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Abstract: It is well known that excessive rescue times after traffic accidents negatively affect 

the health of those injured. There is a need to quantitatively measure the impact of unexpected 

events like ambulance availability, weather, floating population and congestion in those rescue 

times. A family of indicators based on isochrones is disguised and proposed to understand the 

risk of the whole population as the probability of not being assisted on time. Indicators of 

health risk for local towns are also defined. The indicators are calculated using a simulation 

model and visualized in web format. The framework of analysis is validated using Ávila 

(Spain) and the problem of the optimal deployment of ambulances as a test-bench.  
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1. Introduction 

Traffic may affect public health in many different ways. From pollution [1] to driving behavior [2], 

the studies are varied. Another dimension is that of traffic accidents and their impacts in daily lives,  

like stress based on traffic congestions [3], or the economic burdens on the society (medical bills, 

disabilities, loss of lives…) [4]. We are concerned in this case with the necessity to reduce the negative 
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impacts on the well-being of the inhabitants due to an excessive assistance time of the emergency units 

of different types to the people involved in an accident. This response time should be as short as possible 

since it is well known that “the quicker the rescue, the higher the possibility of the patient recovering”.  

The Golden Hour principle is widely accepted as a requisite for public health, that is, the probability of 

recovering greatly decreases if a traffic accident is not properly assisted within one hour [5]. Moreover,  

the importance of a quick medical response has been demonstrated in several studies, including a 

suggestion that a 10 minute reduction will greatly reduce the number of fatalities [6].  

Many factors may affect this reaction time, all of which are dynamic and probabilistic in nature. 

Weather conditions may slow travelling times, for example, snow [7] and fog [8]. Road conditions and 

layout, especially on rural areas [9], or even congestions [10] may force the drivers to reduce speed,  

stop or take a different longer route. On top of that, spectacles and events, or holiday periods increase 

the population in the surroundings, as well as the congestions, raising the probability of accidents. 

Accidents are therefore unexpected in nature and require for a quick assistance time of an available 

emergency unit with its corresponding team. If several accidents occur simultaneously, the response 

time is likely to increase since there will not usually be enough units to assist all the accidents at once.  

The movement of the ambulances is the key of the emergency system since it is very important to note 

that the ambulance that leaves the hub to assist an accident is not available to give service to any other 

accident until reaching the base again. In other words, any ambulance is unavailable during a period of 

time. In the case of a given region staffed with just one ambulance, the whole population is at risk 

whenever that lonely ambulance is not at the base. This reasoning is critical for understanding the 

rescue system and for the development of the framework of analysis of emergency systems,  

which should be comprised of a modelling tool and a set of reliable indicators. 

Therefore, the focus of this article is to provide a framework for the definition and calculation of a set of 

indicators that are useful to measure the impact of traffic accidents in public health. Indeed, the population 

that is at risk is the one that could not be covered by any ambulance within the golden-hour rule, or a  

60-minute threshold. Several other values of that specific time threshold, probably tighter, could however 

be stated, leading to the definition of a “population at risk” indicator as “the percentage of the population 

that lives outside a given time threshold from the hub of resources” [11]. In Spain, for example,  

and according to the Spanish authorities’ objectives, the population coverage should be 80% within  

15 minutes [11]. In France, the Val-de-Marne department seeks a “time to rescue” of 20 minutes [12]. 

Within this paradigm of “population at risk as a function of the rescue time”, there is a need to 

develop tools and quantify indicators that may be used to establish proper rescue protocols, including 

the staffing of ambulances. If the system under study is usually referred to as Emergency Medical 

System (EMS), the staffing decision is usually related as the deployment problem [13]. In other words, 

the number of ambulances assigned to an EMS hub has to be enough to guarantee that those involved 

in an accident receive attention quickly, improving the overall coverage of the population as well as its 

related health, but not so many units so as to incur in excessive costs. 

