controlling cell entry into
mitosis, phosphorylating and regulating key proteins, and performing other important
tasks during the G2/M phase. Increased expression of PLK1 is observed in malignant cells,
leading to defects in mitosis and cytokinesis as well as increased chromosomal instability,
which is a common feature of many cancers [1]. A recent study found that inhibiting PLK1
kinase activity reduces the binding of UHRF1 and USP7, leading to the rapid breakdown
of UHRF1 via the ubiquitin-proteasome pathway. This results in reduced recruitment of
DNMT1 to chromatin, leading to decreased DNA methylation and increased expression of
the tumor-suppressor gene TSG, ultimately slowing cell proliferation and promoting cell
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senescence [2]. In another study, it was discovered that PLK1 is essential for controlling
tumor autophagy, and blocking PLK1 activity can restrict tumor growth by regulating
autophagy [3]. PLK1 is typically expressed at low levels in healthy tissues but is found
to be highly expressed in various types of cancer, such as breast and gastric cancer. Its
high expression has been linked to a poor prognosis, making it a potential target for
the development of cancer drugs. Several drugs have been developed to target PLK1,
including BI2536, which targets the ATP-binding site (kinase domain) [4]. However, clinical
trials have shown that its anti-tumor effect is low, leading to the discontinuation of its
development. Volasertib is currently in phase 3 clinical trials and has shown the most
progress, but most inhibitors targeting this binding domain are still in the preclinical stage
and have had limited success. This may be due to a lack of specificity and the resulting
dose-limiting toxicity [5]. By combining PBD domain drugs, it is feasible to attain enhanced
selectivity at non-toxic doses by targeting various binding sites, thereby decreasing off-
target effects. Additionally, allosteric inhibitors can address issues arising from mutations
in the conserved ATP binding site by inhibiting proteins in an inactive state. Moreover,
the potential for selectivity is greater when targeting protein–protein interactions with
PBD [6,7]. This experiment was designed to identify inhibitors that specifically target the
PBD-binding domain and that have a good affinity and selectivity.

Combined annotation-dependent depletion (CADD) utilizes computational methods
to discover, design, and analyze drugs and molecules that share similar biochemical
properties. This method has been instrumental in creating more than 70 commercial
drugs [8]. CADD has been proven to be a reliable and highly respected computational
method that competes with experimental high-throughput screening in identifying and
optimizing hits, with virtual screening being the primary technology behind it. Among
these, quantitative structure–activity relationship (QSAR) analysis stands out as the most
effective due to its high capacity, speed, and accuracy [9]. Molecular docking is a widely
used method for determining how ligands bind to their receptors. It uses force field
calculations, which are informed by quantum mechanics and experimental data, to estimate
the binding energy. For more precise data on binding energy, ab initio methods like density
functional theory (DFT) and molecular dynamics simulations can be utilized. Molecular
dynamics simulations are especially useful, as they can produce multiple conformational
snapshots to validate the docking results [10]. The integration of the aforementioned
technologies has led to numerous successful studies, resulting in a higher rate of drug
design hits, increased success rates, reduced R&D costs, and shorter R&D cycles. The root
mean square deviation (RMSD) reflects the extent to which atoms deviate from their average
positions, indicating the magnitude of motion for each atom. Furthermore, this article
also employs scaffold hopping to identify superior candidate compounds and circumvent
intellectual property protection.

Organisms that inhabit aquatic and terrestrial environments, including microorgan-
isms, fungi, plants, and animals, are responsible for the production of natural products
(NPs) or secondary metabolites. These have been utilized for medicinal purposes since
ancient times and continue to play a crucial role in modern pharmacology. Marine habi-
tats, in particular, are abundant sources of bioactive metabolites with toxic or deterrent
properties, and the diverse nature of the environment promotes the production of complex
and diverse chemicals that hold great potential for development into drugs that cannot be
replicated by synthetic small molecules [11].

