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Abstract: The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological prop-
erties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging
effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present
study, we determined that CHE inhibited senescence-associated β-galactosidase (SA-β-gal)-stained
senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression
of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly,
CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein
1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq),
we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha
motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate
activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essen-
tial for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited
LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown
of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study
has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may
be a promising anti-aging agent.
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1. Introduction

The number of elderly individuals is continuously and gradually expanding. Accord-
ing to the World Health Organization (WHO), projected statistics indicate that by 2050,
the worldwide population of individuals aged 60 years and older is expected to double,
reaching a total of 2.1 billion. Additionally, it is anticipated that the population aged
80 years or older will triple from 2020 to 2050, reaching an estimated 426 million [1]. The
prevalence of chronic diseases, including cranial nerve disorders, cardiovascular disease,
cancer, and diabetes, is significantly associated with aging [2,3].

Cellular senescence is a significant hallmark of the aging process and is characterized
by a permanent halt in cell division and irreversible cell cycle arrest [4]. Cellular senescence
was first reported in 1961 by Hayflick and Moorhead, who observed senescence in human
fibroblasts after repeated subculturing [5]. Senescent cells are in a state of irreversible cessa-
tion of the cell cycle while retaining their viability. Control of cell cycle arrest during cellular
senescence primarily relies on regulatory pathways involving p53/p21 and p16/RB [6].

Mar. Drugs 2024, 22, 127. https://doi.org/10.3390/md22030127 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md22030127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0001-8700-209X
https://orcid.org/0000-0002-1216-0218
https://orcid.org/0000-0003-1107-2651
https://orcid.org/0000-0002-0322-2018
https://doi.org/10.3390/md22030127
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md22030127?type=check_update&version=2


Mar. Drugs 2024, 22, 127 2 of 16

Various factors associated with senescence, including telomere attrition, reactive oxy-
gen species (ROS), and oncogenic stress, stimulate the activation of p53 and upregulate
p21 or p16, leading to the development of a senescence-associated secretory phenotype
(SASP) [7–9]. Caveolin-1, a key structural component of caveolae, plays a critical role in
regulating replicative senescence. The expression of caveolin-1 is upregulated in senescent
HDFs [10], and depletion of caveolin-1 in senescent human diploid fibroblasts leads to a
transformation in their morphology, resembling a non-senescent shape [11]. Furthermore,
ectopic expression of caveolin-1 in bone marrow mesenchymal ST2 cells promotes the
expression of p53 and p21 [12]. On the other hand, recent studies have demonstrated that
senescent cells exhibit elevated autophagy [13], and altered autophagy patterns have been
observed in senescent stem cells [14], suggesting the potential involvement of autophagy
in cellular senescence.

Recently, compromised autophagy has been identified as a hallmark of aging [4].
Autophagy is an essential cellular mechanism responsible for maintaining cellular home-
ostasis and facilitating differentiation, development, and survival by selectively eliminating
molecules and subcellular components such as nucleic acids, proteins, lipids, and organelles
through lysosome-mediated degradation [15]. Accumulating evidence has reported that
autophagy is intimately involved in the regulation of aging and lifespan. For example,
transcriptomic profiling in Saccharomyces cerevisiae demonstrated that short-lived mu-
tants exhibit impaired autophagy compared to long-lived mutants [16]. Furthermore,
knockdown and/or mutation of autophagy-associated genes such as autophagy-related
protein 8 (ATG8), autophagy-related protein 1 (ATG1), Beclin 1 (Becn1), and autophagy-
related protein 7 (ATG7) in Caenorhabditis elegans or mice shorten lifespan [17,18]. In
addition, transgenic mice overexpressing Atg5 exhibit characteristics associated with anti-
aging effects, including improved insulin sensitivity and a leaner phenotype, which are
attributed to enhanced autophagy activation [19]. Therefore, it is crucial to identify agents
and regulators that modulate autophagy during the aging process, specifically in relation
to senescence.

