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Abstract: Suites of Best Management Practices (BMPs) are usually selected to be 

economically and environmentally efficient in reducing nonpoint source (NPS) pollutants 

from agricultural areas in a watershed. The objective of this research was to compare the 

selection and placement of BMPs in a pasture-dominated watershed using multiobjective 

optimization and targeting methods. Two objective functions were used in the optimization 

process, which minimize pollutant losses and the BMP placement areas. The optimization 

tool was an integration of a multi-objective genetic algorithm (GA) and a watershed model 

(Soil and Water Assessment Tool—SWAT). For the targeting method, an optimum BMP 

option was implemented in critical areas in the watershed that contribute the greatest 

pollutant losses. A total of 171 BMP combinations, which consist of grazing management, 

vegetated filter strips (VFS), and poultry litter applications were considered. The results 

showed that the optimization is less effective when vegetated filter strips (VFS) are not 

considered, and it requires much longer computation times than the targeting method to 

search for optimum BMPs. Although the targeting method is effective in selecting and 
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placing an optimum BMP, larger areas are needed for BMP implementation to achieve  

the same pollutant reductions as the optimization method.  

Keywords: best management practice; nonpoint source pollution; multiobjective optimization; 

genetic algorithm; Soil and Water Assessment Tool  

 

1. Introduction 

Nonpoint source (NPS) pollution from agricultural watersheds has become one of the major water 

quality concerns [1,2]. For example, more than 70% of the delivered nitrogen (N) and phosphorus (P) in 

the Mississippi River Basin are contributed from the adjacent agricultural lands and these increased 

nutrient fluxes are linked to seasonal hypoxia in the northern Gulf of Mexico [3]. Excessive fertilizer 

usage on tea fields in Taiwan was identified as the major source of ammonia, which can lead to 

eutrophication [4]. Agricultural practices not only determine the level of food production, but also the 

state of the global environment,  including water quality, soil quality, and species composition [5]. 

Intensive agricultural practices are considered sources of significant amounts of nutrients, especially 

nitrogen (N) and phosphorus (P), pesticides, fecal bacteria and sediment to receiving water  

bodies [6,7], reducing the ability of ecosystems to provide goods and services [5]. Usually in an 

agricultural watershed with concentrated animal production operations, improper usage of manure with 

commercial fertilizers could result in excessive nutrient losses from the fields to the receiving water 

bodies [8,9]. Sediment losses from top soil containing relatively large amounts of nutrients can 

threaten water quality and decrease the productive capacity of the land [10].  

The adverse impacts from agricultural areas can be controlled by implementing best management 

practices (BMPs) to reduce source or retard pollutant transports in a watershed. Many studies have 

used simulation models to evaluate BMP effectiveness and determine the optimum BMPs to improve 

water quality at the farm level [11] and at a watershed level [12–16]. However, considering resource 

constraints, it is not possible to implement BMPs in every candidate location in a watershed. Besides, 

certain critical areas in a watershed may contribute disproportionally large amounts of pollutants in  

a watershed. Pionke et al. [17] concluded that up to 90% of the annual phosphorus loads were 

contributed by approximately 10% of the watershed in the Brown catchment (Pennsylvania, USA) 

Therefore, several methods have been developed to select and place cost-effective BMPs in  

a watershed. Those methods can be categorized into plan- or performance-based methods [18].  

Plan-based methods are mainly used to assign BMPs based on the identification of critical areas in  

a watershed. However, interactions among BMPs on pollutant reduction are typically not considered in 

plan-based methods. The performance-based method incorporates simulation models to evaluate  

the cost-effectiveness of selected BMP combinations based on their individual performance and cost.  

Targeting is a plan-based method to place BMPs in critical source areas which contribute  

a disproportionate amount of NPS pollutants. Many studies have been conducted to identify critical 

source areas and to estimate the improvement of water quality due to implementation of selected 

BMPs in those critical regions [18–21]. Because spatial interactions among BMPs are not considered 

in establishing a targeting strategy, a BMP that is selected based on certain targeting strategy  
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may or may not be the most cost-effective BMP for the watershed. In contrast, optimization is  

a performance-based method that considers the effectiveness and cost of various BMPs, evaluates 

numerous BMP scenarios and incorporates the impacts of BMP interactions in assessing the  

cost-effectiveness of BMP scenarios. Many studies have combined the genetic algorithm (GA) and NPS 

prediction models to optimize the BMP selection and placement in a watershed [22–27]. Most of the 

previous work has focused on using a single objective function which combines both BMP effectiveness 

and cost [23], sequentially optimizing two objective functions separately [24,25] or optimizing two 

objective functions of BMP effectiveness and cost simultaneously [22]. Zare et al. [28] applied  

the Non-dominated Sorting Genetic Algorithm II (NSGA-II) optimization technique to derive  

the optimal tradeoff curve simultaneously between three objectives: reducing cost of BMP 

implementation, maintaining runoff quality, and minimizing runoff volume. Cost of BMPs was 

estimated based on the volume (Rain barrel and Bio-retention) or the areas (Porous pavement). 