Marine natural products have a unique three-dimensional structure enabling them
to accurately bind to active sites and exhibit distinctive biological activities. Their struc-
tural characteristics include an abundance of sp3-hybridized carbon, chiral centers, and
condensed fatty rings as well as a higher proportion of carbon, hydrogen, oxygen, and
nitrogen atoms compared to synthetic drugs [12]. Sponges, algae, and corals that are found
in the marine environment have been identified as sources of novel secondary metabolites
with distinct chemical structures. These novel secondary metabolites are essential for the
production of anti-cancer drugs [13]. There are currently over 10 medications approved
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for treating various types of cancer, all of which are derived from molecules found in the
marine environment. These drugs include cytarabine, nelarabine (the prodrug of ara-G),
fludarabine phosphate (the prodrug of ara-A), plitidepsin, midostaurin, eribulin mesylate,
brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin,
trabectedin, and lurbinectedin [11]. Taking advantage of marine compound libraries for
drug discovery is likely to lead to the identification of novel and powerful drugs [14].

We obtained the Marine Natural Products Database (MNPD) [15] and employed a series
of computer-aided methods to identify three small molecules from marine sources that have
the potential to inhibit PLK1. Initially, we identified inhibitors for the PLK1-PBD domain
and utilized 3D-QSAR pharmacophore modeling to evaluate and select the most promising
pharmacophores. These pharmacophores were then used to predict activity and screen
a marine library. The selected compounds were further evaluated for their absorption,
distribution, metabolism, excretion, and toxicity as well as subjected to molecular docking
to identify three molecules with improved activity and drug-likeness. To enhance their
effectiveness, we performed scaffold hopping to modify the compounds and compared the
before and after structural optimization using molecular docking. Finally, we conducted
three molecular dynamics simulations on the optimized small molecules and identified
effective PLK1 inhibitors based on the stability of the complexes. Figure 1 illustrates the
workflow of this study.
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Figure 1. Virtual screening process for USP7 covalent inhibitors.

2. Results
2.1. Construction, Selection, and Validation of Pharmacophore Model

The virtual screening process heavily relies on pharmacophore models to illustrate
the active conformations of ligand molecules. This is achieved through conformational
search and molecular overlay strategies, which help to elucidate the potential interactions
between receptor and ligand molecules. Table 1 presents statistics such as cost, correlation
coefficient, and RMSD used in the creation of pharmacophores. Ten pharmacophores, each
containing HBA, HBD, and HYD features, were produced, with costs ranging from USD
363.483 to USD 374.325, a null cost of USD 408.796, and a fixed cost of USD 301.241. The
optimal hypothesis typically has the most significant cost difference, highest correlation
coefficient, lowest RMSD, and greatest total cost. According to Table 1, Phar01, the optimal
pharmacophore, has the lowest total cost (USD 363.483), highest cost difference (USD
45.313), lowest RMSD (1.216), and best correlation coefficient (0.964). The low RMSD and
high correlation coefficient suggest that Phar01 is highly predictive of the experimental
activity of compounds in the training set. The characteristics of HBA, HBD, HYD, and other
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compounds in the training set exhibit an even distribution pattern (Figure 2). The ocean
drug library was then used for screening, and 500 molecules with fit values exceeding
4.81 were chosen for further investigation.

Table 1. Statistical results of the top 10 pharmacophore hypotheses generated by the HypoGen algorithm.

Pharmacophore Features Total Cost (USD) Cost Difference (USD) Correlation RMSD Max.Fit

Phar01 HHD 363.483 45.313 0.964 1.216 7.222
Phar02 HHD 370.353 38.443 0.448 1.274 4.30
Phar03 HHD 370.457 38.339 0.364 1.290 6.375
Phar04 HAA 372.205 36.591 0.828 1.290 4.239
Phar05 HDD 374.201 34.595 0.383 1.326 5.840
Phar06 HAD 374.325 34.471 0.165 1.323 5.146
Phar07 HAD 374.473 34.323 0.137 1.325 5.234
Phar08 ADD 375.973 32.823 0.457 1.340 6.509
Phar09 HAA 376.062 32.734 0.229 1.319 3.930
Phar10 HAAD 376.754 32.042 0.400 1.309 4.436
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Figure 2. The best HypoGen Pharmacophore model (Hypo1). Green color represents HY; purple
color represents HBD; blue color represents HY-aromatic.