Halophytes are plant species that can tolerate high salinity levels in their growth envi-
ronment. Extracts or active substances derived from these plants are considered potentially
useful natural products. C. heterocarpa is a biennial herb and salt-tolerant plant found on
the sandy shores of South Korea [20]. Accumulating evidence has demonstrated that C.
heterocarpa plays key roles in various biological activities, including anti-tumor effects [21],
anti-inflammatory properties [22], anti-adipogenic effects [23], and UVB-protective charac-
teristics [24]. However, the effect of C. heterocarpa extract (CHE) on aging and rejuvenation
regulated by autophagy has not been studied.

In the present study, we aimed to investigate the rejuvenating effects and precise
mechanism of action of CHE. The rejuvenating effects of CHE were assessed using the
senescence-associated-β-galactosidase (SA-β-gal) assay, and the expression of senescence
marker proteins, including p53, p21, and caveolin-1 were analyzed in senescent human
dermal fibroblasts (HDFs). Furthermore, we examined the regulatory effect of CHE on
autophagy using the LC3 puncta assay, lysotracker, and gene silencing. To identify the target
genes of CHE, we performed RNA sequencing (RNA-seq) and analyzed the bioinformatics
data. In addition, we analyzed the chemical constituents of CHE using a high-resolution
liquid chromatograph-mass spectrometer (HR LC-MS).

2. Results
2.1. CHE Reverses the Cellular Senescence in Senescent HDFs

To determine the appropriate concentration of CHE for treating HDFs, we performed
a cell viability assay using young (passage number < 10) and old (passage number > 35)
HDFs. The cells were treated with 10, 20, 40, and 80 µg/mL of CHE for 24 and 48 h. We
determined that CHE exhibited no cytotoxicity at concentrations up to 80 ug/mL in both
young and old HDFs (Figure 1A,B). Next, we conducted the SA-β-gal assay to confirm the
replicative senescence in old HDFs and to investigate the potential inhibitory effects of
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CHE on this senescence. Approximately 80% of old HDFs were stained, whereas less than
3% of young HDFs were stained (Figure 2A,B). Importantly, CHE markedly inhibited the
number of stained old HDFs compared to that of vehicle-treated old HDFs (Figure 2A,B). In
senescent cells, cell cycle arrest is mediated by caveolin-1 through the p53/p21-dependent
pathway [25]. In line with the report, we performed an immunoblot analysis to assess
the expression of p53, p21, and caveolin-1 in CHE-treated old HDFs. These protein levels
were significantly decreased after treatment with CHE (Figure 2C,D). Next, we investigated
whether CHE affects the alteration of cell cycle distribution using a flow cytometry assay.
The percentage of the G1 phase population was decreased, while the G2/M phase was
increased in response to treatment with CHE (Figure 2E,F), indicating that CHE promotes
cell cycle progression. These results suggest that CHE treatment has the potential to reverse
cellular senescence by restoring normal cell cycle progression.
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Figure 2. CHE reverses cellular senescence of old HDFs. (A,B) Old HDFs were treated with 10, 20, and
40 µg/mL of CHE for 48 h and subjected to a SA-β-gal assay. The stained cells were observed using
microscopy and the results were normalized to the total cell number. Scale bar: 100 µm, ** p < 0.01.
(C,D) The expression of p53, p21 and caveolin-1 in old HDFs were assessed by immunoblot assay
following CHE treatment. Protein expression levels were normalized to β-actin, * p < 0.05. (E,F) The
cell cycle distribution of old HDFs treated with CHE was evaluated using a flow cytometry assay.
* p < 0.05.

2.2. Regulation of Autophagy by CHE in Senescent HDFs

Autophagy is generally considered to inhibit cellular senescence by eliminating dam-
aged macromolecules and organelles. In addition, our recent results demonstrated that
the activation of autophagy by Rb2, a ginsenoside, suppressed cellular senescence [10]. As
CHE inhibits senescence in old HDFs (Figure 2), we hypothesized that CHE may affect the
regulation of autophagy. LC3B is a well-known protein marker and an essential component
for the formation of autophagosomes and autolysosomes. Its presence can be monitored
using an LC3B puncta assay [26]. Therefore, we performed immunohistochemistry to
detect LC3B puncta in CHE-treated HDFs. LC3B puncta were largely induced by CHE
treatment compared to vehicle-treated control cells (Figure 3A,B). To further investigate the
effect of CHE on LC3B, we assessed the LC3B protein expression in CHE-treated old HDFs.
We found that LC3B protein levels were strongly increased by CHE treatment (Figure 3C,D).
These results indicated that CHE may be a regulator of autophagy.
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Figure 3. Effect of CHE on regulation of autophagy. (A,B) The induction of endogenous LC3B puncta
formation (yellow triangles) by CHE was measured by ICF assay, * p < 0.05. (C,D) The expression of
LC3B in old cells was evaluated by immunoblot assay following CHE treatment. LC3B expression
level was normalized to β-actin, * p < 0.05.