Optimization studies related to selection of BMPs have traditionally used cost minimization as  

an objective function.  Cost as an optimization function does not ensure that the watershed areas under 

BMPs are also minimized.  Many researchers have indicated that a relatively small portion of  

a watershed contributes a larger amount of pollutants.  BMPs are generally targeted in those high-risk 

watershed areas.  To enhance the effectiveness of BMPs, achieving the same pollutant reductions with 

less areas should be considered. In order to compare the watershed areas that needs to have BMPs 

under targeting and optimization options to produce similar water quality benefits, we used  

the watershed area as one of the objective functions in this study. Therefore, the overall goal of this 

study was to compare the selection and placement of optimal BMPs using an optimization model with 

various BMP options and a targeting method for achieving a high level pollutant reduction with BMP 

implementation in a small portion of the pasture lands. The hypotheses we tested were as follows  

(1) selection and placement of BMPs from different sets of BMP options using a genetic algorithm (GA) 

optimization tool can result in different water quality improvements; (2) Limiting the BMP options to the 

BMPs which have a greater pollutant reduction rate can assist the optimization tool to allocate BMPs 

more effectively. We used the multiobjective optimization model developed by Maringanti et al. [22]. 

This optimization model incorporates a BMP tool which replaces the requirement of dynamic linkage 

with a hydrologic model (Soil and Water Assessment Tool, SWAT) in the BMP optimization 

architecture. The BMP tool is a database that contains quantitative information of BMP effectiveness in 

reducing pollutant losses for given land use. The two objective functions optimized in this study were 

minimizing the pollutant loads and minimizing the areas for BMP implementation in the watershed. 

2. Materials and Methodology  

2.1. Study Site 

This study was conducted in the Lincoln Lake CEAP watershed, a 32 km2 agricultural watershed 

within the Illinois River basin located in Northwest Arkansas and Eastern Oklahoma (Figure 1).  

The average slope in the watershed is 6%. The elevation ranges from 365 to 487 m with a mean 

elevation of 429 m. The major soil series in the watershed are Enders gravelly loam,  

Hector-Mountainburg gravelly fine sandy loam, Captina silt loam and Linker loam, which account for 



Int. J. Environ. Res. Public Health 2014, 11 2995 

 

 

23%, 21%, 13% and 12% of the entire area, respectively. An average annual precipitation of 1,231 mm 

was observed during 1990–2002 with the highest average monthly precipitation (158.3 mm) in April and 

the lowest average monthly precipitation (74 mm) in January. The average maximum and minimum 

temperature during 1990–2002 were 20.1 °C and 8.7 °C, respectively. Excessive nutrient losses due to 

improper litter application and grazing activity on pasture lands has been one of the main environmental 

issues in the watershed. The measured total phosphorus (TP) concentration at the Illinois River near  

the Arkansas-Oklahoma border was about 0.4 mg/L [29]. 

Moores Creek and Beatty Branch are the two major tributaries in the Lincoln Lake watershed 

representing 21 and 11 km2 of the watershed area, respectively. The watershed has a mixed land use 

with pasture, forest, urban residential, urban commercial and water representing 35.8%, 48.6%, 11.9%, 

1.5% and 2.2% of the watershed area, respectively (Figure 1). The pasture land use area has decreased 

from 43% to 36% primarily due to increasing urbanization in the watershed since 1994 [30]. Pasture 

fields in the watershed have numerous poultry, beef, and dairy cattle production facilities. Excessive 

litter and manure application for perennial forage grass production in the watershed have been shown 

to increase surface and ground water pollution due to increasing losses of sediment, nutrients and 

pathogens [31]. Since 1994, BMPs implemented in the watershed have increased from 1% to 34% of 

the watershed area, representing 53% of total pasture areas in the watershed in 2004.  

Figure 1. Location of Beatty Branch, Moores Creek, land-use distribution and the gauging 

stations in the Lincoln Lake watershed. 
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2.2. SWAT Model Development 

The Soil and Water Assessment Tool (SWAT, version SWAT 2009), was used to estimate  

the effectiveness of various BMP combinations in reducing pollutant losses in a previous study [32]. 

The SWAT 2009 has the abilities to simulate dynamic land use changes and has improved routines for 

simulating vegetated filter strips. The model can predict long-term impacts of land use and 

management on water, sediment and agricultural chemical yields at different scales in a mixed land use 

watershed [33,34]. More than 250 peer-reviewed journal articles have been published demonstrating 

the SWAT applications on sensitivity analyses, model calibration, hydrologic analyses, pollutant load 

assessment, and climate change impacts on hydrology and pollutant losses [35]. The key GIS input 

files to SWAT for this study included a 30 m digital elevation model (DEM) [36], 28.5 m land 

use/land cover [37], and Soil Survey Geographic (SSURGO) soil data at a scale of 1:24,000 [38].  

