
Int. J. Environ. Res. Public Health 2013, 10, 2606-2620; doi:10.3390/ijerph10072606 

 

International Journal of 

Environmental Research and 

Public Health 
ISSN 1660-4601 

www.mdpi.com/journal/ijerph 

Article 

Socioeconomic Status Accounts for Rapidly Increasing 

Geographic Variation in the Incidence of Poor Fetal Growth 

Stephen J. Ball *, Peter Jacoby and Stephen R. Zubrick 

Telethon Institute for Child Health Research, Centre for Child Health Research, The University of 

Western Australia, P.O. Box 855, West Perth WA 6872, Australia;  

E-Mails: peterj@ichr.uwa.edu.au (P.J.); steve@ichr.uwa.edu.au (S.R.Z.) 

* Author to whom correspondence should be addressed; E-Mail: sball@ichr.uwa.edu.au;  

Tel.: + 61-8-9489-7748; Fax: +61-8-9489-7700. 

Received: 21 March 2013; in revised form: 3 June 2013 / Accepted: 12 June 2013 /  

Published: 25 June 2013 

 

Abstract: Fetal growth is an important risk factor for infant morbidity and mortality.  

In turn, socioeconomic status is a key predictor of fetal growth; however, other 

sociodemographic factors and environmental effects may also be important. This study 

modelled geographic variation in poor fetal growth after accounting for socioeconomic 

status, with a fixed effect for socioeconomic status and a combination of spatially-correlated 

and spatially-uncorrelated random effects. The dataset comprised 88,246 liveborn 

singletons, aggregated within suburbs in Perth, Western Australia. Low socioeconomic 

status was strongly associated with an increased risk of poor fetal growth. An increase in 

geographic variation of poor fetal growth from 1999–2001 (interquartile odds ratio among 

suburbs = 1.20) to 2004–2006 (interquartile odds ratio = 1.40) indicated a widening risk 

disparity by socioeconomic status. Low levels of residual spatial patterns strengthen the 

case for targeting policies and practices in areas of low socioeconomic status for improved 

outcomes. This study indicates an alarming increase in geographic inequalities in poor fetal 

growth in Perth which warrants further research into the specific aspects of socioeconomic 

status that act as risk factors. 
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1. Introduction 

Fetal growth is a key predictor of infant health. Infants with poor fetal growth have greater risks of 

morbidity and mortality [1,2], birth defects [3], and poor health outcomes later in life [4]. Factors that 

in turn predict fetal growth may provide a basis for preventive interventions to improve birth outcomes 

and child development at the population level. 

Much is known about the mix of potential risk factors [5]. Poor fetal growth is more likely with first 

births, multiple births and low levels of antenatal care [5–8]. Maternal risk factors include low 

socioeconomic status, smoking and alcohol consumption during pregnancy, poor fetal growth among 

previous pregnancies, and low maternal weight [5,6,9–11]. Diet, maternal age and ethnicity are also 

important [5,12,13]. Neighbourhood-level effects, where demonstrated beyond individual circumstance, 

indicate an impact of the broader social environment on fetal growth [14]. Impacts of the physical 

environment include effects of air pollution [15] and water contaminants [16]. Thus, a wide range of 

potential risk factors have been identified. The remaining challenges lie in resolving causal pathways, 

and in applying analytical methods to identify the relative roles of modifiable risk factors in 

populations of interest [17]. 

Area-level comparisons of disease rates help target opportunities for improved outcomes. Beyond 

mapping rates per se, interventions benefit from information on local causes of variation [18]. In any 

given region, an unknown combination of economic, demographic and environmental factors may 

influence fetal growth. Amid this uncertainty, socioeconomic status ranks highly as a candidate factor: 

low socioeconomic status is a widespread predictor of poor health [19,20], and has been repeatedly 

linked to poor birth outcomes, including poor fetal growth [5,6,8,14,21–23]. 

The motivation for this study was to model geographic variation in the incidence of poor fetal 

growth across urban Perth, Western Australia as an informing step for generating hypotheses about 

local risk factors of poor fetal growth. Given Perth’s strong geographic patterns in socioeconomic 

status [24,25], and previous evidence that poor fetal growth is associated with low socioeconomic 

status in Western Australia [21], it is likely that geographic patterns due to other processes such as 

environmental effects are difficult to resolve without adjusting for socioeconomic status. We therefore 

shifted the focus from modelling variation per se, to modelling the residual variation in incidence of 

poor fetal growth that remains while allowing for an effect of socioeconomic status. Two periods 

(1999–2001 and 2004–2006) were compared to characterise the temporal stability of patterns. 