2.3. CHE Promotes Autophagic Flux

Elevated LC3B protein levels indicate either the formation of an autophagosome or
the inhibition of autophagic flux. To assess the effect of CHE on autophagic flux, we
examined changes in p62 protein expression to discern whether it induces or inhibits the
process. The p62 protein serves as a mediator for the delivery of autophagic substrates to
autophagosomes, and its reduction is implicated in the activation of autophagic flux [27].
Notably, CHE reduced p62 protein levels (Figure 4A,B). For further conformation, we used
bafilomycin A1 (BafA1), a well-known inhibitor of the late stage of autophagic flux. The
reduced protein levels of p62 and LC3B induced by CHE were obviously recovered by BafA1
treatment, indicating that CHE induces p62 degradation by autophagy (Figure 4C,D). Given
that lysosomal-dependent degradation is a major mechanism in autophagy, we employed
lysotracker dye, a tool widely utilized for assessing lysosomal activity associated with
autophagic processes. As expected, old HDFs treated with CHE were largely stained by
lysotracker, indicating that CHE enhanced lysosomal function. These results demonstrate
that CHE induces autophagic flux.
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Figure 4. CHE regulates autophagic flux. (A,B) The expression of p62 in old HDFs was assessed by
immunoblot following CHE treatment, * p < 0.05. (C,D) The expression of LC3B and p62 was assessed
by immunoblot assay. Old HDFs were pre-treated with BafA1 (20 nM) for 2 h and then treated with
CHE (20 µg/mL) for an additional 24 h, * p < 0.05. (E,F) Effect of CHE on lysosomal activation. Old
HDFs treated with the indicated concentrations of CHE for 24 h were stained with lysotracker, and
the fluorescence intensity was quantified using image J software version 1.51, * p < 0.05.

2.4. CHE Affects Leucine-Rich Repeat and Sterile Alpha Motif-Containing 1 (LRSAM1)
Expression and Adenosine-Monophosphate Activated-Protein Kinase (AMPK)-Mammalian
Target of Rapamycin (mTOR) Pathway

Because CHE activates autophagic flux (Figure 4), we sought to identify the target
genes and signaling pathway of CHE. To this end, we performed RNA sequencing on CHE-
treated old HDFs. Within a pool of 24,583 human genes, we scrutinized a subset of 211 genes
associated with autophagy. These genes were retrieved from QuickGO (Gene Ontology
annotation, https://www.ebi.ac.uk/QuickGO/annotations (accessed on 1 January 2024)).
Notably, CHE significantly increased the RNA expression of LRSAM1 (Figure 5A and
Supplementary Table S1), an important regulator of autophagy [28]. Consistent with these
results, CHE also increased LRSAM1 protein expression (Figure 5B,C). Given that the
AMPK-mTOR pathway is a critical driver of autophagy activation [29], we investigated
the effect of CHE on the regulation of this pathway. CHE inhibited phosphorylation of
mTOR at Ser 2448, while it increased AMPK phosphorylation at Thr 172 (Figure 5D,E).
Furthermore, the phosphorylation of ULK1 at Ser 555, which is phosphorylated by AMPK
and induces its activation, was also promoted by CHE, indicating that CHE activates the

https://www.ebi.ac.uk/QuickGO/annotations
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AMPK-mTOR signaling pathway (Figure 5D,E). These results suggest that the activation
of autophagic flux by CHE is dependent on the AMPK-mTOR pathway and LRSAM1
expression.
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Figure 5. Identification of target genes and signaling pathways of CHE. (A) Heatmap showing
RNA-seq results. The RNA was extracted from old HDFs treated with CHE (20 µg/mL) for 24 h
(n = 3). (B,C) The expression of LRSAM1 was evaluated by immunoblot assay following CHE
treatment. LRSAM1 expression level was normalized to β-actin, * p < 0.05. (D,E) The expression and
phosphorylation level of AMPK, mTOR and ULK1 were assessed by immunoblot assay following
CHE treatment. * p < 0.05.