In this context, there is a consensus following international standards that there should be 1 unit per 

50000 inhabitants [11]. For example, the EMS of Ávila, the capital city of a small region that is located  

100 kilometers away from Madrid and that is going to be used as a test case in this article, has one  

unit [14], even though the population is somewhat higher than 50,000. The region covered by the EMS 

hub located at the capital city of Ávila includes five main towns with over 1000 inhabitants that need 
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to be covered within the current infrastructure of roads (Figure 1a). The blue circles are where the 

cities are located and its size proportional to the population. The large region causes the ambulance to cover 

long distances and therefore long periods of ambulances unavailability and high population risks. 

  

(a)       (b) 

Figure 1. (a) Population dispersion: Map of roads and location of the population in the 

province of Ávila; (b) Radial isochrones. 

Figure 1b includes the rescue times from the hub, assuming there is always an available ambulance at 

the base. The time lines are drawn as a radius following standard procedures [14]. The radius has been 

calculated arbitrarily for Ávila using one of the main roads under perfect traffic conditions,  

with GoogleMaps being the source for calculating the travel times. It looks obvious that the time distances 

to a given radius are not equal for each and every point, nor they are constant over time due to the different 

factors that have been already mentioned, like population variability and adverse driving conditions.  

Figure 2 shows an updated visual display with crooked time lines over the map, what gives a more realistic 

representation of the time reach from the hub. The color coding helps detect those areas that are under risk, 

with the red color indicating distances above the 60-minutes mark. 

The focus of this article is therefore on the development of a new generation of time indicators that may 

be used to better address the reaction time problem and reduce accordingly the population at risk as a proxy 

of public health. These indicators include not only static conditions, but also dynamic events that negatively 

affect the rescue time and its corresponding representation with time lines over a web map.  

From a prevention point of view, our originality is that we want to develop and define an indicator 

of public health that anticipate potential problems, a new indicator that relates to the proactive 

coverage of the population. With the proposed set of indicators the potential population under risk 

under dynamic conditions is better addressed especially for long- and medium-term planning. 

Therefore, the article covers the definition of a family of indicators that help analyze the influence 

of traffic accidents in public health in Section 3. The research also includes their quantification using a 

simulation model, Section 4, tool that is very appropriate whenever time and unexpected events are 

key ingredients of the analysis. Section 5 is then used to validate the new paradigm and framework 

composed of a simulation model and risk indicators by using Ávila and the deployment problem,  
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or the proper staffing of ambulances, as a test-bench. But first, let us fully define the Emergency 

Medical System and how it has been analyzed in the past. 

 

Figure 2. Realistic time lines. 

2. Background in EMS Methods and Applications 

This system of assisting traffic accidents is known as Emergency Medical System (EMS).  

The system works as follows. The ambulances are located at the base or hub. If an accident occurs,  

the ambulance is occupied (not available for another call) during a certain time period which covers 

the following tasks: 

1. Preparation of the assistance: before leaving the base, the staff needs to prepare matters. 

2. Travelling to accident location: the ambulance moves towards the scene of the accident. 

3. At the accident site: the staff actuates to assist and pick the injured up. 

4. Travelling to hospital: the ambulance moves from the scene towards a medical centre. 

5. At the hospital: the staff actuates to drop the injured off. 

6. Travelling back towards the base to report and be ready for a new call. 

A thorough survey of applications of simulation to EMS was published in 2013 [15]. It divides the 

types of decisions into long-term (potential bases location, dimensioning of resources), mid-term 

(deployment problem, shift scheduling) and short term (resource dispatching, destination hospital 
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selection, redeployment problems). A simulation optimization framework may become necessary to 

address the corresponding optimization problem [16] in any of the above situations. 

Besides simulation, also static lineal programming models are used. A comparative study of  

5 maximal accident covering models is based on data from Alberta, Canada [17]. Another review of 

methods relates also to the same optimization methods [18]. These models may however become 

inadequate when ambulances become busy [19]. In this latter article, two new models for the 

redeployment of ambulances are presented: the Maximal Expected Coverage Relocation Problem and 

the Generalized Ambulance Assignment Problem. 