2.2. ADMET Analysis

We used Discovery Studio to create a predictive procedure. We analyzed the ADMET
descriptors of 500 marine molecules that were chosen based on their pharmacophore. After
screening, we chose to display the eight molecules with excellent pharmacogenicity. As seen
in Figure 3, all eight molecules are within the 99% confidence intervals of both the BBB and
HIA models, which shows the accuracy of the model predictions. The ADMET properties of
the eight marine molecules with good drug-like properties are shown in Table 2. A BBB level
greater than 1 indicates high blood–brain barrier permeability (brain–blood ratio between
1:1 and 1:5). A solubility level of three implies −4.1 < log (Sw) < −2.0, which is indicative
of good drug-like properties. An absorption level of 0 suggests good absorption in the
human intestine. For hepatotoxicity and CYP2D6 enzyme inhibition, the negative values of
the compounds are inversely proportional to the cytochrome enzyme inhibition activity,
meaning that the molecules have low hepatotoxicity and cytochrome enzyme inhibition.
We selected three molecules without plasma protein-binding capacity, namely compound 1,
compound 2, and compound 4, based on plasma protein binding as a reference.
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2.3. Replace Fragment Protocol

We observed compounds 1, 2 and 4 from the pharmacophore model and ADMET
screening and noticed that the aromatic rings of these molecules had poor interaction
with protein PLK1. Thus, we used the Replace Fragment module of the Discovery Studio
platform to perform backbone migration, which resulted in 790 compounds. Out of these,
98 small molecules with good drug ability and activity were chosen for further study.

2.4. Molecular Docking

The process of molecular docking involves computer simulation the recognition of
molecules in order to identify the optimal binding conformation of proteins and their ligands
and to ensure the lowest binding free energy of the complex. Abbapolin [16], a new inhibitor
of modified PLHSpTA, was used as the positive compound, and -CDOCKER_ENERGY was
used as the scoring criterion. The docking score was higher than or equal to that of the
molecule with higher activity than abbapolin, and three molecules with higher scores than
the positive compound were identified, namely molecules 90, 95, and 97. The docking
scores for these molecules are presented in the Table 3. In molecular docking, scoring
functions are important, but it is not reasonable to make judgments based solely on scoring
functions. In order to screen for effective PLK1 inhibitors, it is necessary to consider the
conformation of the protein–ligand complex and whether there is a clear binding affinity
and specificity in the binding pocket in order to reduce the accessibility of substrates
and thus inhibit the activity of PLK1. From Figures 4–6, we can clearly see the binding
modes of these compounds with the PLK1 protein (PDB ID: 3C5L). The analysis revealed
ASP416, ASP493, and Lys540 as key residues that contribute to the specific and selective
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binding to the shallow binding pocket on the PBD. This binding is primarily facilitated
through interactions with the di-anionic phosphate group [17–19]. The remaining residues
(Arg557, Tyr485, and Ala493) were also reported in the paper [20]. As shown in Figure 7,
the positive control compound and three other small molecules from marine natural
compounds, namely 90, 95, and 97, are simultaneously overlaid on the substrate binding
pocket. Structural information for the three selected molecules is shown in Table 4.

Table 3. Docking scores for the three selected molecules and the positive compounds.

Molecules -CDOCKER_ENERGY

Molecule 90
[(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium
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Figure 4. Two-dimensional images of PLHSpTA and marine natural compound 90 interacting
with proteins. (a) Two-dimensional structure of the protein complex of compound PLHSpTA.
(b) Two-dimensional structure of marine naural compound 90 and protein complex.
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Figure 5. Two-dimensional images of marine natural compound 95 and marine natural compound 97
interacting with proteins. (a) Two-dimensional structure of the protein complex of marine natural
compound 95. (b) Two-dimensional structure of the marine natural compound 97 protein complex.
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Figure 6. Three-dimensional binding patterns between protein–ligand complexes. (a) Three-dimensional
structure of the protein complex of compound PLHSpTA. (b) Three-dimensional structure of marine
natural compound 90 and protein complex. (c) Three-dimensional structure of the protein complex
of marine natural compound 95. (d) Three-dimensional structure of the marine natural compound
97 protein complex. Hydrogen bond interactions are yellow; electrostatic interaction are orange;
hydrophobic interactions are pink.
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Table 4. Structural information of the three selected molecules.

