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Abstract: Cyclic imines are a class of lipophilic shellfish toxins comprising gymnodimines, spirolides,
pinnatoxins, portimines, pteriatoxins, prorocentrolides, spiro-prorocentrimine, symbiomines and
kabirimine. They are structurally diverse, but all share an imine moiety as part of a bicyclic ring
system. These compounds are produced by marine microalgal species and are characterized by the
rapid death that they induce when injected into mice. Cyclic imines have been detected in a range
of shellfish species collected from all over the world, which raises the question as to whether they
present a food safety risk. The European Food Safety Authority (EFSA) considers them to be an
emerging food safety issue, and in this review, the risk posed by these toxins to shellfish consumers
is assessed by collating all available occurrence and toxicity data. Except for pinnatoxins, the risk
posed to human health by the cyclic imines appears low, although this is based on only a limited
dataset. For pinnatoxins, two different health-based guidance values have been proposed at which
the concentration should not be exceeded in shellfish (268 and 23 µg PnTX/kg shellfish flesh), with
the discrepancy caused by the application of different uncertainty factors. Pinnatoxins have been
recorded globally in multiple shellfish species at concentrations of up to 54 times higher than the
lower guidance figure. Despite this observation, pinnatoxins have not been associated with recorded
human illness, so it appears that the lower guidance value may be conservative. However, there is
insufficient data to generate a more robust guidance value, so additional occurrence data and toxicity
information are needed.

Keywords: risk assessment; pinnatoxins; gymnodimine; spirolides; shellfish toxins

1. Introduction

Some phytoplankton and benthic microalgae produce marine biotoxins which can
accumulate in the flesh of filter-feeding shellfish species. These toxins can pose a health
risk to humans, and illness due to their presence has been documented throughout history.
Illnesses include paralytic shellfish poisoning (PSP) induced by the saxitoxin class of toxin,
amnesic shellfish poisoning (ASP) caused by domoic acid, neurotoxic shellfish poisoning
(NSP) caused by brevetoxins, diarrhetic shellfish poisoning (DSP) caused by okadaic acid
and dinophysis toxins, and azaspiracid shellfish poisoning (AZP) caused by azaspiracids.
The causative agents of these illnesses are well described, such that regulatory limits can
be applied to protect the health of consumers and to facilitate trade [1,2]. These toxins
have traditionally been detected and quantified using a mouse bioassay (MBA) [3]. The
testing of some shellfish extracts on the NSP/DSP MBA, used for monitoring purposes,
resulted in a potent response in mice with unusually short death times which was not
consistent with NSP/DSP toxins. Analysis of the extracts showed no known toxins and
further investigation resulted in the discovery of cyclic imines [4]. The quantification of
shellfish toxins using the MBA is flawed, as it is based on the death time of mice which
incorrectly assumes that the relationship between the death time and concentration is the
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same for each toxin type [5,6]. In addition, there are ethical concerns regarding the use
of animals for routine monitoring of shellfish toxins [7], and for these reasons the MBA
continues to be replaced by analytical chemical test methods. Development of LC-MS
(liquid chromatography–mass spectrometry) methods now allows the detection of CIs
alongside the ASP, DSP, NSP and AZP toxin groups [8].

2. Hazard Identification

The CI class of lipophilic shellfish toxins is comprised of gymnodimines (GYM),
spirolides (SPX), pinnatoxins (PnTX), portimines, pteriatoxins, prorocentrolide, spiro-
prorocentrimines, symbiomines and kabirimine (Figure 1). These compounds are struc-
turally diverse but share a cyclic imine moiety (C-N double bond) as part of a bicyclic
ring system. Extensive reviews of the chemistry and structures of CIs are available [9–12].
The mode of action of CIs is through the muscle and neuronal nicotinic acetylcholine
receptors [9] and, through the use of cell and tissue assays, CIs have been shown to have
high affinity and broad specificity for these receptor types [12,13]. CIs have been detected
in multiple shellfish species from all around the world.
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In 1980, a large-scale shellfish poisoning event in Japan occurred from the consumption
of Taragi scallops. Initially, this was attributed to CIs, but contamination of the scallops with
the pathogenic bacteria Vibrio parahaemolyticus was later found to be the cause [14]. Since
then, despite the regular detection of CIs in shellfish, there have been no reported human
intoxications. For this reason, CIs are currently not regulated, although the toxicology
working group of the EU Community Reference Laboratory for Marine Biotoxins (CRLMB)
have set a guidance level for SPXs [15], and an assessment by the French Agency for Food,
Environment and Occupational Health and Safety (ANSES) has proposed a provisional
acute reference dose for PnTXs [16].

CIs are considered by EFSA to be an emerging threat, and in this review, current knowl-
edge on CIs will be summarized and the potential risk posed by this class of compound
discussed. In addition, data gaps will be identified.
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3. Hazard Characterization

The following section summarizes the discovery and toxicity of the various CIs.

3.1. Gymnodimines

In 1994, dredge oysters (Tiostrea chilensis) from Foveaux Strait (New Zealand) showed
unusual toxicity in the routine MBA for lipophilic toxins. This resulted in the isolation and
characterization of GYM A [4,17,18]. A later survey of historical New Zealand shellfish sam-
ples showed GYM contamination in eight species of shellfish from areas all around the New
Zealand coast [19]. GYMs were found to be produced by the dinoflagellate Gymnodinium
cf. mikimotoi (later reassigned as Karenia selliformis) and Alexandrium peruvianum. GYM
B [20], C [21], D [22] and E [23] were isolated from these organisms along with 12-methyl
GYM [24] and 16-desmethyl GYM D [23].