The value of this study is twofold. Firstly, it provides specific insights into geographic variation in 

poor fetal growth in Perth in terms of its relationship with socioeconomic status, and as variation 

unexplained by socioeconomic status. Secondly, this study explicitly models geographic variation in a 

health outcome after adjusting for a fixed effect. Applications of mixed models variously emphasise 

the benefits as decreasing the bias of fixed effect estimates [26–28], or in smoothing estimates of 

disease rates [29,30]. However, there may also be useful information about unobserved processes 

evident in the unexplained component of such models. With a few exceptions [31–36], the use of 

mixed models for this purpose is largely underutilised in health research. By adjusting for 

socioeconomic status and using a measure of fetal growth that adjusts for parity and maternal height 

(as well as gestational age and gender), this study provides a strong test for spatial patterns in poor 

fetal growth beyond a socioeconomic effect. 
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2. Methods 

2.1. Study Design and Setting 

This was a time-stratified study of spatial patterns in the incidence of poor fetal growth among 

liveborn singleton neonates in urban Perth, Western Australia. The data were analysed separately for 

each of two periods: 1999–2001 and 2004–2006. 

2.2. Data Source 

Birth data were sourced from the Western Australian Maternal and Child Health Research 

Database, a population-wide database of all children born in Western Australia since 1980 [37]. The 

data were restricted to liveborn singletons, and excluded births less than 33 weeks gestation (Figure 1) 

because our measure of poor fetal growth is potentially less accurate at earlier ages [38]. 

Figure 1. Selection of records for the two study periods. 

 

GA = gestational age; POBW = Proportion of Optimal Birth Weight. 

2.3. Spatial Units 

The spatial units were suburbs [39]. Of the 297 suburbs in Perth in 2006, seven were excluded from 

analysis for having more than 50% of their area outside the urban area, 20 were excluded for having no 

births in at least one of 1999–2001 and 2004–2006, and three were excluded because socioeconomic 

data were unavailable. Hereafter the term “study area” refers to the 267 suburbs used for analysis. 

1999–2001 

Liveborn 

2004–2006 

Singleton 

GA ≥ 33 weeks 

 

POBW not null 

Geocode not null 

Born in  

Western Australia 
N = 81,107 

N = 80,573 

 

N = 78,085 

 

N = 77,119 

N = 71,412 

 

N = 51,231 

 

N = 46,704 

 

N = 64,681 

 

N = 72,137 

N = 72,979 

 

N = 75,381 

 

N = 75,932 

N = 42,264 

 

N = 45,982 

 

Mother resident  

in Perth study area 



Int. J. Environ. Res. Public Health 2013, 10 2609 

 

 

2.4. Definition of Poor Fetal Growth 

We used a standardised measure of fetal growth called the Proportion of Optimal Birth Weight, 

POBW [38]. POBW is the ratio of an infant’s actual birth weight relative to the weight expected from 

their combination of gestational duration, fetal gender, maternal height and parity [38]. Thus, at the 

same time as explicitly adjusting for socioeconomic status in this study, POBW adjusts for these other 

variables that comprise the POBW calculation. Every birth under 80% Optimal Birth Weight was 

categorised as having poor fetal growth. Preliminary analysis showed that this threshold classified 5% 

of live singleton births as having poor fetal growth, which we saw as a reasonable compromise 

between effect size and number of cases. Records that were null for POBW were excluded from the 

analysis. Ascertainment of POBW dropped from 98.5% in 1999–2001 to 82.5% in 2004–2006 (Figure 

1), largely due to decreasing compliance in measuring maternal height (A. Langridge, personal 

communication, 2013). It is assumed that non-ascertainment had a negligible impact on the estimated 

effect size of socioeconomic status and on random effects estimates. These assumptions were tested by 

examining small-for-gestational-age (SGA) among records in 2004–2006 that were null for POBW. 

SGA provides an alternative measure of poor fetal growth which is unadjusted for maternal height and 

parity. SGA was calculated using national centiles of birthweight, stratified by sex [40]. While SGA 

was more likely among records null for POBW (odds ratio = 1.31, confidence interval 1.17 to 1.46), 

there was no significant difference in the odds ratio among quintiles of socioeconomic status (χ
2
 = 

6.81, d.f. = 4; Breslow-Day Test of Homogeneity p-value = 0.15). Furthermore, among records null for 

POBW in 2004–2006, the distribution of cases of SGA among suburbs was consistent with 

probabilities of low POBW estimated from the random effects model (χ
2
 = 266.70, d.f. = 254, p = 0.28). 