In terms of indicators, two types have been used in the past to quantify the level of service in EMS 

deployment [15]: time/distance (average response time, coverage within a standard time T, coverage 

within a time greater than T, round trip time, service time, vehicle utilization rate, number of calls 

served per vehicle/base, dispatching time, travel time to scene, waiting time, size of queue, loss ratio, 

overtime, total mileage) and survival cost (survival rate, cost effectiveness). 

The most common one is the response time (for example, [12]), which is usually calculated as the 

average time that the resources take to arrive to the scene of the accident. This indicator is related to 

the proportion of time the response time is within the Recommended Safety Time Threshold [20].  

This second indicator sometimes is called “Maximal Expected Coverage”, the measure that is 

complementary to the risk [21].  

In terms of survival, or at least potential survival, we can mention the population risk, which is 

frequently stated as “the percentage of the population that lives outside a given time threshold from the 

hub of resources” [11]. It represents the percentage of population covered within the given subjective 

time threshold. A coverage radius indicator has been used [22] to address the coverage problem while 

modelling the EMS in Isfahan and a threshold time of 8 minutes. Only one additional article relates to 

the probability of survival, but it relates again to threshold response times to accidents [23],  

not to potential risks at any particular instance. 

Concerning the applications, the problem of deployment has been addressed in the literature in 

recent years due to the importance of designing correctly the rescue service and of staffing properly the 

resources, using as indicator the time to rescue [12,24] as a proxy of public health. A related problem 

is that of diversion, which relates to the necessity to relieve congestion at bases or hospitals by 

requesting ambulances to transport patients to another facility [20]. The indicator that is used is 

Recommended Safety Time Threshold. In order to relief overcrowding, an indicator based on average 

patient waiting time for service may be used [25]. 

3. The Traffic-Based Indicators of Public Health 

The objective of this article is to keep on defining new indicators that could be used for policy 

development and for correct staffing of ambulances based on the dynamic system behavior.  

In particular, this article proposes a set of indicators that are based on the continuous calculation of 

time lines. Two new indicators to measure the level of service are developed and classified as dynamic 

population risk indicators, in the sense that the value of the risk (or coverage of the population and/or 

towns) will not be constant over time. One additional indicator of cost is defined based on the 

utilization and availability of the ambulances. 
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3.1. Isochrones: Time Lines 

The isochrones are the time lines that connect points that are equidistant from a given location.  

The distance is measured in terms of travel times, not physical distances. If several time thresholds are 

used, the corresponding graphical display over a map gives an idea of the possibilities of reaching the 

locations (roads or towns) in time. Figure 3 represents the map of the roads closest to the city of Ávila, 

where the experimental validation of the indicators is taking place. The isochrones are depicted in 

increments of 5 minutes. The color coding gives an idea of longer distances. The red color for example 

represents the area outside 50 minutes. 

 

Figure 3. Isochrones over the capital city of Ávila. 

Therefore one first component of the family of indicators is the isochrones, which might be defined 

and drawn at regular time intervals. We call this first indicator as ISOCHRONE-K, where K is the 

value of the time corresponding to the kth time line. 

The original idea of this article is that the isochrones are dynamic and are penalized as a function of 

the road infrastructure and the availability of the ambulances, which is not only related to the 

probability distribution of occurrence of accidents but also to the probability distribution of the 

emergency rescue times. Therefore the isochrones must be continuously adapted and calculated,  

and then the values averaged over time. 

In the case of the ambulance emergency system, for each location in the map (roads, bases, 

hospitals), the travel time is calculated as the time distance from the first available ambulance.  

Then, those locations that have the same time value are connected with straight lines. 

When at least an ambulance is free, the calculation is performed from the location of the closest 

one, which is usually that at the base, where the ambulances become available after coming back from 

the hospital. If none is free, the time is calculated from the location where the ambulance becomes 

available (base or hospital) and a time penalty is added corresponding to the time to reach that point 

from the location of the closest ambulance. The calculations are performed for each and every 

ambulance and the minimum time is used. The isochrones might be drawn at a particular moment in 

time or for a given period. In this last case, the individual values are averaged over time. 
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3.2. Coverage of the Population 

Using the traditional static population coverage as the initial measure, the new idea is to incorporate 

dynamic conditions to its calculation, that is, measure the risk according to the dynamic isochrones.  