In addition to New Zealand, shellfish contaminated with GYMs have been detected in
shellfish collected from Bosnia and Herzegovina [25], Croatia [25,26], France [27], Italy [28],
Morocco [29], South Africa [30], Australia [31], China [32–34], Lebanon [35], Tunisia [36],
Spain [37], New Caledonia [38] and Greece [39]. GYM A has been the dominant compound
observed (Figure 1), but GYM B has been detected in shellfish from Lebanon and GYM D
has been detected in shellfish originating from Spain. In addition, fatty acid esters of GYM
A have been detected in shellfish from Tunisia [40] and China [41].

The characteristic feature of the toxicity induced by CIs is rapid mouse death. As
enough pure GYMs became available, they were tested on mice. Mice dosed at lethal
doses of GYM A were affected within 1 min, showing a rolling gait. Paralysis of the
hind legs was then observed before respiratory distress and abdominal breathing. The
respiratory rate of affected mice then became slower until death, typically 15 min post-
dosing. Mice dosed with sub-lethal doses of GYM A showed paralysis and abnormal
respiration but recovered within 30 min post-dosing. Pre-treatment of mice with the
acetylcholine inhibitors physostigmine or neostigmine protected mice from the toxic effect
of GYM A, which is consistent with their mode of action being on the nicotinic acetylcholine
receptors [42]. This was confirmed in later work utilizing electrophysiological studies and
binding assays [13]. Results of the available toxicity data for GYMs administered by
intraperitoneal (i.p.) injection are presented in Table 1. The two LD50s reported for GYM
A were consistent, but surprisingly the minimum lethal dose (MLD) and the “lethality”
figures were considerably higher. However, these two results were presented purely as
a value with no experiment details. It is therefore difficult to assess the validity of these
figures. When tested in the same study, GYM B was shown to be considerably less toxic
than GYM A by i.p. injection [13].

Table 1. Toxicity of GYMs to mice (µg/kg BW) by intraperitoneal injection.

Compound Mouse Strain Gender State of
Alimentation Parameter Acute

Toxicity Ref

GYM A ? ? ? “lethality” 450 [17]
GYM A ? ? ? MLD 700 [43]
GYM A Swiss albino F Fed LD50 96 (79–118) [42]
GYM A Swiss Webster M ? LD50 80 [13]
GYM B Swiss Webster M ? LD50 800 [13]

Figures in brackets indicate 95% confidence intervals; LD50 = median lethal dose; MLD = minimum lethal dose;
? = these experimental details are unknown.

As expected, GYM A was less toxic when dosed orally compared to i.p. injection
(Table 2). When dosed by gavage, symptoms of toxicity were the same as those observed
with i.p. injection with death times of up to 12 min. This rapid death is unusual for orally
administered compounds, suggesting that the method of dosing may be an issue. Unlike
humans, the stomach contents of mice are paste-like, such that when a liquid is introduced
it can flow around the solid mass to be rapidly absorbed by the duodenum [44]. This
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would result in an overestimation of toxicity, a phenomenon observed for many shellfish
toxins [5]. In contrast, when administered with a solid matrix, the toxin will efficiently mix
with the stomach contents of mice. Consistent with this hypothesis, mice dosed with GYM
A in a solid matrix had longer death times and toxicity was greatly reduced compared to
when the toxin was administered by gavage. Incorporation of GYM A consumed by mice
resulted in no toxicity at a dose rate of 7500 µg/kg. Therefore, although highly toxic when
injected by i.p., GYM A is of low toxicity when administered orally, making it unlikely to
pose a food safety threat. Concentrations of GYMs in shellfish were regularly reported to
be greater than 1 mg/kg shellfish flesh, but despite these very high concentrations there
have been no reports of human illness [4].

Table 2. Oral LD50s of GYM A (µg/kg BW) using Swiss albino female mice.

Compound Method of
Administration

State of
Alimentation Acute Toxicity Ref

GYM A Gavage Fed 750 (600–945) [42]
GYM A Over the tongue a ? 4057 (3750–4390) [42]
GYM A Feeding b Fasted >7500 [42]

Figures in brackets indicate 95% confidence intervals; a GYM A was mixed with ground mouse food to form a
paste which was then administered over the tongue of the mouse; b GYM A was mixed with cream cheese which
was eaten by mice within 30 s; ? = these experimental details are unknown.

3.2. Spirolides

Consistent with the discovery and isolation of GYMs, the SPXs were also identified
due to the very rapid death of mice observed during routine monitoring of shellfish using
the MBA. Shellfish collected from Nova Scotia, Canada in 1992 led to the isolation of
SPXs B and D from the digestive glands of mussels and scallops [45]. In 1996, the same
research group isolated SPXs E and F, again from Canadian shellfish [46], and in 2001,
SPXs A and C as well as 13-desmethyl SPX C were isolated from the same source [47].
SPXs were found to be produced by the dinoflagellate Alexandrium ostenfeldii [48] and
A. peruvianum [24] and further SPX analogues were isolated from these algal species. These
analogues include 13-desmethyl SPX D [49], 20-methyl SPX G [50], 13,19-didesmethyl SPX
C [51], SPX G [51], 27-hydroxy 13,19-didesmethyl SPX C [52], 27-hydroxy 13-desmethyl SPX
C [52] 20-hydroxy 13,19-didesmethyl SPXs C and D [23] and SPXs H and I [53]. As observed
for other CI classes, fatty acid esters of SPXs were detected [54]. SPXs were found in
shellfish from Argentina [55], Croatia [26], France [39], Italy [28], Norway [56], Portugal [57],
Slovenia [58], Spain [59], China [60], Lebanon [35], New Zealand [61], Greece [39] and the
Netherlands [15]. The dominant SPX detected was 13-desmethyl SPX C, but SPX A, 13-
desmethyl SPX D, 13,19-didesmethyl SPX C, SPX C, isoSPX C, 20-methyl SPX G, SPX D,
13,19-didesmethyl SPX C and iso13,19-desmethyl SPX C were also found.