The watershed was delineated into several subbasins based on DEM and the outlets selected within the 

watershed. Subsequently, the subbasins were partitioned into homogeneous units (hydrologic response 

units, HRUs) by setting threshold percentages of land use and soil type [30,39]. In this study,  

a threshold for a land use and soil type covering an area of 0% and 0%, respectively, within any given 

subbasin was applied in order to capture all the land use changes that occurred during the study period. 

This resulted in a total number of 1,465 HRUs in the watershed. Weather data (daily precipitation, 

minimum and maximum temperature) were obtained from Fayetteville Weather Station located 

approximately 25 km from the watershed. Other weather variables needed by the model (solar 

radiation, wind speed and relative humidity) were estimated using the weather generator built into  

the SWAT model. 

The SWAT model has the ability to define specific types of manure and fertilizers by building 

fertilizer and manure components, such as fractions of mineral N (P), organic N (P), and a ratio of 

ammonium nitrate to mineral N in the SWAT fertilizer database. The pasture management 

information, including amount of litter and fertilizer application, timing of manure and fertilizer 

application, grazing intensity and dates were obtained from a detailed review of historical nutrient 

management plans and interviews with 63 out of 75 farmers in the watershed [40]. The baseline 

scenario consists of actual nutrient management and grazing management applied in the watershed 

during 1992–2004. The average litter application and approximate dates of application were  

2,500 kg/ha applied on 30 April and 31 August. The manure excreted from grazing management 

ranged from 0.01–14.2 kg/(ha·day) for grazing days ranging from 11–365 days in the watershed during 

1992–2004. Those management practices were implemented throughout the entire pasture area in the 

watershed. Detailed information of types of fertilizer and manure, the SWAT fertilizer database, and 

management practices and schedules for SWAT management files can be found in Chiang et al. [32]. 

Model calibration and validation were performed for monthly stream flow, total sediment (TS), 

total nitrogen (TN) and total phosphorus (TP) using the measured flow and water quality data collected 

at the Upper Moores Creek for the period January 1996–February 1999, January 2000–December 2003 

and January 2006–December 2007. A total of 10 SWAT parameters were calibrated using Nash-Sutcliffe 

efficiency (NSE) [41] and coefficient of determination (R2) as the model performance criteria. Detailed 

information of calibrated SWAT parameters and performance of the SWAT model can be found in 

Chiang et al. [32]. 
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2.3. BMP Scenarios 

The watershed BMPs considered in this study were grouped into three categories: grazing and 

pasture management, vegetated filter strips, and nutrient management. These scenarios were based on 

detailed interactions with the watershed stakeholders and history of past BMPs implemented in  

the watershed [40]. Three grazing intensities were considered: (1) no grazing; (2) optimum grazing; 

and (3) overgrazing. The overgrazing application started on 30 September and lasted for 213 days until 

30 April of the next year. The optimum grazing assumed that within 30 days the cattle should graze 

through the whole watershed and would stay for approximately 4–6 days in each pasture HRU [42]. 

This approach was similar to grazing operations reported in other watersheds located near the study 

area [43].  

Vegetated filter strips (VFS) have been proven to be an effective management practice for trapping 

sediment and nutrients in field runoff [44–46], and reducing the transport of sediment and nutrients to 

down-gradient area [47,48]. Based on the worst condition of sediment delivery simulated in  

the previous study [49] and a method to design and estimate sediment removal from VFS by the 

Natural Resources Conservation Service [50], buffer strips with VFS ratios of 42 and 76 were 

simulated in this study.  

Nutrient management scenarios evaluated in this study included poultry litter application rates, litter 

characteristics, and application timing. The litter application rates evaluated were 1, 1.5 and 2 tons/acre 

in spring (applied on 30 April) and summer (31 August) to support growth of warm season grasses, 

and 2, 2.5 and 3 tons/acre in fall (15 October) to support growth of cool season grasses. For all 

application rates and timings evaluated in this study, two types of poultry litter were selected—normal 

poultry litter and alum-amended litter. 

A total of 171 BMP combinations were simulated using the SWAT2009 model with dynamic land 

use changes during 1990–2007 in a previous study [32] and the performances of those BMP 

combinations in terms of pollutant reduction rates were further calculated for this study. It should be 

noted that the latest SWAT2009 model, which was publicly released in January 2010, has incorporated 

dynamic land use changes and modified simulation of vegetated filter strips. The model application 

simulating the impacts of dynamic land use changes concurrent with installation of conservation 

practices in the Lincoln Lake watershed can be found in Chiang et al. [32]. In order to evaluate  

the performance of the optimization models with different sets of BMP options, those 171 BMPs were 

grouped by litter application in spring (SP, a total of 54 BMPs) and summer (SU, a total of 54 BMPs), 

no grazing (NG, a total of 57 BMPs), optimum grazing (OG, a total of 57 BMPs), no buffer strips 

(VFS0, a total of 57 BMPs) and buffer strips with a ratio of 42 (VFS42, a total of 57 BMPs). 