As a result, the proposed dynamic population coverage will then be calculated as the time-weighted 

average of the instantaneous population coverage. 

Given a total population within the region of the map under study, which is the sum of the 

population of every city or town, the percentage of population covered is that within reach of a certain 

time threshold or dynamic ISOCHRONE-k, represented by k: 

φk =
PopulationCoveredk

Population
 (1) 

 

 

For the case of the EMS, we are going to define six levels in minutes, k = 10, 20, 30, 40, 50, 60.  

The maximum level corresponds to the “Golden Hour”.  

It is worth remarking that the total population is also going to vary over time due to local holidays 

or sporting events, as well as during weekends; in any of these cases, the floating population that lives 

elsewhere but have a second residence in the city or town under study or the visiting tourists may raise 

the population to be covered significantly.  

Figure 4 includes the static coverage function for the region of Ávila under analysis, that is,  

under perfect conditions and with at least one ambulance always available. The cumulative function of 

the coverage is ascending as a function of the time covered by the isochrone. Of course, the higher the 

time threshold is, the higher the coverage of the population is. For example, about 75% of the 

population lives within 10 minutes of the hub and 100% within 50 minutes. 

 

Figure 4. Static coverage of population. 
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This static graph does not change even if more ambulances are staffed. This indicator however will 

be penalized with dynamic conditions, shifting the function to the right; to compensate, the number of 

ambulances should go up. Besides, this indicator does not give a hint on what village, town or city is 

covered within a given isochrone. 

3.3. Time Coverage of a Town 

Since the population is not evenly distributed over the region under study, it makes sense to define a 

related indicator that analyses the coverage of just a given city or town. For each town, the whole 

population is highly concentrated so all the inhabitants are either covered or not at once by an isochrone-k. 

Accordingly, we define the coverage of a town, k, as the percentage of time (not as a percentage of the 

population) that a given town is covered by a particular isochrone-k during a particular frame of time: 

k =
TimeCoveredk
Timeframe

 (2) 

 

 

The indicator at a particular moment of time takes a value of 0 if the town is not covered by the 

isochrone and 1 otherwise. The average indicator over time is what makes sense in this case. Figure 5 

includes for illustrative purposes three different towns. The city of Ávila has all of its population 

within 10 minutes of the hub, so the coverage is 100% for all levels of k under static conditions. 

Navaluenga lies between 30 (0% coverage) and 40 minutes (100% coverage) away from the hub and 

Hoyo de Pinares between 40 and 50 minutes away.  

 

Figure 5. Coverage of three towns of the province of Ávila. 

The risk of these two towns may increase whenever dynamic conditions are included in the 

calculations. The static coverage however does not vary even if more ambulances are available of if 

the population increases. 

  



Int. J. Environ. Res. Public Health 2015, 12 12565 

 

3.4. Occupation of Ambulances 

To understand the behavior of the ambulance in terms of availability and have a measure of cost,  

a new indicator is defined based on the utilization ratio of the ambulance. The following four stages 

represent the ambulance activities: 

1. Travelling time: tasks 2, 4, 6; 

2. Preparation time: task 1; 

3. Assistance time at the location of the accident and at the hospital: tasks 3 and 5; 

4. Free time or available time at which the ambulance is ready to accept an incoming call. 

A pie-chart will be used to visually represent the four stages. Figure 6 includes an example in which 

all four stages are evenly distributed. The green color shows availability and therefore percentage of 

time in which the population is not at risk. Obviously, this slice of the chart increases with the number 

of ambulances. 

 

Figure 6. A representative pie-chart of possible states of the ambulance. 

4. The Simulation Model 

In order to study a given EMS under its random environmental conditions via the calculation of the 

proposed family of indicators, the dynamic time-based conditions are better represented within a 

discrete-event simulation environment [12,15,16]. In this case, we have chosen a multipurpose 

programming language like C++ to develop the model, with input and output tables in MS Excel.  