The available information on the toxicity of SPXs administered to mice by i.p. injection
is presented in Table 3. The symptoms of SPX toxicity were consistent with those observed
for GYM, including the characteristic rapid death (3 to 20 min post-dosing). Any mice that
survived for 20 min fully recovered. Some of the studies completed in different laboratories
gave conflicting toxicities. For example, Munday et al. [62] reported the LD50s for 13-
desmethyl SPX C and methyl SPX G to be 6.9 and 8.0 µg/kg, respectively, whereas Otero
et al. [63] reported the LD50 of 13-desmethyl SPX C to be 27.9 µg/kg and the MLD of
20-methyl SPX G to be >63.5 µg/kg. The latter study is therefore reporting considerably
less toxicity. However, comparison of results is not possible due to the lack of details
regarding the mice used (strain, gender, state of alimentation) in the Otero et al. study [63].
This discrepancy could also have been due to the purity of the SPXs used. The study by
Hu et al. [45] gave no experimental details, meaning that the validity of the data cannot
be assessed. Based on the data presented in Table 3, 13-desmethyl SPX C, SPX C and
20-methyl SPX G are the most toxic, followed by SPX A, 13,19-didesmethyl SPX C, 27-
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hydroxy-13-desmethyl SPX C and 27-oxo-13,19-didesmethyl SPX C. SPXs E, F and H were
of low toxicity to mice by i.p. injection.

Table 3. Toxicity of SPX analogues (µg/kg BW) administered to mice by i.p. injection.

Compound Parameter Acute Toxicity Ref

Spirolide A a LD50 37 (35–44) [62]
Spirolide B a LD50 99 [62]
Spirolide B c LD100 250 [45]

Dihydrospirolide B b MLD >1000 [46]
Spirolide C a LD50 8.0 (4.6–16.0) [62]

13-desmethyl spirolide C a LD50 6.9 (5.0–8.0) [62]
13-desmethyl spirolide C LD50 27.9 [63]

27-hydroxy-13-desmethyl spirolide C b MLD >27 [52]
27-oxo-13,19-didesmethyl spirolide C b MLD >35 [52]

13,19-didesmethyl spirolide C b LD50 32 [63]
13,19-didesmethyl spirolide C b MLD 30 [51]

Spirolide D c LD100 250 [45]
Spirolide E b MLD >1000 [46]
Spirolide F b MLD >1000 [46]

20-methyl spirolide G a LD50 8.0 (3.9–14.0) [62]
20-methyl spirolide G MLD >63.5 [63]

Spirolide H a MLD >2000 [53]

Figures in brackets indicate 95% confidence intervals. a Studies used fed, female, Swiss albino mice; b details of
the mice used were not specified; c no experimental details were given.

There are less data available on the oral toxicity of SPX analogues, presumably due to
the larger amount of compound required to perform the testing. The only study is that of
Munday et al. [62], who tested SPXs using several different experimental protocols (Table 4).
As expected, the oral toxicity of SPXs was less than that observed by i.p. injection and
although clinical signs were the same as those previously observed, longer death times
of up to 35 min were reported. SPX was more toxic to mice that had been fasted prior
to dosing, thus highlighting the influence of mouse stomach contents. This phenomenon
is seen regularly for shellfish toxins and the influence of stomach contents on toxicity
has recently been thoroughly investigated [64]. Toxicity of SPXs was higher in mice that
were dosed by gavage as opposed to those fed a matrix containing the toxin. This is not
surprising, and as discussed in Section 3.1, the toxicity observed in mice voluntary fed is
of greater relevance. None of the SPX analogues tested were associated with high toxicity
when voluntarily fed to mice.

Table 4. Oral toxicity of SPX analogues (µg/kg BW) to mice (from Munday et al. [62]).

Compound Gavage Voluntary Feeding
Fed Fasted Fed Fasted

Spirolide A 550 (436–690) 240 (188–298) 1300 (1250–1580) 1200 (1047–3690)
Spirolide B ND 440 (320–500) ND ND
Spirolide C ND 53 (50–63) 780 500 (353–657)

13-desmethyl spirolide C 160 (123–198) 130 (87–166) 1000 (861–1290) 500 (381–707)
20-methyl spirolide G 160 88 (27–120) ND 500 (381–707)

Figures in brackets indicate 95% confidence intervals; female, Swiss albino mice were used in all experiments;
ND = no data available.

3.3. Pinnatoxins

The first pinnatoxin, PnTX A, was isolated in 1995 from the bivalve Pinna muricata
originating from Okinawa, Japan [65]. PnTXs B, C and D were later isolated from the same
Japanese bivalves [66,67]. In 2007, pacific oysters (Crassostrea gigas) from South Australia
induced rapid deaths of mice in routine biotoxin monitoring using the MBA. This led to the
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isolation of PnTXs E, F and G [68]. At this point, the causative organism was unknown, but
Rhodes et al. [69] determined it to be the dinoflagellate Vulcanodinium rugosum and PnTX H
was isolated from this algal species [70]. As observed with other CIs, fatty acid esters were
detected. In this case, it was fatty acid esters of PnTXs A and G [71]. PnTXs have been found
to contaminate shellfish from Canada [71], Chile [72], Croatia [26], France [73], Ireland [58],
Netherlands [58], New Caledonia [38] Norway [74], Spain [75], Mozambique [76], New
Zealand [61], Slovenia [58], Italy [58] and Greece [39]. PnTX G is the most abundant
analogue observed, but PnTXs A, D, E and F have also been detected in shellfish (Section 4).
Although no human illness has been associated with PnTXs in shellfish, an outbreak of
acute dermatitis in Cuba was linked to a bloom of V. rugosum. This affected 60 swimmers
who required medical attention, but all fully recovered within 7–10 days [77]. Furthermore,
artisanal fishermen suffered similar symptoms in the presence of V. rugosum [78]. It is clear
that the V.rugosum bloom was the cause of the skin irritations and this bloom produced
PnTX and portimine, but further work is required to determine whether these CIs are
causal [77].