2.5. Socioeconomic Status 

Socioeconomic status was based on the Australian Bureau of Statistics’ Index of Relative Socio-

economic Advantage and Disadvantage [24,25], hereafter shortened to the “Advantage-Disadvantage 

Index”. This is one of four area-level socioeconomic indices derived by the Bureau from principal 

component analysis of area-level summaries of individual, family, and household data collected during 

each 5-year national census. The Advantage-Disadvantage Index focuses on the presence of both 

positive and negative social and economic factors. Variables include indicators of income, 

employment status, class of work (e.g., professional, labourer, machinery-operator), education status, 

car ownership, internet access, monthly rent or mortgage payments, number of rooms per dwelling, 

and family structure. We used the 2001 and 2006 versions of the Index respectively to model the 

1999–2001 and 2004–2006 data. There is a strong overlap in the list of variables between these 

censuses [24,25]. While the Index is standardised nationally, it was standardised to a mean of 0 and 

standard deviation of 1 within the study area for each study period. 

2.6. Models of Poor Fetal Growth 

The incidence of poor fetal growth was modelled using logistic regression. The null model specified 

all suburbs as having the same probability of poor fetal growth: 



Int. J. Environ. Res. Public Health 2013, 10 2610 

 

 

Ri ~ Binomial (Ni,pi) 

logit(pi) = β0 
(1) 

where Ri, Ni and pi are respectively the number of poor fetal growth births, total number of births, and 

probability (per birth) of poor fetal growth in suburb i. The constant β0 is the log odds of the mean 

probability of poor fetal growth. 

The random effects model allowed for variation in the probability of poor fetal growth among 

suburbs: 

logit(pi) = β0 + ui + vi (2) 

where ui is a spatially-correlated random effect and vi is a spatially-uncorrelated random effect, 

following Besag et al. [41]. A conditional autoregressive (CAR) term was used for the spatially-correlated 

random effect, which is specified as following a normal distribution with a mean of zero relative to, or 

conditional on, the mean CAR random effect estimates of neighbouring areas [42]. The uncorrelated 

random effect was specified as being normally-distributed with a mean of zero, and no constraint of 

correlation among neighbouring areas. 

The fixed effect model treated the variation among suburbs as a function of socioeconomic status, 

in the absence of random effects: 

logit(pi) = β0 + β1·Xi (3) 

where Xi is the standardised Advantage-Disadvantage Index of suburb i. 

The full (mixed) model, combining the random effects in Model (2) with the fixed effect in Model 

(3), was used to explicitly model variation in the probability of poor fetal growth while accounting for 

socioeconomic status: 

logit(pi) = β0 + β1·Xi + ui + vi (4) 

This model enabled measurement of the effect of socioeconomic status (through the constant, β1), 

while simultaneously characterising spatially-correlated and uncorrelated extra-binomial variation in 

the data through the standard deviation of u and v. Based on this full model, suburb-specific values of 

ui and vi estimate geographic variation in poor fetal growth after adjustment for socioeconomic status. 

The four models were analysed separately for the 1999–2001 and 2004–2006 datasets to allow for 

changing patterns over time. Each model was run as a Bayesian analysis with WinBUGS 1.4 software [43], 

which uses Markov Chain Monte Carlo (MCMC) sampling to generate posterior distributions. 

Uninformative (i.e., widely dispersed) normal prior distributions were used for each of β0 and β1 (mean = 0; 

standard deviation = 100). The standard deviation of the spatially-correlated and uncorrelated random 

effects were each specified as having an uninformative half-normal prior distribution with mean of 0 

and standard deviation of 100, following Gelman [44]. 

Modelling of the spatially-correlated random effect required a matrix of suburb adjacencies.  

Each suburb’s neighbours were defined as those suburbs with one or more common boundaries or 

vertices with the suburb in question, generated using SpaceStat 2.2 software. Supplementary 

adjacencies were used to join suburbs across the Swan River estuary wherever suburbs were less than 
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1km apart. Supplementations were similarly assigned across opposite sides of the Canning River,  

a southern tributary to the Swan River estuary. 

Relative support for different model scenarios was assessed using the Deviance Information 

Criterion, DIC [42,45]. The DIC measures how well a model fits the observed data, while adding a 

penalty for additional parameters. 