Molecule Chemical
Formula

Exact
Mass

Mol
Weight m/z Elemental

Analysis Log P Henry’s
Law tPSA Clog

P CMR LOG
S pKa

90 C19H35N2O+ 307.274 307.501
307.274 (100.0%),
308.277 (20.5%),
309.281 (2.0%)

C,74.21;H,11.47:N,9.11:;
O,5.20 4.71 0.69 60.23 4.417 9.3151 −4.652 10.324.13.885

95 C19H36NO2+ 310.274 310.501
310.274 (100.0%),
311.277 (20.5%),
312.280 (2.0%)

C,73.50;H,11.69:N,4.51:
0,10.31 _ −1.32 57.1 5.319 9.2039 −4.45 10.324.14.308

97 C20H36NO+ 306.279 306.513
306.279 (100.0%),
307.282 (21.6%),
308.285 (2.2%)

C,78.37:H,11.84:N,4.57:
0,5.22 5.59 −0.67 47.87 5.914 9.5262 −5.429 10.324.14.257

2.5. Molecular Dynamics

The root mean square deviation (RMSD) reflects the extent to which atoms deviate from
their average positions, indicating the magnitude of motion for each atom. For compound
90, the significant fluctuations in ligand RMSD raise concerns about the possibility of
removing it from the binding pocket. The ligand root mean square deviation (RMSD) for
the protein–ligand complex, protein, and positive compound complex is shown in Figure 8.
The root means square deviation (RMSD) for 95 stabilizes at 20 ns, with an average RMSD
of 0.20522 nm from 20 ns to 50 ns. The root means square deviation (RMSD) for 97 stabilizes
at 24 ns, with an average RMSD of 0.11228 nm from 24 ns to 50 ns. The root mean square
deviation (RMSD) for abbapolin stabilizes after 35 ns, with an average RMSD of 0.22468 nm
from 35 ns to 50 ns. The root mean square deviation (RMSD) for all three ligands stabilizes
at equilibrium, with the positively charged compound showing larger fluctuations. Only
the RMSD fluctuation for ligand 95 is less than 0.2 nm. Furthermore, compared to the
abbapolin–protein complex, the fluctuations in the 95–protein and 97–protein complexes
are smaller, or the root mean square deviation (RMSD) is smaller. This leads us to further
consider that 90 and 97 have better binding stability. The root mean square deviation
(RMSD) for the protein backbone is depicted in Figure 9. The average root mean square
deviation (RMSD) for the protein backbone in the complexes is 0.19257 nm, 0.18021 nm,
and 0.10882 nm, respectively. The root mean square fluctuation (RMSF) of protein residues
reflects the displacement of residues in the protein conformation, indicating the freedom of
the atoms. As shown in Figure 10, the root mean square fluctuation (RMSF) for all three
complexes ranges from 0.0481 nm to 0.4152 nm. Overall, the trend of RMSF changes is
consistent, gradually decreasing and stabilizing during the simulation process. However,
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the root mean square fluctuation (RMSF) value for the positive compound abbapolin is
higher than that of compounds 97 and 95, with a peak occurring at residues 480 to 500.
The root means square deviation (RMSD) and root mean square fluctuation (RMSF) data
indicate that compounds 97 and 95 demonstrate greater stability in binding to the protein
compared to the positive compound.
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The radius of gyration (Rg) is directly related to the compactness of proteins. Therefore,
in the presence of positive compounds, i.e., ligand 95 and ligand 97, the g_gyrate tool
in GROMACS was used to monitor the compactness of proteins through the radius of
gyration [21]. The Rg results show that the conformation of the PLK1–ligand complex is
stable. From Figure 11, it is clear that within the molecular dynamics time of 0 to 37 ns,
the Rg value of the PLK1–abbapolin complex fluctuates between 1.83 to 1.88 nm, and
there is a larger fluctuation between 37 to 50 ns, while the Rg value of the PLK1–ligand
complex is smaller (1.80 to 1.87 nm) and very stable. Hydrogen bonds are the strongest
non-covalent interactions and play an important role in the stability of protein–ligand
complexes. We analyzed the number of hydrogen bonds in protein–ligand complexes and
protein–positive compound complexes over a 50 ns molecular dynamics time span, as
shown in Figure 12. The results indicate that positive compounds have a higher number
of hydrogen bonds compared to the ligand, but the overall difference is not significant.
Ligand 95 has a similar number of hydrogen bonds to the positive compound, while ligand
97 has fewer hydrogen bonds.
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2.6. Calculation of Binding Free Energy