The acute toxicities of PnTXs are presented in Tables 5 and 6. Early work in 1995
showed that natural PnTX A had an acute toxicity of 135–180 µg/kg by i.p. in contrast
to the synthetic enantiomer which showed no effect even at 5000 µg/kg. The mixture of
PnTXs B and C also showed high toxicity. However, as acknowledged in Table 5, these
studies give no experimental details, so it is not possible to assess their validity. PnTx F
was of higher toxicity than PnTXs E, G and H. PnTX D appears to be of lower toxicity than
PnTX A (Table 5).

Table 5. Toxicity of PnTX analogues (µg/kg BW) in mice by i.p. injection.

Compound Parameter Fed
Acute Toxicity

Fasted
Acute Toxicity

Acute
Toxicity Ref

(+)-Pinnatoxin A b LD99 ND ND 180 [65]
(+)-Pinnatoxin A b LD99 ND ND 135 [79]
(−)-Pinnatoxin A b MLD ND ND >5000 [79]

Pinnatoxin B/C 1:1 b LD99 ND ND 22 [66]
Pinnatoxin D b LD99 ND ND 400 [67]
Pinnatoxin E a LD50 45 (32–58) ND ND [68]
Pinnatoxin E a LD50 57 (39.7–75.3) 48.0 (33.5–63.5) ND [80]
Pinnatoxin F a LD50 16 (12–23) ND ND [68]
Pinnatoxin F a LD50 12.7 (9.5–14.6) 14.9 (12.6–15.8) ND [80]
Pinnatoxin G a LD50 50 (35–66) ND ND [68]
Pinnatoxin G a LD50 48.0 (36.3–68.1) 42.7 (40.0–50.0) ND [80]
Pinnatoxin H a LD50 67 (63–79) ND ND [70]

Figures in brackets indicate 95% confidence intervals; a Swiss albino, female mice were used; b no experimental
details were provided; ND = no data available.

Table 6. Toxicity of PnTX analogues (µg/kg BW) to mice by oral administration.

Compound Gavage Voluntary Feeding Ref
Fed Fasted Fed Fasted

Pinnatoxin E 2800 (2380–3000) ND ND ND [80]
Pinnatoxin F 25.0 (19.1–35.1) 29.9 (25.0–32.0) 50.0 (39.4–62.8) 77 [80]
Pinnatoxin G 150 (105–199) ND 400 (380–470) ND [80]
Pinnatoxin G ND 208 (155–281) ND ND [81]
Pinnatoxin H 163 (139–175) ND ND ND [70]

Figures in brackets indicate 95% confidence intervals; all used female Swiss albino mice, apart from the study by
Sosa et al. [81] which used female CD-1s; ND = no data available.

Only limited oral toxicity data are available for the PnTXs. By gavage, PnTX E had an
LD50 of 2800 µg/kg. As discussed earlier, gavage gives an overestimation of oral toxicity
and therefore the toxicity of PnTX E appears to be low. The acute toxicity of PnTXs F and G
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were 2.0 and 2.7 times lower by gavage than by voluntary feeding. Since voluntary feeding
is the route of administration of most relevance to humans, these data are more informative
than that determined by gavage. There was no difference between the toxicity of PnTX
F to mice that had been fasted or fed prior to dosing. This is unusual and was not the
case for SPXs or GYMs. The two independent determinations of the toxicity of PnTX G
were reasonably consistent (150 and 208 µg, for the studies by Munday et al. [80] and Sosa
et al. [81], respectively). The clinical signs of PnTX toxicity were the same as those observed
for GYMs and SPXs. No observable adverse effect levels (NOAEL) for PnTXs F and G
were determined to be 16 and 153 µg/kg, respectively [80]. It is interesting to compare the
relative toxicities between the i.p. and oral routes of administration. GYM A is 78 times
less toxic orally than by i.p. injection. Similarly, the relative toxicity of the SPXs were
32–73 times less toxic. In contrast, the oral toxicities of the PnTXs are only 3.2–9.4 times
less than that determined by i.p. injection. Since toxicity via oral administration has the
most relevance to human health, this difference is important. By i.p. injection, the SPXs
are more toxic (6.9–37 µg/kg) than the PnTXs (14.9–400 µg/kg), but by oral administration
PnTXs (50–400 µg/kg) are more toxic than the SPXs (500–1200 µg/kg). Based on these data,
it appears that PnTXs are the sub-group of CIs that present the greater food safety risk.

3.4. Other Cyclic Imine Classes

Pteriatoxins (PtTX) A-C were isolated from the Okinawan bivalve Pteria penguin (Japan)
and are thought to be derived from the metabolism of PnTX G in shellfish [68]. When tested
on mice by i.p. injection, clinical signs were said to “resemble those of pinnatoxins” [82].
Acute toxicity data by i.p. injection are presented in Table 7. There are currently no oral
toxicity data available.