2.4. Multiobjective Genetic Algorithm Model 

A genetic algorithm (GA) is a search technique to find solutions for optimization problems. Genetic 

algorithms are based on techniques inspired by evolutionary biology such as inheritance, selection, 

crossover and mutation. An algorithm is started with a set of solutions (chromosomes), called  

a population. The initial population of chromosomes is randomly generated for the given population 

size (Figure 2). Inheritance is the ability of the modeled object to mate, mutate and propagate  
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the population as evolved solutions to a problem. A GA follows an iterated procedure (Figure 2). First, 

evaluate objective functions by computing a fitness value for each number of the population. Second, 

select a pair of chromosomes (parents) for mating (reproduction). During the selection process,  

the existing solutions from one population are taken into the mating pool and used to form a new 

population (children) based on their fitness; the higher the fitness of solutions are the more chance they 

have to reproduce. Third, the solutions in the mating pool then undergo the genetic operations: 

crossover and mutation. Crossover is a process that the new generation (child solutions) shares many 

of the positive characteristics of the parents, while mutation is a process that a bit in the solutions of a 

population is selected randomly and altered from its original state. The generational process is repeated 

until a termination condition (e.g., a solution is found that satisfies minimum criteria) has been reached.  

Figure 2. Overview of the GA method. 

 

Multiobjective optimization problems have been evaluated in the hydrology/water quality field, 

where optimal decisions need to be taken between two or more conflicting objectives. Single-objective 

optimization yields a single optimal solution, while a multiobjective optimization produces a family of 

near-optimal solutions known as Pareto-optimal set. Deb et al. [51] concluded that the nondominated 

sorted genetic algorithm (NSGA-II) can search a larger number of variables and better spread of 

solutions than the strength Pareto evolutionary algorithm (SPEA-2) [52].  In this study, a total of  

461 pasture HRUs are the variables for which the BMPs are to be searched to meet the two objective 

functions: (1) minimization of pollutant loading and (2) minimization of the pasture area that has 

BMPs implemented. The greater the pasture areas that have BMP, the less the polluatant loading.  

The two objective functions are mathematically expressed as follows, where f(x) denotes total 

pollution load and g(x) denotes the percentage of pasture area with BMPs implemented in total pasture 

lands. It should be noted that total nitrogen (TN) and total phosphorus (TP) losses were the two 

pollutants of concern for BMP implementation in this watershed: 
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where pol is the number of pollutants of concern (pol = 1 for TN and pol = 2 for TP), Ppol, hru is the unit 

pollutant load from a HRU, Rpol, bmp is the pollutant reduction efficiency of BMP, A is the area of HRU. 

A BMP tool was used to provide pollutant effectiveness for each BMP that can be implemented at  

a HRU scale in the watershed [22]. In a previous study, the SWAT model was run for those 171 BMP 

scenarios for dynamic land use and management practices during 1992–2007 with the corresponding 

historical weather [32]. The pollutant reduction efficiency was estimated by calculating the percentage 

reduction in the pollutant load for a BMP scenario compared with the baseline pollutant load. In order 

to narrow the search space for a given land use, seven allele sets of different BMP groups for pasture 

lands were created. Those allele sets for pasture lands are: a set of 171 simulated BMPs applicable to 

pasture HRUs (All), and other six sets of BMPs that contain no grazing (NG), optimum grazing (OG), 

spring litter application (SP), summer litter application (SU), no buffer strips (VFS0) and buffer strips 

with a VFS ratio of 42 (VFS42). During the optimization process, the algorithm first searches one 

BMP in the allele set for a pasture HRU. The estimation of the pollutant loading for the placement of 

that BMP in the selected pasture HRU is obtained from the BMP tool. An aggregated pollutant index 

(API), which is a product of the area-weighted pollutant reduction rates for TN and TP, and the total 

pasture lands that have BMP implemented were calculated for an estimation at the watershed scale. 

Four parameters for a GA optimization are population size, number of generations, crossover rate 

and mutation probability. Population size determines the number of solutions considered for  

the evolutionary process. Crossover rate and mutation probability are critical in the optimization 

process in terms of creating a new set of child population which might be stronger than the parent 

population and eliminating the weaker individuals. The optimization process continues until a given 

number of iterations known as generations. Generally, the larger the population size, the more spread 

the solution space. Increasing the number of generations can also improve the performance of GA. 

However, it also increases the computing time to reach the near-optimal solution.   

2.5. Sensitivity Analysis and Estimation of GA Parameters 

A sensitivity analysis of four GA parameters for different allele sets (BMP options) was performed 

to determine the influence of the parameters on the Pareto-optimal front and to identify the optimal 

parameter values. In order to evaluate the individual influence of a GA parameter on the Pareto-optimal 

front, one parameter (population size, number of generation, crossover and mutation probability) was 

changed at a time and the other parameters remained as default values (Table 1). The goodness of  

the Pareto-optimal front is determined subjectively as the closer the front gets to the origin, the better 

the solution is to minimize the two objective functions. When the front with a specific parameter value 
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is closer to the origin, that value is then used for the optimization process. The aggregated pollutant 

index (API) and the percentage of pasture lands with BMPs implemented were estimated from 

equations (2) and (3). These two values are plotted against each other during the sensitivity analysis to 

obtain the optimal parameter values that have the Pareto-optimal front closest to the origin. 