The results of the free energy analysis are presented in Table 5. The ∆TOTAL for
ligands 95 and 97 is −24.57 kcal/mol and −25.97 kcal/mol; both were lower than the
∆TOTAL of abbapolin, although molecule 95 has a binding ability that exceeds abbapolin
with great standard deviation. However, it cannot be proven that the binding capacity is
higher than abbapolin. The nearly 10 kcal/mol gap shows that the binding free energy of
the three is similar. We also decomposed the binding free energy of MM-PBSA into the
energy contribution of each protein residue to evaluate the key binding residues, that is, the
residues with higher energy contribution to the binding free energy. As shown in Figure 13,
the key residues in compound 97 and PLK 1, respectively, are the residues of ARG483,
ARG516, ARG557, and ASP416. Interestingly, residue ASP416 forms hydrogen bond inter-
actions during molecular docking, in which ARG557 appears. For PLK1 and compound 95,
its key residues include ARG392, ARG584, and GLU568. The results show that MM-PBSA
not only validates the results of molecular docking but also further quantifies the binding
energy between the protein PLK 1 and molecules 90 and 95.

Table 5. Molecular mechanic/Poisson–Boltzmann surface area (MMPBSA) complexes calculated
from 1000 frames (40–50 ns) of molecular dynamics. All the binding free energies, i.e., van der Waals
energy, electrostatic energy, molecular mechanics term (energy in gas phase), energy of nucleus of
solvation, and total binding free energy, are shown in kJ/mol.

Molecules ∆VDWAALS ∆EEL ∆GSOLV ∆GGAS ∆TOTAL

Molecule 95 −18.41 ± 0.93 −30.2 ± 12.86 24.04 ± 12.90 −48.6 ± 12.90 −24.57 ± 18.24
Molecule 97 −28.53 ± 0.47 52.38 ± 0.31 23.85 ± 0.57 −49.82 ± 0.95 −25.97 ± 1.11
Abbapolin −47.15 ± 0.94 −175.79 ± 4.90 171.96 ± 3.48 −210.94 ± 4.98 −38.98 ± 6.08
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3. Discussion

PLK1 is regarded as a promising target for the development of anti-tumor drugs [22].
The sequence features an N-terminal serine/threonine kinase domain and a C-terminal
repeat sequence of the polo-box domain (PBD) [23]. Both PLK1 and PBD are autonomous
drug targets used in the creation of inhibitors. BI2536, which targets the ATP-binding site
(kinase domain), was developed, but its anti-tumor effect was found to be inadequate in
clinical trials, leading to its discontinuation. Volasertib has made significant progress and
is currently in phase 3 clinical trials. However, most inhibitors that target this binding
domain are still in the preclinical stage and have had limited success, likely due to their
lack of specificity and the dose-limiting toxicities they cause. On the other hand, drugs that
target the PBD-binding domain have the potential to provide greater selectivity at non-toxic
doses by focusing on a distinct binding site, thus reducing off-target effects. Allosteric
inhibitors can address problems caused by mutations in the conserved ATP binding site by
blocking proteins when they are in an inactive state. Targeting protein–protein interactions
through PBD has the potential to be more selective. The development of PBD inhibitors
could expand the range of cancer treatments available. Several peptide inhibitors of PBD,
such as thymoquinone (TQ) and its derivative, poloxin, PLHSpT, and T521, have been
studied and have shown promising effects on PBD cell function in vitro. Despite their
potential, these compounds often have a short half-life, unpredictable bioavailability, poor
stability, and limited membrane permeability, posing challenges for their use in preclinical
applications [24,25]. Consequently, there is an immediate need to tackle these major
limitations and improve the drug qualities of the inhibitors. To sum up, PBD1 is a possible
and appealing target for the formation of extremely selective anti-PLK1 inhibitors for cancer
treatment. Gaining a more comprehensive comprehension of the binding mechanism of
PBD inhibitors could open up novel opportunities for the advancement of potent PBD1
inhibitors. There is a strong possibility that a novel class of PBD inhibitors will result in
considerable advancements in cancer research and precision therapy in the future [26].