A further class of CI, the prorocentrolides, were first isolated in 1988 from a culture of
the dinoflagellate Prorocentrum lima collected from Okinawa, Japan [83]. A further prorocen-
trolide, prorocentrolide B, was later isolated from a P. maculosum culture and was described
as inducing rapid death in mice by i.p. injection [84]. This rapid death is consistent with
that observed for other CIs. A structurally related compound, spiro-prorocentrimine, was
isolated from a P. lima strain collected from Taiwan [85]. All available toxicity data are
presented in Table 7. As detailed in the table, a variable quantity of experimental details
are published for each study. Prorocentrolide appears to be of moderate toxicity, although
toxicity is merely described as “lethality”. In comparison, spiro-prorocentrimine was of
low toxicity. Research into prorocentrolide analogues continues as they have been discov-
ered to have in vitro antitumor activity and are therefore of interest as cancer therapeutic
agents [86]. To date, eight analogues have been described in this sub-group of CIs. This
includes the three detailed above, as well as prorocentrolide C, 4-hydroxy prorocentrolide,
9,51-dihydro prorocentrolide, 30-sulphate prorocentrolide and 14-0-acetyl-4-hydroxy pro-
rocentrolide. These compounds were all isolated from P. lima, with prorocentrolide also
being isolated from P. caipirignum [87].

Table 7. Toxicity of pteriatoxin, prorocentrolide and portimine analogues (µg/kg BW) to mice by i.p.
injection.

Compound Parameter Acute Toxicity Ref

Pteriatoxin A c LD99 100 [82]
Pteriatoxins B and C (1:1) c LD99 8 [82]

Prorocentrolide c “lethality” 400 [83]
Prorocentrolide B a Fast acting ND [84]

Spiro-prorocentrimine c LD99 2500 [85]
Portimine b LD50 1570 (1269–3080) [88]

Figures in brackets indicate 95% confidence intervals; a mice were female CD-1; b details regarding the mice used
were not available; c no experimental details were provided; ND = no data available.
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Portimine, later named portimine A, was isolated from the benthic dinoflagellate
Vulcanodinium rugosum collected from Northland, New Zealand [88]. Acute toxicity testing
using mice showed it to be of low toxicity in comparison to other CIs (Table 7) [88] although
it was highly toxic to mammalian cells in vitro. These in vitro effects include activity
against cancer cells, which makes portimine an attractive target as a cancer therapeutic
agent [89,90]. Portimine B was identified from V. rugosum isolated from Florida, USA. No
in vivo toxicity data are available, but it also showed in vitro effects on mammalian cell
lines, although with less potency than portimine A [91]. Portimine A has been detected in
the digestive glands of shellfish collected from Ingril Lagoon, France, at concentrations of up
to 69.3 µg/kg. These shellfish samples also contained GYMs (617.3 µg/kg), 13-desmethyl
SPX C (25.9 µg/kg), PnTX A (6.6 µg/kg) and PnTx G (273.1 µg/kg) [92].

Another CI compound, kabirimine, was discovered from V. rugosum isolated from
Okinawa, Japan. This compound, structurally related to portimine, was reported to have
anti-respiratory syncytial virus activity [93]. No in vivo toxicity data are available [93].

Symbioimine and neosymbioimine were isolated from a symbiotic marine dinoflag-
ellate, Symbiodinium sp., which is found in a wide variety of marine invertebrates [94].
These compounds showed in vitro activity, sparking interest in them as possible leads in
the development of novel nonsteroid anti-inflammatory drugs [94].

4. Exposure Assessment

Worldwide occurrence data for CIs in multiple shellfish species have been collated (Table 8).

Table 8. The maximum concentrations of GYMs, SPXs or PnTXs (µg/kg) detected in the whole flesh
(unless otherwise specified) of different species of shellfish from around the world.

Country Area Year GYM a SPX b PnTX c Ref

Mussels (various species)
Argentina Beagle Channel 2005–2007 <LOD 68 (1) NT [55]
Bosnia and
Herzegovina Bay of Neum 2017 11.4 NT NT [25]

Canada Eastern Canada 2010–2011 NT NT 83 (G), 1.5
(A) [71]

Chile Beagle Channel 2021–2022 NT NT 100 [72]
Croatia Istrian Peninsula 2018–2019 17.2 17.0 (1) 6.9 [26]

Makarska City Bay 2017 7.4 NT NT [25]
France Corsica 2021 3.5 Low Low [39]

South Brittany 2005 <LOD 14 (1), 7 (2), 2 (3) NT [27]
Atlantic Coast 2005 <LOD 68 (2), 19 (1) NT [27]
Ingril Lagoon 2018 <LOD 12 (total) 473 [39]
Ingril Lagoon 2010 NT NT 1244 [73]
Survey data 2013 NT NT 89 [95]
Ingril Lagoon 2021–2022 NT NT 129 [96]
Prevost Lagoon 2021–2022 NT NT 129 [96]
Thau Lagoon 2021–2022 NT NT 58 [96]
Vic Lagoon 2021–2022 NT NT 318 [96]

Greece Thermaikos Gulf 2008–2009 NT 26 (1) NT [97]
Ireland Dublin 2015 <LOD <LOD 4.6 [58]
Italy 2014–2015 12.1 29.2 (1) + (4) <LOD [28]

Emilia Romagna Coast 2003 NT 13 (1) NT [98]
Mexico Todos Santos Bay NT 1.05 (1) NT [99]
Morocco Essaouira 2014–2015 5.6 <LOD NT [29]
Netherlands Ijmuiden 2015 <LOD <LOD 5.1 [58]
New Zealand Survey 1993–1999 2773 NT NT [19]
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Table 8. Cont.