2.5. Depletion of LRSAM1 Suppresses the CHE-Induced Reversal of Cellular Senescence by
Inhibiting Autophagy

To confirm the role of LRSAM1, a target gene of CHE, in regulating cellular senescence
mediated by autophagy, we established LRSAM1 knockdown in old HDFs using three
different small hairpin RNAs (shRNAs) targeting LRSAM1. We found that LRSAM1
depletion inhibited LC3B expression, indicating that LRSAM1 could affect autophagy
regulation (Figure 6A,B). Therefore, we hypothesized that LRSAM1 is associated with the
regulation of CHE-induced autophagy flux. To evaluate this hypothesis, we performed
a lysotracker assay on old HDFs with LRSAM1 knockdown. Importantly, depletion of
LRSAM1 abrogated CHE-induced lysosomal activity (Figure 6C,D). To further confirm the
correlation between the rejuvenating effect induced by CHE and LRSAM1, we conducted a
SA-β-gal assay on LRSAM1-knockdown old HDFs treated with CHE. Notably, we found
that LRSAM1 depletion significantly inhibited the CHE-induced reversal of senescence in
these cells (Figure 6E,F). Collectively, these data suggest that LRSAM1 plays a crucial role
in the CHE-induced rejuvenating effect of senescent HDFs.
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senescence through the activation of autophagy. Mechanistically, CHE selectively in-
creased the expression of LRSAM1 and modulated the mTOR-AMPK pathway. 

Previous studies have reported that libanoridin, an ingredient of Corydalis heterocarpa, 
protected ultraviolet-B (UVB) stress through inhibition of the mitogen-activated protein 
kinase (MAPK) pathway and AP-1 in human keratinocyte cells [30]. In addition, (2′S)-

Figure 6. The knockdown of LRSAM1 inhibits autophagy and the CHE-induced rejuvenation in old
HDFs. (A,B) Generation of old HDFs with LRSAM1 knockdown using three different of small hairpin
RNAs that target LRSAM1. (C,D) Depletion of LRSAM1 suppresses lysosomal function induced by
CHE. Old HDFs with LRSAM1 knockdown were treated with 20 µg/mL of CHE for 24 h. The cells
were stained with lysotracker for 1 h, and the fluorescence intensity was quantified using image J
software, * p < 0.05. (E,F) LRSAM1 is an important regulator for CHE-induced rejuvenation in old
HDFs. Old HDFs with LRSAM1 knockdown were treated with 20 µg/mL of CHE for 24 h. The cells
were stained with SA-β-gal solution and observed using microscopy. The results were normalized to
the total cell number. Scale bar: 100 µm, ** p < 0.01.

3. Discussion

In this study, we revealed the rejuvenating effect of CHE by conducting SA-β-gal
assays, immunoblot assays, and RNA-Seq. We demonstrated that CHE reverses cellular
senescence through the activation of autophagy. Mechanistically, CHE selectively increased
the expression of LRSAM1 and modulated the mTOR-AMPK pathway.

Previous studies have reported that libanoridin, an ingredient of Corydalis heterocarpa,
protected ultraviolet-B (UVB) stress through inhibition of the mitogen-activated protein



Mar. Drugs 2024, 22, 127 9 of 16

kinase (MAPK) pathway and AP-1 in human keratinocyte cells [30]. In addition, (2′S)-
columbianetin isolated from CHE reduced UVB-induced cell death by scavenging reactive
oxygen species (ROS) generation in HaCaT keratinocytes [24]. These results allow us to
consider the anti-aging effect of CHE on human skin positively, since UVB irradiation and
ROS generation are major causes of skin aging [31,32]. Our data also demonstrated that
CHE reverses cellular senescence and inhibits the expression of aging marker proteins such
as p53, p21, and caveolin1 in human skin cells.