Preliminary analyses showed high levels of autocorrelation between MCMC samples. Sampling 

was therefore thinned to one in every 100 simulations. Posterior distributions were generated from 

1,000,000 simulations (i.e., 10,000 thinned samples) after an initial burn-in of 1,000,000 simulations. 

Convergence was confirmed using the Geweke diagnostic [46]. 

2.7. Additional Software 

All maps were generated using ArcGIS Desktop 9.2. 

3. Results 

The mean incidence of poor fetal growth was very similar in 1999–2001 and 2004–2006. There 

were 2,194 cases of poor fetal growth from 45,982 births in 1999–2001 (incidence = 4.8%), and 1,993 

cases from 42,264 births in 2004–2006 (incidence = 4.7%). However, this is likely to be a slight 

underestimate of the 2004–2006 rate, given the higher rate of missing data in that period that had a bias 

towards smaller births (section 2.4). 

There was strong variation among suburbs in the probability of poor fetal growth (Figure 2).  

This variation increased from having an interquartile odds ratio among suburbs of 1.20 in 1999–2001 

to 1.40 in 2004–2006 (Table 1). 

Table 1. Effect sizes for random effects and socioeconomic status, expressed as interquartile 

odds ratios among suburbs in poor fetal growth. 

Period Model Effect(s) IQOR 
a 

1999–2001 

2. Random effects 

Spatially-uncorrelated random effect 1.13 

Spatially-correlated random effect 1.06 

Combined random effects 1.20 

4. Full model 

Spatially-uncorrelated random effect 1.07 

Spatially-correlated random effect 1.03 

Combined random effects 1.09 

Socioeconomic status 1.41 

2004–2006 

2. Random effects 

Spatially-uncorrelated random effect 1.03 

Spatially-correlated random effect 1.40 

Combined random effects 1.40 

4. Full model 

Spatially-uncorrelated random effect 1.04 

Spatially-correlated random effect 1.06 

Combined random effects 1.09 

Socioeconomic status 1.46 
a IQOR (interquartile odds ratio) was calculated as the ratio of the odds of poor fetal growth of the 75th 

centile among suburbs relative to the 25th centile. The source data for each IQOR was the mean effect size 

per suburb (i.e., mean output of Markov Chain Monte Carlo simulations) of the 267 suburbs. The effect of 

socioeconomic status is also reported as an interquartile odds ratio for comparison with random effects, 

despite modelling it as a fixed effect. 
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The statistical importance of this variation was confirmed by the improvement in model fit by 

adding random effects to the null model, whereby the DIC decreased by 60.0 in 1999–2001, and 117.5 

in 2004–2006 (Table 2). 

Figure 2. Mapped variation in the incidence of poor fetal growth in Perth in 1999–2001 

and 2004–2006. This shows the odds ratio of poor fetal growth relative to the mean 

incidence, calculated from the sum of spatially-correlated and uncorrelated random effects 

from the random effects model. Stars denote suburbs with a posterior probability greater 

than 0.90 of the odds ratio exceeding 1.0 relative to the mean incidence. 

 

Table 2. Summary of model diagnostics: Deviance Information Criterion (DIC), effective 

number of parameters (pD), mean probability of poor fetal growth (p), and the slope 

parameter (β1) for the socioeconomic effect (this measures the rate of change in the log 

odds of poor fetal growth for an increase of one standard deviation in the Advantage-

Disadvantage Index). Values in brackets delimit Bayesian 95% credible intervals. 

Period Model DIC
 

pD
 

p β1
 

1999−2001 

1. Null model 1,277.3 1.0 0.050 (0.048, 0.052)  

2. Random effects 1,217.3 81.2 0.047 (0.045, 0.050)  

3. Fixed effect 1,195.4 2.0 0.050 (0.030, 0.087) −0.21 (−0.25, −0.16) 

4. Full model 1,180.5 48.7 0.049 (0.025, 0.098) −0.22 (−0.28, −0.17) 

2004−2006 

1. Null model 1,320.3 1.0 0.049 (0.047, 0.052)  

2. Random effects 1,202.8 72.7 0.047 (0.045, 0.050)  

3. Fixed effect 1,183.3 2.0 0.052 (0.028, 0.097) −0.27 (−0.32, −0.23) 

4. Full model 1,176.5 38.0 0.052 (0.022, 0.111) −0.26 (−0.31, −0.19) 
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The incidence of poor fetal growth was spatially structured in both periods. Oden’s test of 

association [47] (generated using ClusterSeer 2.3 software) showed strong evidence of a spatial pattern 

between adjacent suburbs in 1999–2001 (Ipop = 0.031; p < 0.001) and in 2004–2006 (Ipop = 0.066;  

p < 0.001). Furthermore, the random effects model indicated that spatial structure was much stronger 

in 2004–2006 than in 1999–2001 (Table 1). In 2004–2006 the spatially-correlated random effect 

accounted for 87.2% of the total variance, while it accounted for 26.5% of the variance in 1999–2001 

(calculated as the mean across MCMC samples of σ
2 
u /σ

2  
u+v from the random effects model). 