Given the expansive marine environment, organisms living in it are considered to be
a great resource for bioactive natural products, and the compounds obtained from them are
a representation of their rich biodiversity [14]. In recent years, the marine environment has
become a focus of new research areas and clinical trials due to the full exploitation of other
resources, leading to the development of numerous drugs derived from marine natural
products [27,28]. Recent studies have demonstrated that 170 marine natural products and
their artificial counterparts possess a powerful anti-cancer action. These marine-based
compounds have a unique structural makeup when compared to other naturally occurring
substances and can also be used to treat bacterial, viral, and inflammatory conditions. This
has led to a growing interest in marine natural products as a potential source of novel
medicines. The process of selecting marine compound libraries is a crucial aspect for
generating novel research [29].

This research utilized computer-aided drug design techniques to enhance the effective-
ness of marine compounds through scaffold hopping. A 3D quantitative structure–activity
relationship (3DQSAR) pharmacophore model was constructed and validated using 112 small
molecules with specific activity. This pharmacophore model was then used to screen
a library of marine compounds, from which 500 molecules were subjected to ADMET
prediction. Three of these molecules were identified as having excellent drug-like proper-
ties and were chosen for further research. Subsequently, the three molecules underwent
scaffold hopping, resulting in the generation of 98 novel compounds with improved drug-
like properties and potency. Comparing their docking scores to the positive compound
abbapolin, molecules 90, 95, and 97 were found to have high activity. Molecular dynamics
simulations and MMPBSA were conducted to assess the stability of the compounds when
interacting with proteins. The results showed that molecules 95 and 97 had increased
stability, suggesting their potential as promising PLK1-PBD inhibitors. Nevertheless, the
study has certain limitations. Further research and validation are needed to evaluate the
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selectivity of the drug molecules. Additionally, further research is required to validate free
energy, which will be conducted in the future.

4. Materials and Methods
4.1. Compound Preparations

First, a thorough search was conducted to identify known PLK1 inhibitors with
reported IC50 activity, resulting in the collection of 112 active small molecules from various
literature sources. The small molecules collected in SMILES format were subsequently
converted to SDF format using StoneMND Collector (StoneWise, Beijing, China, https:
//stonemind.stonewise.cn/, accessed on 13 July 2023). The small molecules underwent
processing using the Prepare Ligand for QSAR tool in Discovery Studio, leading to the
generation of 112 small ligand molecules. The Generate Training and Test Data algorithm
in Discovery Studio was employed to partition 112 compounds [30–35] into a training set
and a test set, with a training set percentage of 80. Subsequently, a total of 90 compounds
were acquired for the training set, while 22 compounds were obtained for the test set. The
training set was utilized for the generation of a pharmacophore model, whereas the test set
was employed for the assessment of the predictive capacity of the generated pharmacophore
model. Furthermore, this study obtained 52,765 marine drug small-molecule compounds
from a natural marine drug database and subsequently performed molecular preparation
using the LigPrep tool in the Discovery Studio module.

4.2. Pharmacophore Model Generation

The pharmacophore models produced through the 3D-QSAR pharmacophore genera-
tion protocol are linked to distinct chemical characteristics that are crucial for molecular
bioactivity. The Feature Mapping protocol in Discovery Studio was employed to identify
distinct chemical features present on the molecules in the training set. These features,
namely hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HYD),
and ring aromatic (RA), were chosen for the 3D-QSAR pharmacophore generation process.
The FAST algorithm was utilized to produce satisfactory conformations for each compound,
using an energy threshold of 10 kcal/mol, resulting in a maximum of 255 generated con-
formations. The uncertainty for the training and test sets was established at 1.5. The IC50
value of individual training set compounds was chosen as the activity attribute during
the pharmacophore generation process, while the energy threshold was held constant at
20 kcal/mol. The minimum feature distance was established at 2.97, while the maximum
excluded volume was designated as zero. The pharmacophore model was developed using
important statistical parameters including total cost value, cost difference, error, root mean
square deviation (RMSD), correlation coefficient (r2), and pharmacophore features.