Country Area Year GYM a SPX b PnTX c Ref

Norway 2009 NT 226 (1), 63 (5), 49 (6) 34 (7) <LOD [56]
Hvaler 2009 NT 3 (5), 5 (7) <LOD [56]
Nordreisa 2009 NT 52 (1), 34 (7) 7 [56]
Nærøy 2009 NT 226 (1), 5 (3), 6 (6), 37 (7) 20 [56]
Vadsø 2009 NT 42 (1), 63 (3), 16 (7) 10 [56]
Vestvågøy 2009 NT 2 (1), 5 (7) 115 [56]
Skjer 2002–2003 NT 44 (7), 103 total NT [50]

Portugal Atlantic Coast 2009–2010 NT 2.2 (1) NT [100]
Slovenia Marobor 2015 <LOD 33 (1) <LOD [58]
South Africa Lambert’s Bay 2008 0.15 NT NT [30]
Spain Galicia NT 78 (1) NT [101]

Galicia 2015 <LOD 6.9 (1) 3.1 [102]
Catalonia 2012 NT 16 (1) 59 [75]
Fangar Bay 2015–2021 Trace Low 38 [103]
Sant Carles de la Rapita 2018 <LOD 28 (1) 4 [58]

Oysters (various species)
Australia SE Queensland 2003–2005 43 NT NT [31]
China Beibu Gulf 2017–2018 40.9 <LOD NT [32]

Beibu Gulf 2018–2022 10.1 19.6 (1) <LOD [33]
Daya Bay 2013–2014 2.64 NT NT [34]

Croatia Istrian Peninsula 2018–2019 40.2 38 (1) 3.59 [26]
France Atlantic Coast 2005 <LOD 47 (1) NT [27]
Lebanon Tripoli, Beirut, Tyre 102.9 (B) 15.1 (1) <LOD [35]
Mozabique Ihaca Island 2020 NT NT 1.6 [76]
New Zealand Foveaux Strait 1996 23,437 NT NT [19]

Rangaunu Harbour 2008 <LOD 4.7 (1)
3.9 (D),
126 (E)
68 (F)

[61]

Spain Galicia 2022 10 (DMD) NT NT [104]
Galicia 2021–2022 <LOD 21 (1) NT [105]
Catalonia 2012 NT 6.6 <LOD [75]

Slovenia Marobor 2014–2015 <LOD 27 4 [58]
South Africa Lambert’s Bay 2008 0.65 NT NT [30]

Clams (various species)
China Weihai, Shandong 2020 3.77 <LOD NT [106]

Ganyu Harbour 2014–2015 5.96 <LOD NT [107]
Croatia Cetina Estuary 2009–2010 6.14 2.1 NT [108]
France Ingril Lagoon 2010 NT NT 95 [73]

Brittany 2005 NT 8 (1) NT [27]
Italy Goro, Caleri and La Spezia 2014 <LOD <LOD 4 [58]
Lebanon Tripoli, Beirut, Tyre 2019–2020 15.8 (B) 5.9 (1) NT [35]
New
Caledonia Noumea 2021–2022 22.6 <LOD 22.6 [38]

Chukchi Sea 2014 <LOD 0.78 (1) <LOD [57]
Lisbon 2015 <LOD 63 (1) <LOD [58]

Spain Galicia 2005 NT 13 (1) NT [109]
Tunisia Boughrara Lagoon 2000–2007 1290 (DG) NT NT [36]
Mozambique Inhaca Island 2020 NT NT 4.5 [76]

Cockles (Acanthocardia turberculata or Cerastoderma edule)
Croatia Cetina Estuary 2009–2010 15.8 5.9 (1) NT [108]
Portugal Lisbon 2015 <LOD 57 (1) <LOD [58]
Spain Galicia 2022 8.8 (D) NT NT [104]

Scallops (Aequipecten opercularis or Pecten novaezelandiae)
Croatia Istrian Peninsula 2018–2019 3.66 <LOD <LOD [26]
New Zealand Survey 1993–1999 66.2 NT NT [19]
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Table 8. Cont.

Country Area Year GYM a SPX b PnTX c Ref

Pipi (Donax deltoides or Paphies australis)
New Zealand Survey 1993–1999 17.7 NT NT [19]
Australia SE Queensland 2003–2005 220 NT NT [31]

Abalone (Haliotis iris)
New Zealand Survey 1993–1999 81.7 NT NT [19]

Limpet (Patella rustica complex or Patella intermedia)
Lebanon Tripoli, Beirut, Tyre 2019–2020 26.9 (B) <LOD <LOD [35]
Portugal Atlantic Coast 2009–2010 NT 1.9 (1) NT [100]

Whelk (Nucella lapillus or Neptunea varicifera)
Portugal Atlantic Coast 2009–2010 NT 1.1 (1) NT [100]

Chukchi Sea 2014 <LOD 20 (1), 7.6 (5), 2.2 (8), 3.3 (9)
(DG) <LOD [57]

Bering Sea 2014 <LOD 1.4 (1), 1.6 (9) (DG) <LOD [57]

Pen Shell (Atrina vexillum)
Mozambique Inhaca Island 2020 NT NT 7.7 [76]

Tellina donacina
Spain Galicia 2021–2022 <LOD NT 63 [105]

“Shellfish”
China Beibu Gulf 2016 211 Low NT [33]
France 2005–2008 <LOD 90 total <LOD [15]
Greece 74 69 (1) 64 [39]
Italy 2002–2008 <LOD 105 total <LOD [15]
Netherlands Ijmuiden 2007 <LOD 9.6 total <LOD [15]
Spain Galicia 2017–2019 23.9 NT NT [37]

a GYM A unless otherwise specified. DMD = 16-desmethyl GYM D. DG = digestive glands; b SPX analogues
are labelled (1) to (9). (1) 13 desmethyl SPX C, (2) SPX A, (3) 13 desmethyl SPX D, (4) 13,19-didesmethyl SPX C,
(5) SPX C, (6) isoSPX C, (7) 20-methyl SPX G, (8) SPX D, (9) 13,19-didesmethyl SPX C. DG = digestive glands;
c PnTX G unless otherwise specified; NT = no data available; <LOD = below the limit of detection.

4.1. Gymnodimines

As described in Section 3.1, gymnodimines have been detected in a range of shellfish
species from around the world (Table 8). However, compared to levels observed in other
countries (max 103 µg/kg), flat oysters (Tiostrea chilensis) from New Zealand had remarkably
high concentrations of GYMs (23,437 µg/kg).