First, the way the map has been implemented is shown. Then, the randomness related to the movement 

and availability of the ambulances is explained and depicted using web technology. All the necessary 

data is primarily obtained from open access sources. 
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4.1. The Infrastructure of the EMS 

The abstraction process of the EMS starts with the definition of the map that represents the region 

that is going to be analyzed with its roads. The map is easily represented with a grid composed of 

small cells that cover the whole region. Each individual cell might hold: 

1. The hub 

2. The cities or towns 

3. The roads 

4. An ambulance 

5. An accident 

6. A hospital 

4.2. The Movement of the Ambulance 

The key to the model is the movement of the ambulance between the hub, the accident sites and the 

hospitals, as well as its location along the way. In other words, the ambulance moves between cells on 

the map. To calculate the travel times, a second parallel grid of cells represents the time distances to 

the hub. The values in each cell include not only the quickest time but added penalties incurred due to 

imperfect traffic conditions. The travel times between two points are then readily calculated. 

It is worth mentioning that the way this matrix of time distances is defined and modelled is based on 

the underlying assumption that the resources are intelligent and always select the shortest route in 

terms of the response time. Then this shortest route is followed and at each of the cells of the path a 

time delay is assigned corresponding to the travel time of the ambulance along the road. 

Besides the travel times, the ambulance might be held for an interval of time [26] when actuating at 

the corresponding cell: 

1. At the hub for preparation: represented by a lognormal distribution; lognormal (2.5, 1). 

2. At the accident site: time represented by a uniform distribution; uniform (23.2, 37.2). 

3. At the hospital: time that is represented by a triangular distribution; triangular (12.7, 13.7, 21.9). 

4.3. Generation of Accidents 

The movement of an ambulance starts with the generation of an accident. A third matrix of values 

includes the accident rate at each of the road cells. The probabilistic occurrence of accidents is usually 

considered to be best represented using a Poisson random variable, Po () [27]. Its parameter 

represents and is calculated as the average number of events within a given period of time. 

There exist official statistics that summarize the historical accidents for each and every road per 

period of time. If the numbers are aggregated in such a way that the level of detail is not enough,  

there is a need to ask the authorities for further detail. 

4.4. The Population 

Static population data for each of the towns and their associated cells should be obtained from the 

official local databases and may be validated in the individual town webpages. Additional sources of 
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data are needed in order to estimate variability over time. We tried at first to use electricity 

consumption but we could not find available data at the local level. 

We have selected instead the official data about hotel stays, which is included usually in the 

national statistics body or even at the European level [28]. The monthly hotel stays clearly relate to 

journeys during holiday periods, increasing the probability of accidents. We have assigned all the stays 

to the weekends and local holidays. 

Besides, we have also included the sporting events as a source of a population increase. On top of 

that, the population figures during weekends and holidays have been increased by a 20% to account for 

floating population. 

4.5. Meteorology 

The historical values on how many days within a month an event has occurred are available in public 

databases. The values that are used to represent the adverse meteorological events are included in Table 1. 

There is a duration that represents how long the event lasts and a penalty factor that is used to multiply 

the time matrix at the corresponding cells where the event takes place. For example, if it snows,  

the static travel times are tripled. 

Table 1. Meteorological events. 

Event Static Rain Snow Fog Ice 

Duration (minutes) 720 120 240 120 240 

Penalty factor 1 2 3 3 4 

With the count of days per month and the durations of the events, the rate of occurrence of the 

different events may be modelled with a Poisson distribution and the time between snows with an 

exponential distribution. A Monte Carlo generator might then be used to determine both the start time 

of an event and its corresponding duration. 

4.6. Congestion and Festivities 

When an accident occurs, the times to travel through the cell where it takes place, as well as through 

the surrounding cells are doubled to account for congestions. The travel times are also doubled 

whenever there are sporting or religious activities that partially block certain roads. 

4.7. The Flowchart of the Model 

The simulation model is event driven and programmed in C++. There exists a list of future events 

and the model jumps to the next executable event. Each event is represented with a module,  

which abstracts certain logic and generates additional events in the list. The modules are: 

1. Data updating: monthly, the data about each source of randomness is updated; however certain 

time penalties due to congestions are updated daily. 