Table 1. Default and optimal GA parameters for different allele sets selected from 

sensitivity analysis. 

Parameter Population
Number of 

Generations
Crossover  

Probability 
Mutation  

Probability

Default 100 1,000 0.9 0.0001 
Optimal for different allele sets     

171 BMPs (All) 5,000 40,000 0.9 0.001 
NG BMPs 3,000 40,000 0.5 0.001 
OG BMPs 5,000 40,000 0.9 0.001 
SP BMPs 3,000 40,000 0.7 0.001 
SU BMPs 3,000 40,000 0.9 0.001 

VFS0 BMPs 5,000 40,000 0.7 0.001 
VFS42 BMPs 3,000 40,000 0.5 0.001 

2.6. Targeting Method 

The targeting method was chosen as a comparison of the selection and placement of BMPs from  

the GA optimization tool. The pasture HRUs were first ranked by the TN or TP losses. A single BMP 

scenario that has the greatest TN or TP reduction rate is implemented on the top ranked HRUs which 

accounted for 20%, 40%, 60%, 80% and 100% of the total pasture area. The pollutant losses from  

the entire pasture lands were calculated by summing up the pollutant losses from the HRUs that have 

the selected BMP scenario implemented and the current pollutant losses from the rest of pasture 

HRUs, and then divided by the total pasture area. One of the differences between GA optimization 

method and targeting method is that GA requires much longer computing time for a larger population 

size (>5,000) to get a wide range in solution space (i.e., large number of choices for various pollutant 

reductions and areas under BMP combinations). Contrarily, the targeting method can provide a quicker 

solution by placing a BMP option on any pasture area that has relatively high TN or TP losses. In order 

to compare the performance of the optimization tool and the targeting method, the optimal percentage 

of BMP-implemented area that is identified by GA optimization was used to target the top ranked 

pasture HRUs which account for the same percentage of the area and calculate the pollutant losses 

from the pasture lands. 

3. Results and Discussion 

3.1. Sensitivity and Estimation of GA Parameters 

The optimal GA parameters were selected using the sensitivity analysis of the optimal front. A total 

of seven sets of sensitivity analyses were performed for 171 BMPs. The sensitivity of GA parameters 

for the optimization model with a set of 171 BMP options (All), namely, population size, number of 
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generations, crossover probability, and mutation probability, are shown in Table 1. Two GA 

parameters, population size and number of generations, can influence the computing time of the 

optimization. For example, when the population size increased from 100 to 5,000, the computation 

time increased from 10 min to 12 h for 1,000 generations. Similarly, the computation time increased 

from 10 min to 1 h when number of generation increased from 100 to 5,000. The maximum population 

size tested in this study was 5,000, with which the GA optimization tool could result in the most spread 

in the solution space in terms of the percentage of BMP-implemented pasture area for all different sets 

of BMP options. The sensitivity analysis results of the VFS42 BMP options (VFS42) and 171 BMP 

options (All) were selected for comparison (Figures 3 and 4). It is because buffer strips are the most 

effective BMP in reducing pollutant losses and considerably greater pollutant reduction is expected if 

buffer strips with a VFS ratio of 42 are considered in the suite of BMP options. 

Figure 3. Pareto-optimal fronts for the sensitivity analysis of genetic algorithm (GA) 

parameters for the optimization model with a set of 171 BMP options (All). 

 

As the population size increased from 10 to 5,000, more individuals were present during each 

evolution and there was a higher probability of obtaining a better offspring. Therefore, an improvement 

of the Pareto-optimal front that is getting closer to the origin was observed during the increases of 

population size. For the 171 BMP options, when population size further increased to 5,000 the 

individuals in the solution space had more freedom in terms of more spread of solutions compared to 

other population sizes (Figure 3a). Therefore, a population size of 5,000 was selected as an optimal value 

for the models with the sets of 171 BMP, OG BMP and VFS0 BMP options (Table 1). However, when 

only the BMPs with buffer strips of a VFS ratio of 42 were considered, an increase in population size 

from 3,000 to 5,000 did not show a considerable improvement in the Pareto-optimal front (Figure 4a). It 
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should be noted that during sensitivity analysis, only one GA parameter of concern was changed and 

the other three parameters were fixed at their default values. Therefore, a population size of 5,000 

might require more generations (>1,000) for the individuals to show a considerable change in  

the objective functions. However, as the number of generations increases, the computing time would 

also increase. Therefore, a population size of 3,000 was selected as an optimal value for the models 

with the sets of NG BMP, SP BMP, SU BMP and VFS42 BMP options. 

Figure 4. Pareto-optimal fronts for the sensitivity analysis of genetic algorithm (GA) 

parameters for the optimization model with a set of VFS42 BMP options. 