4.2. Spirolides

The highest concentration of SPXs came from blue mussels (Mytilus edulis) collected
from Norway in 2009, with 13 desmethyl SPX C observed at a level of 226 µg/kg shellfish
flesh [56] (Table 8). SPXs have also been detected in processed shellfish samples. In 2020,
13-desmethyl SPX C was observed in the powder of mussels originating from New Zealand
at concentrations of up to 98 µg/kg [110]. This level would be higher than what was
observed in the original “wet” shellfish due to the removal of water during the powder
drying process. Mussel powders are typically used as a dietary supplement, so only small
amounts are consumed as a dose. In Portugal, “mussels in pickle sauce” were found to
contain 66 µg/kg shellfish flesh of 13-desmethyl SPX C [58].

4.3. Pinnatoxins

The Ingril lagoon in France is a hot spot for PnTXs, with concentrations of up to
1244 µg total PnTXs per kg shellfish flesh being found in mussels, a concentration much
higher than that seen in shellfish from anywhere else in the world [73]. PnTXs D, E and
F have been found in oysters collected from the Rangaunu Harbour in New Zealand,
with a total PnTX level of 198 µg/kg being reported. PnTX G was observed in mussels
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collected from Norway at a concentration of 115 µg/kg. Other than these examples, the
concentration of PnTXs in shellfish was consistently <100 µg/kg irrespective of both the
shellfish species and country of origin. PnTXs have also been detected in processed shellfish
samples. Cooked mussels from Chile (5.2 µg/kg) [110] and frozen/canned mussels from
Italy (4 µg/kg), Slovenia (3 µg/kg) and Spain (4 µg/kg) were all found to contain low
levels of PnTX G. Furthermore, “mussels in brine” from Spain (6 µg/kg) and “mussels in
tomato” from Slovenia (12 µg/kg) contained PnTX G [58].

5. Risk Characterization

To assess the risk posed by CIs, a safe concentration of each toxin in shellfish needs
to be compared to the occurrence data presented in Table 8. Using animal toxicity data,
an acute reference dose (ARfD) can by determined by taking the NOAEL and applying
uncertainty factors (safety factors). The default uncertainty factor recommended and used
by the EFSA is 100, which comprises a 10-fold uncertainty factor for inter-species variability
and a 10-fold uncertainty factor for inter-human variability [111,112]. This is also the
approach used by the UK government [113], but some organizations apply additional
uncertainty factors due to limitations in the dataset. From the ARfD, the concentration in
seafood that would not be exceeded by an average person (70 kg) eating a large portion
size of shellfish (400 g) can be determined (safe concentration). The average bodyweight
and large portion size are defined by EFSA [114], although the FAO/IOC/WHO (2004)
Committee noted that a smaller portion size of 250 g would cover 97.5% of consumers [115].

The food safety risk posed by pteriatoxins, prorocentrolides, portimines, symbioimines
and kabirimine can be regarded as low. Of these compounds, only portimine A has been
detected in shellfish (69.3 µg/kg), and the acute toxicity of this compound is low (LD50 by
i.p of 1570 µg/kg in mice). It should also be noted that this toxicity figure was generated
by i.p. injection rather than by the more relevant oral route, meaning that toxicity was
overestimated. Furthermore, the concentration given was µg/kg of digestive glands, where
the toxin will be concentrated, rather than in whole shellfish flesh. These compounds
therefore represent little risk to consumers and indeed they are under investigation as
therapeutic agents. For the remaining CIs, concentrations considered safe in seafood were
calculated using the above rationale (Table 9).

Table 9. Determination of a “safe” concentration of cyclic imines in seafood utilizing the oral mouse
NOAEL and assuming a 70 kg person eats 400 g of shellfish.

GYM SPX PnTX

NOAEL (µg/kg bodyweight) 7500 320 153
Apply safety factors (100×)

(µg/kg bodyweight) 75 3.2 1.53

“Safe” concentration in seafood
(µg/kg shellfish flesh) 13,125 560 268

See below for the origin of the NOAEL data.

For GYM A, the highest dose tested on mice had no effect (7500 µg/kg), so although
this figure was used in the calculation in Table 9, the actual “safe concentration” would be
higher. This can be calculated when a true NOAEL is generated. Comparing the derived
safe concentration of GYMs in shellfish (13,125 µg/kg) alongside the occurrence data
shows that the amount of GYMs detected in most countries is only a fraction of this figure.
The exception is the historic shellfish samples from Foveaux Strait, New Zealand, which
contained GYM concentrations up to 23,437 µg/kg in shellfish flesh. However, in 1994,
since oral toxicity was demonstrated to be low and no human illness had been detected, it
was decided not to regulate GYMs despite the very high concentrations observed [4].

For SPXs, only oral LD50 data have been presented. An unpublished NOAEL of
320 µg/kg for 13-desmethyl SPX C can be used, yielding a guidance figure of 560 µg
SPXs/kg shellfish flesh (Table 9). Previously, the toxicology working group of the EU
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Community Reference Laboratory for Marine Toxins (CRLMB) proposed a guidance level
of 400 µg total SPXs/kg shellfish flesh [15]. However, the rationale for this limit was not
mentioned, so it is hard to critique this objectively. There are no reports of SPXs exceeding
the guidance figure in shellfish collected from anywhere in the world. The CRLMB specifies
a figure for total SPXs and some shellfish samples have been shown to contain a mixture of
SPX analogues. For example, Norwegian mussel samples contained 226 µg/kg 13-demethyl
SPX C, 63 µg/kg SPX C, 49 µg/kg iso SPX C and 34 µg/kg 20-methyl SPX G. It is not
valid to simply total the concentrations to estimate toxicity because the analogues have
different toxicities. To be able to sum the concentrations of the different analogues, toxicity
equivalence factors (TEFs) must be determined and applied. From the data presented to
date, it is unlikely that SPXs pose any threat to human health.