2. Accident generation: an accident is provoked penalizing the time to drive through the roads 

affected by the accident due to congestion, and calls an ambulance. The assignment of 
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accidents to ambulances is on a FIFO basis. The first accident that takes place is the first one 

that is going to be attended. Besides, the ambulance that is assigned is the one that is closest.  

In our case, it is always the case that the ambulance is at the base, since we free it when it is 

back at the hub from the hospital. The required number of ambulances are assigned to an 

accident, and they go from the site of the accident to the closest hospital. 

3. Meteorology generation: generates events and how long they last. 

4. Ambulance rescue activities: it covers the six stages related to the movement of the ambulance 

while giving service to an accident. 

5. Indicators collection: at each event, the indicators are updated for each cell individually and for 

the map as a whole. 

6. Results visualization: at the end of the simulation, the aggregate indicators are calculated and 

exported for proper visualization. 

5. Experiment in Ávila, Spain  

Ávila is a province in Spain located about 100 kilometers northwest of Madrid. Figure 1a includes 

the road map around the capital and main city, Ávila, where the ambulance base is located, as well as 

the main population nuclei. The calculation of the set of indicators is going to cover 2014 and the main 

sources of data are going to change mainly on a monthly basis, although some values about festivities 

are updated daily.  

5.1. Static Conditions 

The first step is to convert the Google map into the input matrix of cells using the GPS coordinates 

(Figure 7). Several locations are selected to generate accidents: the base is represented in yellow,  

the towns in red and the road points in green. The hospital is located by the base. 

  

Figure 7. Selected points for the simulation. 

The travel times from the hub associated to each of the locations are obtained using Google Maps.  

These time distances are then drawn as radial isochrones (Figure 8a) or as static isochrones (Figure 8b).  

The radial isochrones are drawn using the average distance to the points in the roads. 
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(a)     (b) 

Figure 8. (a) Radial isochrones; (b) Static isochrones.  

5.2. Dynamic Conditions 

The first source of variability is that of accidents. We could not collect data from the official web 

for 2014, but got it from the local authorities [29]. The accidents are summarized in Table 2 for proper 

input into the simulation. 

Table 2. Accidents in 2014. 

Roads JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

TOTAL 53 44 65 56 72 66 61 58 66 76 54 74 

A-50 3 3 3 2 6 1 4 2 3 0 1 3 

A-51 0 2 0 2 1 0 2 1 0 2 1 1 

A-6 2 4 2 3 3 3 3 4 8 2 2 3 

AP-51 0 0 0 0 0 1 0 0 0 1 0 2 

AP-6 3 0 2 2 0 1 1 1 2 1 1 1 

AV-110 1 2 4 0 0 0 1 0 3 2 1 2 

AV-500 1 0 0 0 1 1 1 2 2 1 3 2 

AV-502 0 4 5 2 0 1 3 7 1 1 1 0 

AV-503 1 0 0 0 0 0 0 0 1 1 2 4 

AV-804 1 0 1 3 2 0 1 2 4 0 3 1 

AV-900 4 1 1 0 0 0 3 2 2 2 1 2 

AV-902 1 1 1 4 0 0 2 3 0 1 1 0 

CL-501 8 7 4 7 8 4 6 10 4 4 15 9 

CL-505 2 4 4 2 1 0 4 3 4 2 6 1 

N-110 15 10 11 10 7 9 11 8 9 7 9 7 

N-403 8 7 5 5 4 4 5 5 7 13 6 5 

N-501 0 1 0 0 1 0 3 1 0 1 1 3 

N-502 10 8 2 1 5 6 5 5 5 5 2 8 

The static population data for the towns is obtained from the official database [30] and validated via 

the individual town webpages. The variations of population are calculated using the official data about 

hotel stays [31]. The population percentages are the values that will be used to update each town 
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individually. Table 3 includes the corresponding calculation for the six largest towns of the province, 

which account for 90% of the total population covered within the EMS, and all are above  

1000 inhabitants. Avila officially has 58,933 inhabitants for a 74%, but in its calculation, most of the 

79,913 hotel stays are also assigned to the capital (the assignment is proportional to the population).  