4.3. Validation of a Pharmacophore Model

To assess the predictive capacity of the pharmacophore model we developed for
accurately forecasting the activity of molecules and identifying active compounds from
a database, we employed cost analysis and test set analysis to validate the model. The
HypoGen module in Catalyst provides information on three categories of costs: fixed cost,
zero cost, and total cost. The term “fixed cost”, also referred to as ideal cost, denotes the
most basic model that can accurately accommodate all the data. “Zero cost”, also referred to
as unrelated cost, denotes the maximum cost of a pharmacophore lacking features and is as-
sessed by averaging the molecular activity data of the training set. Typically, a discrepancy
of 40–60 bits between the overall cost and zero cost suggests a 75–90% probability of accu-
rately reflecting the correlation in the data. A test set comprising 34 compounds, which are
structurally distinct from the training set and exhibit a broad spectrum of activity values,
was employed.

https://stonemind.stonewise.cn/
https://stonemind.stonewise.cn/
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4.4. Database Searching

The virtual screening of chemical databases can serve to discover new and suitable
virtual lead compounds with potential for further development. The advantage of database
retrieval methods is that the compounds retrieved can be easily used for biological testing
as compared to de novo design methods. Pharmacophore models can be used for structure
searching, searching for the structure of composite pharmacophore models in 3D databases,
and predicting the activity of new compounds. Pharmacophore models are commonly
used in 3D databases, where a molecule must meet all the features of the pharmacophore
model to be retained as a hit. In DS, there are two search methods: Fast/Flexible and
Best/Flexible, with Best/Flexible having higher accuracy and yielding better results. In
this experiment, we chose the Best/Flexible search option to retrieve our database.

4.5. ADMET

The pharmacokinetic method of ADMET (drug absorption, distribution, metabolism,
excretion, and toxicity) is important in drug design and drug screening. The prediction
of the ADMET properties of drugs can effectively guide the structural optimization and
transformation, improve the success rate of drug research and development, and reduce
the cost of drug research and development. We analyzed the ADMET descriptors of marine
molecules selected by pharmacophore. This research was carried out through the Calculate
Molecular Properties function of the Discovery Studio platform. The blood–brain barrier
permeability (BBB), water solubility, intestinal absorbance, hepatotoxicity, plasma protein
binding, and CYP2D6 enzyme inhibition descriptors of the drug were predicted.

4.6. Scaffold Hopping Replace Fragment Protocol

Scaffold hopping is the process of replacing the core skeleton of a ligand with a new
moiety with a similar function to improve the properties of a compound or to find com-
pletely new compounds with similar functions. The Replace Fragment protocol identifies
isosteric fragments from the default fragment libraries, and the original fragment is au-
tomatically replaced to create novel ligands. Fragments are judged isosterically if they
are similar to the original fragment, where similarity is defined by the user through the
selected molecular properties and fingerprints. By default, the properties of number of
rings, number of aromatic rings, and molecular surface area are used to calculate the
similarity as Euclidean distance. These properties have been shown to give the best balance
between chemotype diversity and isofunctional similarity with the original lead com-
pound [36]. In this study, the Replace Fragment module of the Discovery studio platform
was used to generate potential replacement fragments based on protein active sites, namely
small-molecule structures.

4.7. Molecular Docking

Molecular docking is a technique that can be utilized to investigate the most favorable
binding conformation between compounds and their respective targets. Hence, to enhance
the screening of compounds with favorable target inhibition activity, we employed the
PLK1 (PDB ID: 3C5L) protein structure as the target for molecular docking by using
the CDOCKER module in Discovery Studio. We downloaded the PLK1 protein (PDB
ID: 3C5L) from the Protein Data Bank (PDB) website (https://www.rcsb.org/, accessed
on 27 August 2023). We utilized the Protein Preparation Wizard tool in Maestro 11.8 to
prepare the protein molecule, which involved assigning bond orders, hydrogenating, and
eliminating water molecules beyond 5 Å during the initial processing. To further refine
the protein molecule, we optimized the protonation states of residues at pH 7.0 using
PROKA. Furthermore, we collected the heavy atoms of the protein molecule with an RMSD
of 0.3 Å and then minimized the protein molecule using the OPLS_2005 force field. The
binding site of PLK1 (PDB ID: 3C5L) is determined by the original ligand, with the center
coordinates of the docking site being 5.79976, 33.8292 and 58.4005, 8.94014. The docking
radius was established at 17, with the original ligand serving as the focal point, and