 

Similar to the population size, an increase in the number of generations can lead the Pareto-optimal 

front closer to the origin and a better optimal solution can be found. The larger the number of 

generations is, the better the fittest individuals for reproduction can be selected. The Pareto-optimal 

front greatly improved when the number of generations increased from 100 to 1,000, while there was 

no considerable change between 10,000 and 40,000 generations (Figures 3b and 4b). A similar result 

was observed for the models with other sets of BMP options. It was noticed that the Pareto-optimal 

front considerably improved as the number of generations increased. However, a model run with  

a combination of the population size of 3,000 or 5,000 and the 40,000 generations will take much more 

computation time. Therefore, 10,000 generations were used in the final optimization model for all sets 

of BMP options. 

Unlike the population size and the number of generations, an increase in crossover probability did 

not always result in a better Pareto-optimal front. For example, the solutions of the model with the  

171 BMP options improved when the crossover probability increased from 0.1 to 0.4, but the front 

moved away from the origin when it further increased to 0.5 and 0.7 (Figure 3c). The optimal solution 

was found when the crossover probability was 0.9, indicating that the higher crossover probability 
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leads to faster convergence. The same optimal crossover probability (0.9) was found for the models 

with the sets of OG BMP and SU BMP options, while other models had different optimal values  

(0.5 and 0.7) (Table 1).  

No consistent pattern in the shift of the Pareto-optimal front was found for the mutation probability. 

For both the models with sets of 171 BMP and VFS42 BMP options, a slightly higher mutation 

probability (0.001) than the default value (0.0001) made the Pareto-optimal front move toward  

the origin (Figures 3d and 4d). Further increases in the mutation probability (0.01 and 0.1) resulted in  

a dramatic deterioration in the performance. Similar results were found in other models with different 

sets of BMP options, and the optimal value for mutation probability (0.001) was used in the final BMP 

optimization model for the models with all different sets of BMP options. 

An interesting result was observed when comparing the Pareto-optimal fronts for these models with 

different BMP options using their optimal GA parameters (Table 1 and Figure 5). Generally,  

the Pareto-optimal front of the model with VFS0 BMP options was the farthest from the origin, 

indicating that the solutions obtained from the BMPs with no buffer strips were greatly limited in 

finding an optimal solution in terms of minimizing the BMP-implemented area and minimizing  

the nutrient losses. The best performance of the Pareto-optimal front was observed for the model with 

the VFS42 BMP option, followed by two models with NG and OG BMP options, and the other two 

models with SP and SU BMP options. This can be explained as buffer strip is the most effective 

management practice in reducing pollutant losses and most of the nutrient losses come from land 

application than grazing management. 

Figure 5. Comparison of the Pareto-optimal fronts for models with different BMP options 

using their optimal GA parameters. 
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3.2. Performance of the Optimization Tool and the Targeting Method 

After assessing the sensitivity analysis for the GA parameters, various final values of the GA 

parameters were applied to each model to search for the optimal BMP solutions (Table 1). The optimized 

results were then compared to the solutions obtained using the targeting method (Figure 6). The average 

annual area-weighted baseline loadings from the pasture lands were 4.55 kg/ha and 1.66 kg/ha for total 

nitrogen (TN) and total phosphorus (TP), respectively. The optimization provided 3,000–5,000 

solutions during each generation depending on the BMP options were considered. All  

the solutions in the last generation (10,000th) were presented in the Pareto-optimal front (Figure 6), 

and the optimal solution was found as median of the range of the pollutant loads and  

BMP-implemented area for each BMP option (Table 2). For the optimization model with the 171 BMP 

option, the optimal solution resulted in nutrient losses of 3.39 kg/ha (25.54% reduction) and 0.74 kg/ha 

(55.12% reduction) for TN and TP, respectively when various BMPs are implemented in 77% of  

the entire pasture areas. The optimal solution for the model with the NG BMP options showed that 

greater nutrient reductions would be found if BMPs are installed in more than 77% of the pasture 

areas. Generally, there is no significant difference among the solutions for the models with 171 BMP 

options and different grazing options (Figure 6). However, even more pasture areas having BMPs with 

only spring or summer litter application implemented, less nutrient reductions could be found in  

the watershed compared with the 171 BMP option. When only summer litter application was 

considered, much less TN reduction would be achieved compared to the solutions with SP BMP 

options. Similarly, the optimal solution for the model with the VFS0 BMP option was 3.75 kg/ha and 

1.11 kg/ha of TN and TP loads, respectively, with various BMPs implemented in 82% of the pasture 

areas. It showed that even if more pasture lands have BMPs implemented, less pollutant reduction 

would be achieved if buffer strips were not among the BMP options considered. Those observations 

were consistent with the observation in the sensitivity analyses for different models (Figure 5) that  

the Pareto-optimal fronts of the models with sets of VFS0 and SU BMP options were away from  

the origin, indicating that the low pollutant reduction rates of the selected BMPs themselves can affect 

the overall reduction obtained from the optimization.   