PnTX G is the dominant PnTX species detected in shellfish and there are three studies
that report an oral NOAEL or MLD (75–153 µg/kg). The lower figures of 75 and 120 µg/kg
were generated by dosing PnTX G by gavage, whereas the higher figure of 153 µg/kg was
obtained when mice were dosed with PnTX G by voluntary feeding. Since gavage is known
to overestimate the toxicity of shellfish toxins, the figure determined by feeding is regarded
as the most relevant, and using this figure yields a safe concentration of 268 µg/kg PnTXs
in shellfish (Table 9). This figure is substantially higher than the 23 µg/kg proposed by
Arnich et al. [95]. This study used the NOAEL determined by gavage (120 µg/kg) rather
than that determined by feeding (153 µg/kg), but it was the application of additional
uncertainty factors that was the major driver of the large discrepancy. In addition to the
standard uncertainty factor of 100, Arnich et al. [95] also applied an extra uncertainty
factor of 3 to account for insufficient data and a further uncertainty factor of 3 due to the
severity and pattern of the dose–response curve, giving an overall safety factor of 900.
Comparing our 268 µg PnTX/kg shellfish flesh value to the occurrence data reported in
Table 8 shows that shellfish samples collected from France would at times exceed this figure.
Using the 23 µg/kg value means that in addition to the samples from France, shellfish from
Norway, New Zealand, Canada, Chile and Greece would also exceed this guidance figure
on occasion. Given that shellfish samples from Ingril Lagoon in France have been reported
to be contaminated with PnTX G at concentrations of up to 1244 µg/kg, which is 4.6 and
54 times the two proposed safe limits, it is perhaps surprising that no illness attributable
to PnTX has been reported. It could be argued that illness is going undetected, but an
investigation into PnTX contamination of shellfish collected from Rangaunu Harbour, New
Zealand suggests that this may not be the case. Oysters collected from this harbour were
analysed in 1993–2008 and found to contain PnTXs D, E and F at concentrations of 3.9,
126 and 68 µg/kg, respectively. Although these concentrations well exceed Arnich et al.’s
guidance figure of 23 µg/kg for PnTXs, interviews conducted with 22 consumers of shellfish
from this region in 2008, when the highest PnTX concentrations were detected, reported no
adverse effects. These consumers reported their consumption of shellfish from this region
to be 2.6 times/week for their entire lives. Consistent with the interviews, neither the local
public health agency (Northland District Health Board, Te Runanga o Ngati Kahu) nor the
national food safety regulatory agency (New Zealand Food Safety Authority) recorded any
incidents of illness in Rangaunu Harbour residents over this time period [61].

Due to the lack of human illness from areas where PnTX concentrations in shellfish far
exceed the safe level of 23 µg/kg, it can be concluded that this figure appears to be very
conservative. In fact, the concentrations of PnTX in shellfish from some countries, such as
Ingril Lagoon, France (1244 µg/kg), also exceed the higher guidance value of 268 µg/kg.

6. Discussion

In 2010, the EFSA produced a Scientific Opinion on Marine Biotoxins in Shellfish-Cyclic
Imines [15]. In this report, the available knowledge was collated, and the risk posed by CIs
discussed. The conclusion of this report was that “estimated exposure to SPXs does not
raise concern for the health of the consumer”, although it was highlighted that this was
based on limited data. The risk posed by the other CIs could also not be estimated due to
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lack of data. Since the 2010 Scientific Opinion, CI analysis methods have improved, more
occurrence data have become available and additional toxicology has been performed.

However, despite this additional information, the data on CIs are still limited and
the two proposed safe levels of PnTXs in shellfish (23 µg/kg by French researchers and
268 µg/kg by New Zealand researchers) should be considered provisional. To improve
the accuracy and robustness of the CI risk assessment, additional data are required. This
includes continuing to collect occurrence data in shellfish from around the world. New
analysis methods for the CIs are also required, as many of these toxins exist as fatty acid
esters which are not detected using current methods and their analysis poses a considerable
technical challenge. In some cases, it has been found that these fatty acid esters can
contribute >90% of the total CI concentration [36,71]. Current data illustrate that different
analogues of the same CI sub-groups have different oral toxicities (e.g., PnTX G vs. PnTX
F). Since the total concentration would therefore not be correlated to total toxicity, an
adjustment must be made. This can be achieved by using TEFs, which compare the toxicity
of each analogue to the parent compound of that toxin class. Appling TEFs allows a total
concentration, in terms of parent toxin equivalents, to be calculated which contains the
adjustment for toxicity differences. To be able to relate CI concentrations in shellfish to
toxicity, TEFs must be determined and applied, which would require well characterized
reference material to be isolated. To give greater certainty on the risk that CIs could pose to
human health, better toxicity data need to be generated using pure compounds. In addition
to further acute toxicity determinations, a sub-chronic study whereby the test compound is
dosed for ≥21 days is required for the toxicological assessment of CIs. The results of a sub-
chronic study would also allow a tolerable daily intake (TDI) to be generated. While these
data gaps are relevant for each of the CI groups, it is the PnTXs that should be prioritised.

7. Conclusions

A review of all available data suggests that spirolides, portimines, pteriatoxins, proro-
centrolide, spiro-prorocentrimine, symbiomines and kabirimine pose little risk to human
health through consumption of shellfish. Despite occasional very high concentrations of
GYMs and PnTXs in some shellfish collected from hot spots around the world, no illnesses
have been reported, even when consumers have been directly questioned. Therefore, the
risk of GYM and PnTXs to humans does not appear to be high. However, further occurrence
and toxicity data are required to better define the risk posed by these compounds.
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