https://www.rcsb.org/
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a sphere with a docking radius of 10 was designated as the active site. The docking priority
was configured to high quality, the spatial hot-spot number was set to 100, and the ligand
conformation generation method was specified as BEST for the operation. To differentiate
and ascertain the molecules with superior target binding activity, we opted for the novel
inhibitor abbapolin [16], which exhibits inhibitory activity, for our molecular docking
studies. Compounds with docking scores exceeding a certain threshold were deemed to
warrant further research. Prediction of the structural information of the three selected
molecules was performed using ChemDraw 14.0.

4.8. Molecular Dynamics

The text describes the evaluation of the atomic stability of different ligands on the
protein PLK1 using molecular dynamics with the AMBER99SB-ILDN force field in GRO-
MACS [37,38]. The ligands 90, 95, and 97 and the positive compounds were analyzed in
a 50 ns molecular dynamics simulation with the protein receptor system. The protein was
processed using the AMBER99SB-ILDN force field to generate topology and coordinate
files. The Bio2byte web server (https://www.bio2byte.be/, accessed on 17 October 2023)
was used to generate topology file for molecules A cubic box with a radius of 1.5 nm
and the SPC216 water model were used to define periodic boundary conditions (PBC).
Additionally, the genion tool was used to neutralize the system by adding counter ions
(Na+ ions and Cl− ions). The final system contains 200,059 water molecules and two Cl−

ions. All systems underwent energy minimization using the steepest descent algorithm
for 50,000 steps. The systems were equilibrated at 300 K in two steps: constant particle
number, volume, and temperature (NVT) and constant particle number, pressure, and
temperature (NPT) for 1 ns. During the equilibration process, temperature and pressure
were regulated by the Berendsen thermostat and Parrinello–Rahman barostat, respectively.
Long-range electrostatic interactions and covalent bonds were maintained using the particle
mesh Ewald (PME) and the linear constraint solver (LINCS) methods. The final molecular
dynamics simulation ran for 50 ns, with file updates at 10 ps intervals [39–41].

4.9. MM-PBSA

The gmx_MMPBSA 1.5.2 package was used to calculate the free energy using the
MM/PBSA (molecular mechanics/Poisson–Boltzmann surface area) method [42]. The
source of input data was the trajectory (last 80% of frames) generated by GROMACS in the
process of molecular dynamics simulation of target associates. The dielectric interface was
implemented using the level-setting function. At the same time, nonpolar solvation free
energy was modeled with SASA (solvent accessible surface area). The external dielectric
constant was equal to 80, and the internal dielectric constant was 2. The contribution of the
entropy component was calculated by the IE (interaction entropy) method.

5. Conclusions

PLK1 is considered a key target for cancer treatment. In this study, a 3D quantitative
structure–activity relationship (3DQSAR) pharmacophore model was created and vali-
dated using 112 small molecules with specific activity. The model was then used to screen
a library of marine compounds, resulting in the identification of 500 molecules for ADMET
prediction. Three molecules with favorable drug-like properties were chosen for further in-
vestigation. These molecules underwent scaffold hopping, resulting in 98 new compounds
with improved drug-like properties and increased potency. Molecular docking was carried
out, and the compound abbapolin was identified as a promising candidate, confirming
the high activity of molecules 90, 95, and 97. Molecular dynamics simulations were then
conducted to assess the stability of the compounds with proteins, and the binding energies
of the ligand–protein complexes were calculated. Analysis revealed that molecule 95 and
97 show potential as novel PLK1 inhibitors, opening up new possibilities for the targeted
treatment of associated cancers.

https://www.bio2byte.be/
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