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Abstract: ProUCL is a software package made available by the Environmental Protection 

Agency (EPA) to provide environmental scientists with better tools with which to conduct 

statistical analyses. ProUCL has been in production for over ten years and is in its fifth 

major version. In time, it has included more sophisticated and appropriate analysis tools. 

However, there is still substantial criticism of it among statisticians for its various 

omissions and even its philosophical approach. Due to limited resources, some state 

agencies have set ProUCL as a standard by which all state-mandated environmental 

analyses are compared, despite the EPA’s more open acceptance of other software products 

and methodologies. As such, it can be difficult for state-supervised sites to convince the 

state to allow the use of more appropriate methodologies or different software. In the 

current case study, several such instances arose and substantial resources were invested to 

demonstrate the appropriateness of alternative methodologies, sometimes without 

acquiring acceptance by the state despite sound statistical demonstration. In particular, 

efforts were made to address: inappropriate outlier detection, upper tolerance limit (UTL) 

calculations based on gamma distributions when non-detects were present, and 

inappropriate use of nonparametric UTL formulas. 
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1. Introduction 

1.1. Mandated Soil Background Threshold Limits 

In 2012, a work site (the site) was instructed by the governing state agency to develop a background 

soils investigation plan for the purpose of calculating various descriptive statistics and background 

threshold values (BTVs) at various depths, for several soil types found at the site, and for 34 analytes 

(substances whose chemical properties, such as concentration, are of interest). A BTV is generally 

calculated from sources nearby a monitored site and used to assess whether concentrations of analytes 

at the monitored site are high by comparison. This assessment is often conducted on an ongoing basis 

over time, so the calculated BTVs could serve as reference levels for many years. The developed plan 

called for collecting a random sample of n = 12 observations from five soil types found in the area and 

at three depths, and that separate BTVs would be calculated for each of the 510 combinations  

(five soils × 3 depths × 34 analytes) based on upper tolerance limits (UTLs). A UTL is a numeric value 

calculated from the sample data in a manner such that it will exceed a specified percent of the 

population from which the sample was selected-known as the coverage, with a specified level of 

confidence. In this scenario, the coverage was specified to be 95% and the confidence level was to be 

95%, as well. These calculations were to use appropriate distribution-specific UTL formulas 

depending on whether distribution tests indicated the samples reasonably appeared to come from 

normal, lognormal, or gamma distributions, or to use a nonparametric UTL formula if no distributions 

appeared to be appropriate. The detection limit (DL) is the lowest concentration of a chemical that a 

particular measurement machine is capable of reliably detecting. In environmental sampling, it is not 

uncommon for concentration levels to be below the DL, thus resulting in a non-detect (ND) value and 

causing the data to be left-censored. An ND simply indicates that the concentration present in the 

sample is between zero and the DL. Hence, the presence of NDs provides limited but valuable 

information about the analyte population of concentrations. However, due to lacking specific 

quantitative values, using NDs in statistical analyses is complicated and there is rarely a single optimal 

mechanism for working with them. Early recommendations were often to replace the ND with half of 

the DL (DL/2), but this often causes a frequency spike at that value. In reality, one would expect the 

unknown true values for the NDs to be spread as per the underlying distribution, so using DL/2 in 

place of NDs often misconstrues results in statistical calculations. 

1.2. ProUCL Software 

ProUCL [1] is a software package made available by the US Environmental Protection Agency’s 

(EPA’s) Office of Research and Development (ORD) to provide researchers working with 

environmental data with better tools with which to conduct statistical analyses. The EPA has 

contracted out the development of ProUCL to Lockheed Martin since early on in its evolution. 

ProUCL runs only under the Windows operating system. Its development began in 1999 for internal 

EPA use and grew into a publicly released software package. It is now at Version 5.0.00, which was 

released in September 2013, and comes with both an extensive User Guide [1] and Technical Guide [2]. 

The latter half of its name reflects its early focus on upper confidence limit calculations, but in time, it 

has evolved to include much more, including one and two sample hypothesis testing, ANOVA, 
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regression, trend analysis, outlier detection, goodness of fit testing, and graphical methods, and often 

provides both parametric and nonparametric methods. However, what distinguishes ProUCL from 

many other software packages is its emphasis on statistical interval calculations (such as upper 

confidence limits (UCLs), upper prediction limits (UPLs), and UTLs [3]), its ability to work with  

left-censored data, and its availability of methods for distributional assumptions often associated with 

environmental data (lognormal, gamma, and nonparametric). In time, it has incorporated more 

sophisticated and appropriate analysis tools, particularly with regard to handling data containing NDs 

and data following a gamma distribution. 

Despite its substantial evolution, there is still criticism of ProUCL among statisticians for its various 

omissions and even its philosophical approach. One area it has been criticized for is its lack of spatial 

analysis capabilities to account for the spatial correlation that is often present in environmental data. 