Socioeconomic status was spatially structured in both periods (Figure 3). Moran’s I test [48] 

(generated using ClusterSeer 2.3 software) indicated strong evidence of positive autocorrelation in 

socioeconomic status between adjacent suburbs (I = +0.59, p < 0.001 in 1999–2001; I = +0.53,  

p < 0.001 in 2004–2006). Socioeconomic status was highly conserved between the two periods: the 

suburb-by-suburb Pearson correlation between the two periods was +0.95. 

Figure 3. Socioeconomic variation in Perth, mapped as standard deviations from the mean 

Advantage-Disadvantage Index in each of 2001 and 2006. 

  

There was a strong negative relationship between socioeconomic status and the probability of poor 

fetal growth in both periods (Table 2). Thus, on average, suburbs with higher socioeconomic status had 

a lower probability of poor fetal growth. The gradient between socioeconomic status and probability of 

poor fetal growth was steeper in 2004–2006 than in 1999–2001. The importance of socioeconomic 

status as an explanatory variable is indicated by the improved level of model fit achieved by adding 

socioeconomic status to the null model and random effects model. The model regression coefficients 

were weakly sensitive to the inclusion of the random effects. 
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In both periods, the best model of variation among suburbs in the probability of poor fetal growth 

was the full model that included socioeconomic status and random effects. Adding random effects to 

the fixed effect model decreased the DIC by 14.9 in 1999–2001, and by 6.8 in 2004–2006 (Table 2). 

Furthermore, in the full model, some suburbs had a high probability (>0.90) of exceeding the 

socioeconomic-adjusted mean incidence of poor fetal growth (seven suburbs in 1999–2001; two 

suburbs in 2004–2006; see Figure 4). 

While random effects improved the level of model fit after accounting for socioeconomic status, the 

magnitude of residual variation was low in both periods (Figure 4). Compared to the strong fixed effect 

of socioeconomic status which accounted for an interquartile odds ratio among suburbs of 1.41 in 

1999–2001 and 1.46 in 2004–2006, the interquartile odds ratio for the combined random effects was 

1.09 in both periods (Table 1). 

Figure 4. Mapped residual variation in the incidence of poor fetal growth in Perth after 

accounting for socioeconomic status. This shows the odds ratio of poor fetal growth, 

calculated from the sum of spatially-correlated and uncorrelated random effects from the 

full (mixed) model. Stars denote suburbs with a posterior probability greater than 0.90 of 

the odds ratio exceeding 1.0 relative to the socioeconomic-adjusted mean. 

 

The random effects estimated after accounting for socioeconomic status were inconsistent over 

time. There was a negative relationship in the suburb-by-suburb Pearson correlation of spatial random 

effects in 1999–2001 versus 2004–2006 (r = −0.48). This corresponded to a switch in the geographic 

gradient of the spatially-correlated random effect, whereby the odds of poor fetal growth increased 

from south-to-north in 1999–2001, but increased from northwest-to-southeast in 2004–2006 (pattern 
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not shown). The uncorrelated random effect showed very low stability, with no clear relationship in 

random effects between 2004–2006 and 1999–2001 (r = +0.07). 

4. Discussion 

We expected to observe a strong and persistent geographic pattern in the incidence of poor fetal 

growth in Perth after taking socioeconomic status into account, but didn’t. Socioeconomic status was 

initially identified as one of many possible causes for geographic variation in fetal growth so that after 

accounting for socioeconomic status a strong residual pattern was expected from other, unmeasured 

factors. Such a result was reported in Northern Ireland [35]. While the random effects in our study 

improved the level of model fit in both periods, the effect size of this variation was both small in 

magnitude and unstable over time. This result contrasts with evidence that variation in fetal growth in 

Perth is spatially associated with traffic pollution [15]. It therefore seems that the effects of traffic 

pollution, and any other environmental causes for variation in fetal growth in Perth over the study 

period were relatively small in magnitude or operate at such a small spatial scale that their variation is 

effectively averaged at the scale of suburbs. 