In addition, we identified the chemical constituents of CHE using a high-resolution
liquid chromatograph-mass spectrometer (HR LC-MS) (Supplementary Figure S1 and
Supplementary Table S2). Although our ethanol extract did not yield previously identified
compounds such as libanoridin and (2′S)-columbianetin, which are typically extracted
by methanol, we identified several compounds in CHE with potential anti-aging effects.
Rutin, also known as quercetin-3-O-rutinoside, is a flavonoid glycoside found in various
plants [33] and has demonstrated the ability to inhibit H2O2-induced cellular senescence
and ROS generation while promoting mRNA expression of collagen in HDFs [34]. Tec-
toridin, a type of isoflavone glycoside isolated from the flowers of Pueraria lobata (Puerariae
Flos), demonstrates antioxidative properties in vitro. This effect is achieved through the
scavenging of hydroxyl and superoxide anion radicals [35]. Furthermore, tectoridin re-
verses lipid peroxidation induced by PM2.5 by activating the nuclear factor erythroid
2-related factor 2 (Nrf2) signaling pathway [36]. The antioxidant activity of esculin, a
coumarin glucoside found in Cortex Fraxini, has been widely studied. Esculin not only
inhibits the overproduction of dopamine-induced ROS in human neuroblastoma cells but
also promotes the activity of superoxide dismutase (SOD) and glutathione (GSH) [37].
In addition, esculin increases the expression of Nrf2 and heme oxygenease-1 (HO-1),
thereby protecting against lipopolysaccharide/D-galactosamine-induced acute liver injury
in mice [38]. The decline of peripheral nerve regeneration after injury is associated with ag-
ing [39]. Isoquercitrin, also known as quercetin-3-β-D-glucoside, is a flavonoid compound
prevalent in a range of medicinal and dietary plants. It has been shown to facilitate the
regeneration of peripheral nerves by mitigating oxidative stress in mice with sciatic nerve
crush injuries [40]. Furthermore, isoquercitrin is observed to induce autophagy in hepa-
tocellular carcinoma cells through the activation of the AMPK/mTOR/p70S6K signaling
pathway [41]. Based on these reports, CHE may potentially be used as an anti-aging agent.

Cellular protein quality control plays a crucial role in governing optimal cellular phys-
iology through three distinct systems, such as the ubiquitin-proteasome, chaperones and
autophagy [42]. Accumulating evidence has revealed that autophagy eliminates harmful
components such as misfolded proteins and damaged organelles, thereby preventing aging
and aging-related diseases including diabetes, metabolic diseases, and neurodegenerative
diseases [43]. Our screening results demonstrated that CHE selectively promoted LRSAM1
expression among autophagy-involved genes. It has been reported that the E3 ubiquitin
ligase LRSAM1 regulates ubiquitin-dependent autophagy responsible for bacterial infec-
tion [44]. Moreover, resveratrol, which is a phytochemical and well-known anti-aging
compound, removed misfolded proteins associated with neurodegeneration by increasing
LRSAM1 protein stability [45]. Importantly, PHD finger protein 23 (PHF23)-induced LR-
SAM1 degradation abrogates the autophagic process [28]. Consistent with these reports,
our results demonstrate that depletion of LRSAM1 not only reduces LC3B expression
but also abrogates CHE-induced autophagy flux. Furthermore, old HDFs with LRSAM1
knockdown did not show a decrease in staining in the SA-β-gal assay, even after CHE treat-
ment, indicating that LRSAM1 is involved in regulating the reversal of cellular senescence
induced by CHE. Thus, our study provides evidence that LRSAM1 could play an essential
role in rejuvenation by regulating autophagy.

The AMPK/mTOR/Ulk1 signaling pathway is essential for energy-sensing and au-
tophagy regulation [46]. The activation of AMPK directly phosphorylates Ulk1, resulting in
the promotion of autophagy [29]. The Ulk1 complex, consisting of Ulk1, autophagy-related
protein 13 (ATG13), focal adhesion kinase family interacting protein of 200 kDa (FIP200),
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and ATG101, is a major initiator for the formation of an autophagosome [47]. mTORC1 is
a pivotal regulator in the process of autophagy through phosphorylation of Ulk1, which
leads to the inactivation of the Ulk1 complex [29]. Furthermore, death-associated pro-
tein 1 (DAP1), a negative regulator of autophagy, is phosphorylated and activated by
mTORC1 [48]. Therefore, mTORC1 has an inhibitory role in autophagy. Here, we show that
CHE inhibits mTORC1, while it induces the AMPK/Ulk1 pathway, suggesting that CHE
could be an activator of autophagy. Thus, further studies are needed to gain a comprehen-
sive understanding of the precise mechanism of CHE’s effect on autophagy, particularly
regarding the connection between LRSAM1 and the AMPK/mTOR/Ulk1 pathway.