A total of 461 pasture HRUs were ranked by the pollutant losses. The BMPs that resulted in  

the greatest TN reduction rate are the BMP combination of buffer strips (VFS ratio = 42 or 76) and no 

litter application. However, use of fertilizer or manure to support plant growth is needed and generally 

found in the watershed. Except the no litter application, the litter types, application timing and amount 

can be optimized. Therefore, an optimal suite of BMPs (scenario 81) to reduce TN losses, which has 

the TN reduction rate of 28.33%, is a combination of buffer strips (VFS ratio = 42), optimum grazing 

and 1 ton/acre litter application in spring. While the optimal suite of BMPs (scenario 59) to reduce TP 

losses with a TP reduction rate of 62.15% is the combination of buffer strips (VFS ratio = 42), no 

grazing and 1 ton/acre alum-treated litter application in spring. By using the targeting method, the least 

annual TN and TP losses from pasture area that would be seen were 3.26 kg/ha and 0.63 kg/ha if the 

optimal suites of BMPs were adopted in all pasture lands (Figure 6). When 50% of the pasture  

lands have the optimal BMPs implemented, the TN and TP loads could reduce to 3.65 kg/ha  

(19.15% reduction) and 0.96 kg/ha (41.98% reduction), respectively. While a greater reduction in  

the pollutant losses can be obtained from BMP optimization, the computation time requirement for the 
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optimization is considerably longer, when using a 3,000–5,000 population size and 10,000 generations, 

than the targeting method, which is simply a ranking of pollutant losses from HRUs. However, the 

targeting method does not compare interactions among BMPs, and adoption of a single suit of BMPs 

throughout the pasture lands may not be practical due to various land characteristics or farmers’ 

choices of BMPs. 

Table 2. Solutions which are medians of the range of pollutant loads and BMP-implemented 

area for different optimization models.  

BMP Options 
TN Load 
(kg/ha) 

BMP 
Area(%) 

TP Load 
(kg/ha) 

BMP 
Area(%) 

ALL 3.39 0.77 0.74 0.77 
NG 3.36 0.82 0.70 0.82 
OG 3.41 0.75 0.74 0.75 
SP 3.51 0.78 0.75 0.78 
SU 3.77 0.74 0.79 0.74 

VFS0 3.75 0.82 1.11 0.82 
VFS42 3.38 0.77 0.77 0.77 

Note: ALL denotes all 171 BMP options; NG denotes the BMP options containing only BMPs with no 

grazing management; OG denotes the BMP options containing only BMPs with optimum grazing 

management; SP denotes the BMP options containing only BMPs with spring litter application; SU denotes 

the BMP options containing only BMPs with summer litter application; VFS0 denotes the BMP options 

containing only BMPs with no buffer strips; VFS42 denotes the BMP options containing only BMPs with 

buffer strips with a VFS ratio of 42. 

Figure 6. Comparison of the Pareto-optimal fronts of different optimization models after 

the final generation and the solutions obtained from the targeting method for total nitrogen 

(TN) and total phosphorus (TP) reduction. 
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Figure 6. Cont. 

 

3.3. Comparison of Selection and Placement of BMPs 

The optimal solution for the model with 171 BMP options was distributed throughout the watershed 

(Figure 7). The distribution of those optimal BMPs were presented into three maps with different 

legend categories, which are grazing management, litter application timing and buffer strips. The blue 

areas denote no BMPs were selected for those areas, which account for 23% of the total pasture area. 

Among those selected BMPs, no BMPs with fall litter application and no buffer strips were selected by 

the optimization tool. It was observed that no grazing management, no litter application and buffer 

strips with a VFS ratio of 42 were frequently selected by the optimization tool, indicating this BMP 

combination can reduce nutrient losses more effectively than other BMP combinations. From  

the perspective of a watershed manager, those extreme management practices can reduce the greatest 

pollutant losses without considering the crop yields. If this optimal solution is adopted in  

the watershed, TN and TP losses can be expected to reduce by 25.5% and 55.1%, respectively. 

However, various BMP combinations can be designed as BMP options for optimization tool to assess 

the pollutant reduction by optimal practical or farmers-preferable management practices.  

Compared to the distribution of the BMP-implemented area from the optimization tool, a slightly 

different distribution of the selected BMP in the watershed by using the targeting tool was observed 

(Figure 8). It should be noted that the total percentage of original pasture lands that have BMP 

implemented is the same as the solution from the optimization tool.  The BMP combination (BMP 81) 

that has the greatest TN reduction rate was selected as the optimal BMP combination to reduce TN 

losses. Likewise, the BMP combination (BMP 59) was selected as the optimal BMP combination to 

reduce TP losses. The blue areas denote no BMPs were selected for those areas. It was observed that 

the distributions of targeted area for reducing TN and TP losses were different, indicating that a proper 

BMP combination needs to be adopted to reduce both pollutants of concern.  
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Figure 7. Distribution of BMPs selected by the optimization model with the 171 BMP 

options on 77% of the pasture lands in the watershed. 