Instability in the spatially-correlated component of residual variation occurred as a switch in 

geographic pattern, with the risk of poor fetal growth increasing south-to-north in 1999–2001 and 

increasing from northwest-to-southeast in 2004-2006. Uncorrelated residual variation among suburbs, 

effectively the ‘suburb effect’ after accounting for socioeconomic status, was also unstable through 

time. Any proposal of what may be causing residual variation needs to account for these patterns of 

instability. In the absence of environmental candidates for these changes, we propose that the patterns 

of residual variation may be caused by shifting spatial patterns of sociodemographic composition not 

captured by the index used to model socioeconomic status. Such changes are possible within the 

context of the sustained resources boom in Perth over the study period, which was accompanied by 

rapid social, demographic and economic change [49]. Furthermore, it seems unlikely that changes in 

spatial patterns of the random effects were artefacts of measurement error in the socioeconomic index, 

given that the index was so highly correlated between the two periods. 

While the motivation for this study was to characterise variation beyond the effects of 

socioeconomic status, there was a very strong socioeconomic effect in both periods. Ultimately any 

effect of an external risk factor on fetal growth must occur as a physiological impact via the placenta. 

As an indicator of social position, socioeconomic status itself cannot have such an effect; other 

mediating mechanisms must act as the proximal causes [50]. A logical follow-up to this study would 

be to unpack the specific factors which act as mediators of a socioeconomic association with poor fetal 

growth in Perth. These could include smoking, alcohol consumption, maternal weight, maternal age, 

diet, poorer antenatal care and neighbourhood effects [5,8–10,12,14]. There may also be environmental 

conditions correlated with socioeconomic status which impact fetal growth. 

Two strong features of the data were: (a) that the overall level of variation among suburbs in the 

probability of poor fetal growth increased from 1999–2001 to 2004–2006, and (b) that this variation 

became more spatially structured over the same period. An initial consideration was that these changes 

in variation and spatial structure of poor fetal growth may be attributable to increased variation and 

spatial structure in socioeconomic status; however this was not the case. Socioeconomic status became 
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less spatially structured in 2004–2006, as indicated by Moran’s I statistic. Nonetheless, socioeconomic 

status played a stronger role in explaining variation between suburbs in 2004–2006 than in 1999–2001, 

with the result that after accounting for socioeconomic status, the level of residual variation in poor 

fetal growth was similarly low in both periods. Given that the relationship between socioeconomic 

status and poor fetal growth was steeper in 2004–2006 than in 1999–2001, it follows that the 

strengthening of the fixed effect of socioeconomic status was responsible for the observed increase in 

geographic variation of poor fetal growth. 

The results of this study are consistent with previous evidence of a steepening socioeconomic 

gradient in poor fetal growth over a similar period in Western Australia [21] and elsewhere in 

Australia [8]. Additionally, this study demonstrated a rapid increase in geographic disparities in the 

incidence of poor fetal growth, despite minimal changes in the spatial configuration of socioeconomic 

status. Given that these changes coincided with Perth’s sustained economic boom [49], this presents an 

example of how geographic variation in health outcomes can increase despite a region’s increasing 

economic prosperity. Rather than leading to a population-wide improvement in health, regional 

prosperity may in some situations fuel health inequalities, possibly by driving greater differences in 

income and access to health care. 

Our results identify socioeconomic status as a dominant predictor of geographic clustering of poor 

fetal growth in Perth. This study is unique in simultaneously: (a) measuring fetal growth in a way that 

adjusts for parity and maternal height (as well as gestational age and gender), and (b) adjusting for 

socioeconomic status in a mixed model that explicitly models residual variation as a set of random 

effects. In combination, this provides a strong test for spatial patterns in poor fetal growth beyond a 

socioeconomic effect. The low levels of residual spatial patterns strengthen the case for targeting 

policies and practices in areas of low socioeconomic status for improved outcomes. By sharpening the 

focus on socioeconomic status as a strong predictor of geographic variation in poor fetal growth, the 

results of this study help justify the next step of unpacking the socioeconomic effect to identify the 

locally-important risk factors that are causal and modifiable. 

5. Conclusions 

This study identified rapidly-increasing geographic variation in the incidence of poor fetal growth 

in Perth. Low levels of residual variation and a strong effect of socioeconomic status suggest that 

socioeconomic status accounts predominantly for the observed variation. These results indicate an 

alarming increase in geographic inequalities in poor fetal growth in Perth which warrants further 

research into the specific aspects of socioeconomic status that act as risk factors. 
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