In conclusion, our study has revealed the rejuvenating properties of CHE and elu-
cidated the underlying molecular mechanism by which it induces autophagy, specif-
ically through the regulation of LRSAM1 expression and the AMPK-mTOR pathway
(Figure 7). These findings suggest the potential of CHE as a promising candidate for an
anti-aging agent.
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4. Materials and Methods
4.1. Corydalis Heterocarpa Extract

CHE (MABIK NP60190015) was provided by the National Marine Biodiversity In-
stitute of Korea (MABIK). The C. heterocarpa was collected from the coastline of Yeosu,
Jeollanam-do, Korea, in June 2017. To obtain the extract, the C. heterocarpa specimens were
first subjected to three rounds of washing with tap water and then freeze-dried using a
freeze dryer (OPERON FDT-8650). The freeze-dried biological sample powder (30 g) was
pulverized and suspended in 400 mL of 70% ethanol (EtOH), then subjected to three succes-
sive extractions at room temperature using an ultrasonic extractor (DAIHAN WUC-N30H)
operating at a frequency of 40 kHz for a duration of 60 min per extraction cycle. The
resulting mixture was then filtered using filter paper (Whatman 2V Folded Filters Diameter
320 mm 100 Circles, Product 1202-320), and the extract was obtained through evaporation
using a rotary evaporator (Buchi CH/R-210).
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4.2. Cell Culture and Treatment

Primary human dermal fibroblasts (HDFs), obtained from the Coriell Institute for
Medical Research (cell line AG08498), were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic
solution. Subculturing of HDFs was performed at a 1:4 ratio when the cells reached
approximately 80–90% confluence in 100 mm cell culture dishes, and they were maintained
until reaching senescence. Cultures of young cells corresponded to passages 8–10, while
those of old cells corresponded to passages 34–36. For treatment with CHE, the extract
was dissolved in dimethyl sulfoxide (DMSO) and applied at the indicated dose and for the
specified incubation time.

4.3. CCK-8 Assay

HDFs were seeded at 3 × 103 cells/well in 96-well plates and incubated for 24 h. The
cells were treated with 10, 20, 40, and 80 µg/mL of CHE for 24 h and 48 h. Subsequently,
10 µL of CCK-8 solution was added to each well and incubated for 1 h at 37 ◦C. After
gentle shaking, the absorbance was measured at 450 nm using a microplate reader (Infinite
200 PRO, Tecan, Männedorf, Switzerland).

4.4. Senescence-Associated β-galactosidase Staining Assay

The young and old HDFs were seeded at 3 × 104/well into 12-well plates and cultured.
The cells were exposed to the indicated concentrations of CHE (10, 20, and 40 µg/mL).
After incubation for 48 h, SA-β-gal staining was performed using a SA-β-gal staining kit
according to the manufacturer’s instructions. In brief, the fixed cells were stained with
500 µL of β-galactosidase staining solution for 16 h at 37 ◦C. Stained cells were imaged at a
magnification of ×100 using a microscope equipped with a camera (Eclipse Ti2-U, Nikon,
Tokyo, Japan). The quantification of SA-β-gal-positive cells was performed by counting
cells in three randomly selected fields.

4.5. Western Blotting

Old HDFs were treated with CHE at the indicated concentrations, and the cells were
disrupted by EBC buffer (120 mM NaCl, 0.5% NP-40, 50 mM Tris-Cl, pH 8.0) containing
a protease inhibitor cocktail. The whole protein lysate was obtained by centrifugation
at 13,000× g for 10 min. Protein concentration was determined using the BCA protein
kit (Thermo Fisher Scientific, Vantaa, Fin-land). Equal amounts of protein (30 µg) were
separated on 8–15% SDS-PAGE gels and transferred to a nitrocellulose membrane. The
membrane was blocked using 5% skim milk in tris-buffer saline with 0.1% Tween-20 (TBST)
for 1 h at RT and then incubated with the indicated primary in 3% skim milk overnight
at 4 ◦C. After washing three times with TBST, the blots were hybridized with secondary
antibodies for 1 h at RT. Protein expression bands were visualized using Azure Biosystems
and quantified using the image J program. The antibodies used in this study are listed in
the table below (Table 1).