However, considering ProUCL’s primary audience, incorporation of sophisticated spatial analysis 

methodologies may not be a reasonable consideration. Other criticisms include the lack of specific 

methodologies relevant to environmental analyses, such as techniques that utilize Expectation 

Maximization (EM) and Monte Carlo Markov Chain (MCMC) methods for handling NDs, and more 

advanced outlier detection methods. The ProUCL Version 5.0.00 User Guide states that, while it 

provides many methods that are described in EPA documents, “one may not compare the availability 

of methods in ProUCL 5.0 with methods available in the commercial software packages such as SAS 

and Minitab 16,” and suggests the use of commercial software if methods outside its scope are 

required, specifically mentioning tests that correct for seasonal/spatial variations. For more robust 

outlier techniques, the ProUCL User Guide encourages interested users to try the Scout 2008 software  

package [4]. Additionally, ProUCL has a limiting interface that lacks a programming language which 

consequently prevents automation of repeated processes, makes it difficult to export or extract specific 

result outputs from analyses performed by groups, and precludes the conducting of simulations for 

comparison with other software or between various statistical methods (both those methods available 

in ProUCL and those not included). 

1.3. Analysis and Reporting to the State Agency 

As the site’s statistical consultant, my role is to perform the agreed upon analyses, document 

statistical results in a written report (which is generally included in the site’s report to the state 

agency), and help the site reply to the state agency’s response to their report. The state agency can 

either respond to the site’s report with a notice of approval, a notice of approval with modifications, or 

a notice of disapproval. The latter two notices are accompanied by a list of issues that need to be 

addressed. In this scenario, my client’s first two reports were each met with notices of disapproval over 

statistical concerns. The third report submission was responded to with a notice of approval  

with modifications. 

Most of the issues that were the state agency’s grounds for disapproval were due to the agency’s 

lack of understanding of statistical issues, its reliance on the ProUCL software and the ProUCL 

documentation for guidance, and—at a more fundamental level—its general lack of resources.  

The remainder of this paper discusses the main statistical issues over which the state agency had 

objections and what was done to address these objections. I then present my perceptions of how a lack 
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of state resources, the state agency’s policies, and the EPA’s provision of ProUCL were each factors 

leading to the objections, followed by some recommendations for the future. 

2. Statistical Issues 

2.1. Outlier Detection 

Going forward, it is important to note that lognormal and gamma distributions are commonly used 

to model environmental chemical concentrations. In the present scenario, of the samples viable for 

analysis (some are excluded from analysis due to excessive NDs), based on goodness of fit (GOF) 

tests, 70.0% were associated with gamma distributions and 30.0% were not associated with any 

distribution considered, while none were associated with a lognormal distribution. 

The first notice of disapproval from the state agency expressed concern that most of the calculated 

UTLs were greater than the maximum value of the sample from which each UTL was calculated.  

The state agency expressed concern over this because they believed this was not typical. While the 

agency did not explain why this comparison was made, it is not uncommon for them to use the 

maximum as the BTV when a better value is not available. This, however, is indeed typical with 

samples of size twelve—A short simulation (five lines of R code [5]) shows that more than 99% of the 

time a calculated UTL will exceed the maximum when a sample of n = 12 is drawn from a lognormal 

distribution or from a variety of gamma distributions. The notice went on to suggest that this unusually 

large number of occurrences of UTLs exceeding the sample maximum could be the result of 

unaccounted for bias, possibly due to outliers. Consequently, it requested a discussion of outlier 

detection and whether outliers were excluded in the study. While it is true that an outlier would 

increase the UTL, it would also increase the maximum sample value. In fact, another short simulation 

shows that increasing the maximum sample value in a sample (so as to mimic an outlier) taken from 

either a lognormal distribution or a variety of gamma distributions causes a decrease in the relative 

occurrence of the UTL exceeding the sample maximum. Since it is the comparison of these two values 

that the agency was using as an indicator of a problem, it is not reasonable to conclude that outliers may 

be the cause of this phenomenon. Even so, the site’s response needed to address the issue of outliers. 

In statistics, identifying outliers is a tricky business as the definition of an outlier depends on the 

underlying distribution, yet identification of the underlying distribution generally depends substantially 

on the sample data that, if it contains outliers, will misrepresent the distribution that needs to be 

identified. The usual objective of outlier detection is to determine if a data point has been corrupted or 

if there is more than one population that has been included in the sample. Both the lognormal and 

gamma distributions are right-tailed distributions, which implies that they are prone to occasionally 

having a high value in a random sample, and these are quite often identified as outliers in outlier 

detection methodologies despite the fact that they do come from the same distribution as the other 

sample data. Sometimes an outlier can be identified as coming from an experimental unit that was 

problematic (e.g., there was difficulty controlling the temperature of a water tank used to grow algae in 

a biofuel experiment) or it may be clear that there was a data entry error. In such cases it may be 

reasonable to exclude or adjust the observation. However, it is a generally good statistical principle 

that, lacking other relevant information about an outlier, observations are not excluded since they may 
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represent important information about the population being sampled (as often occurs with lognormal 

and gamma distributions). 