In January for example, Ávila holds some 59,000 inhabitants plus 74% of the 18,000 hotel stays for a 

rounded total of 73,000. 

Table 3. Population in 2014 (in thousands). 

Towns Pop 
% 

abs 

% 

cum 

J

A

N 

F

E

B 

M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A 

U 

G 

S

E

P 

O

C

T 

N

O

V 

D

E

C 

Ávila 59 74 74 73 76 87 92 90 86 93 104 94 93 82 82 

El Tiemblo 4 5 79 5 6 6 7 7 6 7 8 7 7 6 6 

Hoyo de Pinares 2 3 82 3 3 3 4 4 3 4 4 4 4 3 3 

Navaluenga 2 3 85 2 3 3 3 3 3 3 4 3 3 3 3 

Piedrahita 2 2 87 2 3 3 3 3 3 3 4 3 3 3 3 

El Barraco 2 2 90 2 3 3 3 3 3 3 4 3 3 3 3 

Hotel Stays 

(province)    
18 24 38 45 42 37 46 61 48 46 31 32 

The overall population figures are further adjusted to account for local festivities and other sporting 

or religious events (Table 4). The numbers are aggregated for the whole region for ease of 

representation. Besides, weekends are also included in order to better represent floating population. 

Table 4. Local festivities and events in 2014 (in days). 

Type JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

TOTAL 0 6 12 12 20 41 14 18 39 17 0 0 

Local events 0 4 0 1 10 12 1 6 19 11 0 0 

Roads closed 0 2 12 11 10 29 13 12 20 6 0 0 

The number of days per month of the different meteorological events has been obtained from the 

corresponding authority through its webpage (Table 5) [32]. 

Table 5. Meteorology in 2014. 

Days/Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Rain 5.9 5.0 4.2 7.8 9.0 4.7 1.9 2.6 4.4 7.6 7.1 6.7 

Snow 4.5 4.3 2.3 2.2 0.4 0.0 0.0 0.0 0.0 0.1 1.9 3.2 

Storms 4.5 2.3 1.5 1.2 1.0 0.6 0.3 0.3 0.7 1.3 3.4 4.1 

Fog 20.1 16.4 12.6 6.6 1.7 0.1 0.0 0.0 0.3 1.7 11.5 16.3 

6. Results and Discussion 

The simulation model is run for one year, 20 times to methodologically account for variability [33]. 

In this section we show results to demonstrate the applicability of each of the indicators and to study 

the deployment and staffing of the ambulances as a test case. 
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6.1. No Accidents 

Figure 9 includes the isochrones that result from different executions of the model, all of which do 

not include accidents. We vary and combine the sources of randomness due to variations in the 

population and the travel times or traffic conditions. The differences are not important but it is true that 

the functions cover somewhat less population when the variability is applied. 

 

 

(a)    (b)   (c)   (d) 

Figure 9. (a) Static population and standard times; (b) Dynamic population and standard 

times; (c) Static population and dynamic times; (d) Dynamic population and dynamic times. 

6.2. Deployment 

This section shows the analysis of the EMS as a function of the number of ambulances c that may 

be staffed at the hub, either c = 1, c = 2 or c = 3. Figure 10 includes the results for all four indicators, 

with each column including the results for each staffing level. In the first row of graphs, the isochrones 

that result from different executions of the model are shown, with the population coverage included in 

the second, the town coverage in the third and the utilization ratios in the fourth. 

The results show a vast improvement with a second emergency unit. With only one, and even if the 

rate of accidents is low, the ambulance is unavailable for a considerable amount of time, reducing the 

coverage and consequently increasing the health risk. The addition of a third ambulance however does 

not improve the situation enough to be considered economically appropriate. 