Table 1. The list of antibodies used in this study.

Antibodies Company Catalog

p53 Santa Cruz Biotechnology sc-126

p21 Cell Signaling Technology 2946

caveolin-1 Cell Signaling Technology 3238

β-actin Santa Cruz Biotechnology sc-47778

LC3B Novus Biologicals NB100-2220

p62 Novus Biologicals NBP1-48320

p-AMPK Cell Signaling Technology 2531
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Table 1. Cont.

Antibodies Company Catalog

AMPK Cell Signaling Technology 2532

p-mTOR Cell Signaling Technology 5536

mTOR Cell Signaling Technology 2972

p-ULK1 Cell Signaling Technology 6888

ULK1 Cell Signaling Technology 4773

LRSAM1 Cell Signaling Technology 28405

4.6. LC3B Puncta Formation

Old HDFs were seeded into a chamber slide, cultured, and treated with the indicated
concentrations of CHE for 24 h. The cells were fixed with 4% formalin and permeabilized
using 0.5% Triton X-100/PBS, followed by blocking using 3% BSA/Tween-20/PBS for 1 h
at RT. Subsequently, the cells were subjected to overnight hybridization with a primary
antibody against LC3B in 3% BSA/PBS at 4 ◦C. After washing three times, the cells were
incubated with an Alexa 488-conjugated secondary antibody for 1 h at RT. The visualization
of LC3B puncta was accomplished using a fluorescence microscope. The intensity was
measured using the image J program.

4.7. Measuring Autophagy-Associated Lysosomal Activity

Old HDFs were seeded into chamber slide and treated with 10, 20, and 40 µg/mL of
CHE for 24 h. The cells were then treated with LysoTracker Green DND-26 (100 nM) for
1 h, and the fluorescence was observed using a fluorescence microscope. The intensity of
Lysotracker and Hoechst was measured using the image J program, and the lysosomal
activity was normalized to Hoechst intensity.

4.8. Identification of Compounds in CHE Using LC/MS

The CHE was analyzed using a Thermo Orbitrap 120 mass spectrometer (Thermo
Fisher Scientific; Waltham, MA, USA) coupled to the AQUITY UPLC system. The chromato-
graphic separation was performed on a Hypersil GOLD C18 column (150 mm × 2.1 mm,
3 µm, Thermo Fisher). The mobile phases consisted of 0.1% formic acid in ultrapure wa-
ter (A) and 0.1% formic acid in acetonitrile (B). The flow rate and injection volume were
0.2 mL/min and 3 µL, respectively. The total chromatographic separation runtime was
20 min. The mass spectra were obtained in negative ion mode using an ESI source. The
MS conditions were optimized as follows: the ion transfer tube temperature was set to
320 ◦C and the vaporizer temperature to 275 ◦C, with an acquisition mass range for m/z
of 100–1500 in negative ionization mode. Compounds from CHE were rapidly identified
based on their precise molecular masses and MS2 fragment ions using Compound Dis-
coverer software version 3.3 (CD, Thermo Fisher Scientific, Chicago, IL, USA). The ions
[2M-H]−1, [M-2H]−2 and [M-H]−1 were set as the base peaks in CD, and the minimum
peak intensity threshold was set to 60,000 to collect the MS data. The minimum num-
ber of isotopic peaks was 1, the minimum scan point was 5, and the MS tolerance was
5 ppm. The analysis of compounds from CHE identification were performed through
the use of spectral libraries and compound databases available on the mzCloud database
(https://www.mzcloud.org (accessed on 1 January 2024)). This experiment and analysis
were performed at the Korea Polymer Testing & Research Institute (Koptri, Seoul, Republic
of Korea).