 

Figure 8. Distribution of BMPs selected by the targeting method on 77% of the pasture 

lands in the watershed. 
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In order to compare the performance of optimization models with different BMP options, various 

solutions that meet either the optimal pollutant reduction or BMP-implemented area by the model with 

171 BMP options were selected (Table 3 and Figure 9). Both solutions from the models with NG and 

OG BMP options were able to reduce TN losses to 3.39 kg/ha, which was the same as the optimal TN 

reduction of the model with 171 BMP options (Figure 9a,b). Those BMP combinations were grouped 

by no BMP, no buffer strips, buffer strips with a ratio of 42 and with a ratio of 76. The selected NG 

BMPs were implemented on 80% of the pasture lands, while the selected OG BMPs were implemented 

on 77% of the pasture lands, which is the same as the optimal BMP-implemented area for the model 

with 171 BMP options.  

When only BMP combinations that consist of litter application in spring were selected for the 

optimization model, more pasture lands (89%) are needed to achieve the same pollutant reduction from 

the optimization model with the 171 BMP options (Figure 9c). It was observed that even all the pasture 

lands have BMPs that consist of litter application in summer, the pollutant losses with 3.54 kg/ha of 

TN load and 0.66 kg/ha of TP load were relatively higher than the pollutant reduction from the optimal 

solution of the model with 171 BMP options (Figure 9d). It indicated that BMPs with the litter 

application in summer should be avoided. Similarly, when only the BMPs with no buffer strips were 

evaluated, less effectiveness of those BMPs could be expected even if they were adopted on all pasture 

lands (Figure 9e). The higher pollutant loads resulted by implementing VFS0 BMPs throughout  

the pasture lands than by implementing VFS42 BMPs indicated that buffer strips are most effective 

management practices to reduce pollutant losses. The effectiveness of buffer strips with a ratio of  

42 indicated that fewer pasture areas (75%) are needed to have BMPs implemented to improve water 

quality (Figure 9f). 

Table 3. Solutions from other models which at least meet the same pollutant reduction of 

the model with 171 BMP options. 

BMP  
options 

TN Load (kg/ha) BMP Area(%) TP Load (kg/ha) BMP Area(%) 

Baseline 4.55 0.00 1.66 0.00 
ALL 3.39 0.77 0.74 0.77 
NG 3.39 0.80 0.72 0.80 
OG 3.39 0.77 0.73 0.77 
SP 3.39 0.89 0.68 0.89 
SU 3.54 1.00 0.66 1.00 

VFS0 3.62 1.00 1.07 1.00 
VFS42 3.39 0.75 0.78 0.75 

4. Conclusions  

Many studies have been conducted to optimize the selection and placement of BMPs to 

economically reduce pollutant loads from watersheds by using plan- or performance-based methods. 

The objectives of this study were to: (1) compare the selection and placement of BMPs using a genetic 

algorithm (GA) optimization and a targeting method; (2) evaluate the impacts of various BMP options  
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Figure 9. Distribution of selected BMPs from different optimization models to meet the 

same pollutant reduction of the model with the 171 BMP options. 
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on the optimal solutions from optimization. Two objective functions were used to minimize the TN and 

TP losses and the BMP-implemented pasture area. It was found that optimization required much longer 

computation time than the targeting method to obtain a more spread of solutions. The solutions 

obtained from the optimization tool were optimal for both reducing TN and TP losses by placing 

BMPs in the same pasture areas, while the targeting method focused on reducing one individual 

pollutant loading at a time by placing a single suite of BMPs in different areas, which may not be 

practical due to various land characteristics or farmers’ choices of BMPs. Overall, when using  

the targeting method more pasture areas are needed to have BMPs implemented in order to achieve  

the same pollutant reductions that result from the optimal BMPs selected by optimization. 

A total of 171 BMP scenarios were grouped by no grazing (NG), optimum grazing (OG), spring 

litter application (SP), summer litter application (SU), no buffer strips (VFS0) and buffer strips with  

a VFS ratio of 42 (VFS42) as various sets of BMP options for evaluating their impacts on the optimal 

solutions from the optimization model. The results showed that limiting the BMP options to certain 

BMPs, such as buffer strips with a VFS ratio of 42, could result in greater pollutant reductions within 

smaller pasture areas managed with BMPs. However, when only summer litter application or no buffer 

strips are considered during optimization and the optimal BMPs are implemented in the entire pasture 

areas, they still resulted in greater pollutant losses than the solutions from the model with 171 BMP 

options. Therefore, it is essential to carefully select the BMP options for optimization in order to obtain 

more effective solutions in minimizing pollutant losses and BMP-implemented area in a watershed. 

Moreover, for a more comprehensive evaluation of selection and placement of BMPs in a watershed, 

other pollutants of concerns, and cost and maintenance of selected BMPs options should be taken into 

consideration when applying this evaluation framework.  
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