The isochrones show several areas that, on average terms, the ambulances cannot reach within  

50 minutes. That is not the case with more ambulances. Sure enough, the population covered within  

20 minutes is just 45% with c = 1 but above 70% for c = 2 and c = 3. The Golden Hour only covers 

70% with one ambulance, 96% with two and almost 100% with three. 
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(a)    (b)    (c) 

Figure 10. (a) Results for one ambulance; (b) Results for two ambulances; (c) Results for 

three ambulances. 

The town coverage gives additional insights to the problem. The indicator for the main city vastly 

improves, with the coverage rising from 60% to 90% and 96% for isochrone-20. For the rest of the 

towns the improvement is for isochrone-40 with five villages being above the 90% coverage, and all of 

them above that mark for isochrone-50. 

In terms of availability of the ambulances, the value is 57%, 79% and 86%, respectively, for the 

different resource levels. As for the busy times, the time at the site of the accident is greater than the 
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travelling time, even if the latter is penalized. Therefore, it looks like the availability is the key to 

correctly staff the ambulances. 

As a summary, Figure 11 includes the relationship between availability (dashed line) and population 

coverage. The patterns of the functions are the same. For this region in Spain, there is a relationship that 

can be set just above the isochrone-30 level. In other words, if the isochrone-30 is the threshold, the 

population coverage and the availability are both around 55% for c = 1, 75% for c = 2 and 85% for c = 3.  

 

Figure 11. Relationship between population coverage and percent availability. 

Remember however that the Spanish legislation aims at covering at least 85% of the population 

within 20 minutes. The size of the region and the road infrastructure make it in this case complicated 

and very costly to raise the 85% coverage level from isochrone-30 to isochrone-20. 

6.3. Sensitivity Analysis 

A further stress analysis is made in order to assess the robustness of staffing two ambulances.  

All the time figures (task times and penalties due to events) are multiplied by two. Accordingly,  

the dynamic indicators for public health will all be somewhat worse. The stress effect on the results for 

just one ambulance (Figure 12a) is very important, with the indicator never reaching the  

40% coverage. The differences between c = 2 and c = 3 are just about 10% for isochrones greater than 

or equal to 20 minutes, and are generated basically by travel times and not the meteorological events.  

It does not however look like the cost of implementing a third ambulance is mandatory. In terms of 

availability, it coincides in this case almost perfectly with the 30 minutes isochrone. 
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(a)       (b) 

Figure 12. Population coverage for the stress scenario (a) Population coverage;  

(b) Availability. 

7. Conclusions  

Negative situations relative to public health are frequently mentioned in local newspapers.  

For example, a three year-old baby lost its life due to the lack of availability of an ambulance for  

20 minutes in the small town of Elche in the South of Spain on July 28th, 2015. The time to rescue is 

considered unacceptable and the authorities ask for the deployment of “all the medical means that are 

necessary… to minimize the risky situations… since nowadays the resources are not proportional to 

the population” [34]. At the moment of the happenings, the only unit was occupied and the requested 

permanent additional ambulance had been deployed to a close town to cover for the increased 

population by the beach during the summer months. 

The original idea of this ongoing research has been therefore to include both the availability of the 

ambulances, the dynamic changes in population as well as the randomness in travel times due to 

weather or congestions in the calculation of a new set of indicators for the assessment of the influence 

of traffic accidents in public health. We have defined and developed a family of indicators based on 

dynamic isochrones, which are also very appealing in graphical format. The coverage of the population 

as a whole can be calculated, but also a different indicator is used for small town based on coverage 

time. The occupation of ambulances, as an indicator of cost, is also incorporated in the analysis. 

After applying the framework to a small region in Spain via a simulation model, it appears that the 

key indicator is that of the percent availability of the ambulances, since the population or towns are at 

risk whenever all the ambulances are busy while in an emergency rescue. We are currently improving 

the developed model with an additional aim to apply it to other towns in Spain with different 

infrastructures and populations to compare the validity of results, and hopefully establish a relationship 

between the level of deployment and the characteristics of the area that needs to be covered 

As a continuation, we are also changing the model so it can be used for other EMS decision making 

scenarios, like the assignment decisions in the short-term, for example, the relocation of ambulances,  

or even while controlling the position and the reach of the emergency units online. 
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