4.9. Cell Cycle Distribution Analysis

Old HDFs were seeded at 5 × 105 cells in 100 mm dishes and cultured overnight. The
cells were treated with the indicated concentrations of CHE for 24 h, then trypsinized and
fixed with 70% ethanol at −20 ◦C for at least 2 h. Subsequently, the cells were washed

https://www.mzcloud.org
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with cold PBS and treated with an RNase/propidium iodide solution for 15 min at RT in
dark conditions. The cell cycle distribution was analyzed using the Guava easyCyte flow
cytometer (Merck Millipore, Burlington, MA, USA).

4.10. RNA-Sequencing

Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufac-
turer’s protocol. RNA quality was evaluated by Agilent 2100 bioanalyzer using the RNA
6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands). The quantifica-
tion of RNA was measured by an ND-2000 spectrophotometer (Thermo Fisher Scientific;
Waltham, MA, USA). For control and test RNAs, the construction of the library was per-
formed using the QuantSeq 3′ mRNA-Seq Library Prep Kit (Lexogen, Inc., Vienna, Austria)
according to the manufacturer’s instructions. In brief, 500 ng of total RNA were pre-
pared, an oligo-dT primer containing an Illumina-compatible sequence at its 5′ end was
hybridized to the RNA and reverse transcription was performed. After degradation of
the RNA template, second-strand synthesis was initiated by a random primer containing
an Illumina-compatible linker sequence at its 5′ end. The double-stranded library was
purified by using magnetic beads to remove all reaction components. The library was
amplified to add the complete adapter sequences required for cluster generation. The
finished library is purified from PCR components. High-throughput sequencing was per-
formed as single-end 75 sequencing using NextSeq 500 (Illumina, Inc., San Diego, CA, USA).
For data analysis, QuantSeq 3′ mRNA Seq reads were aligned using Bowtie2 (Langmead
and Salzberg, 2012). Bowtie2 indices were either generated from the genome assembly
sequence or the representative transcript sequences for alignment to the genome and
transcriptome. The alignment file was used for assembling transcripts, estimating their
abundances and detecting differential expression of genes. Differentially expressed genes
were determined based on counts from unique and multiple alignments using coverage
in Bedtools (Quinlan AR, 2010). The RC (Read Count) data were processed based on the
Quantile normalization method using EdgeR within R (R development Core Team, 2020)
using Bioconductor (Gentleman et al., 2004). Gene classification was based on searches
conducted by DAVID (http://david.abcc.ncifcrf.gov/ (accessed on 1 January 2024)) and
Medline databases (http://www.ncbi.nlm.nih.gov/ (accessed on 1 January 2024)). Data
mining and graphic visualization were performed using ExDEGA (Ebiogen Inc., Seoul,
Republic of Korea).

4.11. Materials

Protease inhibitor cocktail (P8340), phosphatase inhibitor cocktail 2 (P5726), phos-
phatase inhibitor cocktail 3 (P0044), bovine serum albumin (A7906), formaldehyde solution
(F8775), and Triton X-100 (X1100) were purchased from Sigma-Aldrich (Burlington, Mas-
sachusetts, USA). Fetal bovine serum (SH30919.03) and antibiotics-antimycotic (SV30079.01)
were purchased from HyClone. LysoTracker Green DND-26 (L7526), Hoechst 33342 (H3570)
and BCA protein assay kit (23225) were purchased from Thermo Fisher Scientific. The
SA-β-gal staining kit (9860) was purchased from Cell Signaling Technology. Dulbecco’s
Modified Eagle’s Medium (LM001-05) was purchased from WELGENE.

4.12. Statistical Analysis

We conducted a minimum of three independent repetitions for all experiments. Statis-
tical analyses were carried out using the Student’s t-test with Graph-Pad Prism software
version 10.2.1 (GraphPad, La Jolla, CA, USA). Results are expressed as means ± standard
deviation. Statistical significance was defined as p-values less than 0.05 or 0.01.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md22030127/s1, Figure S1: High resolution liquid chromatograph-
mass spectrometer (HR LC-MS) profile of C. heterocarpa extract; Table S1: List of target genes involved
in C. heterocarpa extract-regulated autophagy. Table S2: Chemical composition of C. heterocarpa extract
using HR LC-MS analysis methods.

http://david.abcc.ncifcrf.gov/
http://www.ncbi.nlm.nih.gov/
https://www.mdpi.com/article/10.3390/md22030127/s1
https://www.mdpi.com/article/10.3390/md22030127/s1
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