In my reply to the request for a discussion of outliers in the study, I presented rationale similar to 

that given above for why removal of outliers was generally not a good idea and supported it with 

statistical references—Including an official EPA guidance document. I also informed them that my 

client conducted a data check among the most extreme values and found no reason to believe there 

were problems with the data collection or the data entry. Lastly, I developed simulations to 

demonstrate the ineffectiveness of commonly available outlier detection methods with right-tailed 

distributions. In particular, the ProUCL software—Which the state agency was strongly encouraging 

us to use (and eventually insisting that we use for some analyses)—Contains only two outlier detection  

methods—Dixon’s test and Rosner’s test. The former is generally used for samples with n ≤ 25, while 

the latter is used for n > 25. However, both tests assume a normal distribution for the underlying 

population (excluding the outliers). In the ProUCL Technical Guide, the authors state that these two 

methods have shortcomings (i.e., masking effects, meaning that they tend not to identify all of the 

outliers), and refer the reader to more effective robust outlier identification procedures that they state 

“are beyond the scope of ProUCL 5.0.” They point the interested user to other resources, of which a 

primary technique is the PROP robust method [6]. However, like the other two tests, the PROP method 

also assumes normality. None-the-less, in order to demonstrate to the agency the lack in capability of 

the available outlier detection methodologies suggested by the ProUCL guidance, I conducted some 

simulations. Simulations were performed using both Dixon’s test (since our study had n ≤ 25) and the 

PROP method for samples of n = 12 from several gamma distributions that appeared to be typical of 

our study samples’ distributions based on GOF tests and parameter estimates. Dixon’s test falsely 

identified outliers between 15.7% and 38.1% of the time, depending on the distribution used. The 

PROP method falsely identified what its authors call “clear outliers” 68.7% to 88.7% of the time, and 

detected additional samples as having what the authors call “potential outliers.” Note that these results 

are no indication of the abilities of these two outlier detection methods under their specified 

assumption of normality. Rather, it only shows they have a high false positive rate under the much 

more common reality where the distributions of environmental concentrations tend to be more skewed. 

These efforts arrested further criticism and inquiry from the state agency regarding outliers. Still, 

considerable expense and resources went into addressing these concerns that were brought about 

because of a lack of understanding by the state agency regarding UTL calculations, the impact of 

outliers, and outlier detection methods and principles. 

2.2. Estimation of Distribution Parameters in the Presence of NDs 

By far, the most contested issue in the soil investigation was over the method by which gamma 

distribution parameters were estimated when NDs were present in the sample. In order to calculate a 

UTL from any of the numerous samples whose distributions were associated with a gamma 

distribution, any NDs present in the sample had to be replaced by reasonable values. A method that is 

available in ProUCL is regression on order statistics (ROS). ROS takes advantage of the consistent 

proportionality of the spacing in the expected values of normal data, which does not depend on the 

parameters of the normal distribution (i.e., the mean and variance). ROS has two phases.  
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First, a straight-line regression equation is obtained for the detected sample values versus their 

corresponding expected values for the standard normal distribution, and second, the expected values of 

the standard normal distribution corresponding to the (generally smaller) NDs are plugged into the 

regression equation to obtain estimates for the ND values. These regression estimates can then be used 

as replacement values for the NDs in order to calculate the UTL. 

The ROS method was initially proposed in the site’s soil investigation plan as a method for 

replacing NDs in samples. This method works well for normal or lognormal data, but as I began to 

read about how this was implemented in ProUCL for gamma distributions, I came to the conclusion 

that it was very naive in its estimation method. In particular, unlike using ROS for normal and 

lognormal data, the gamma ROS first requires estimation of the underlying distribution’s parameters 

because the proportionality of the expected values does depend on these parameters. The ProUCL 

implementation of ROS for gamma distributions first estimates the gamma parameters (as is 

necessary), and then applies the usual ROS method as described above, but using expected values from 

the gamma distribution having the estimated parameters. However, in estimating the gamma 

parameters, not having the (generally lower) values to substitute for the NDs will result in biased 

parameter estimates. This in turn gives biased substitution values for the NDs in the second phase. This 

method can be improved substantially by implementing a well-documented statistical technique known 

as the Expectation Maximization (EM) algorithm [7,8], which would iterate multiple times between 

estimating the gamma parameters using maximum likelihood estimation (MLE) and estimating the ND 

substitution values, eventually converging to a stable set of gamma parameter estimates and ND 

substitution values. This method is not available in the ProUCL software. ProUCL does provide 

another methodology for calculating a UTL for gamma-distributed data with NDs. This method 

obtains Kaplan-Meyer (KM) estimates of the mean and standard deviation that do not rely on any 

knowledge of the underlying distribution (i.e., they are nonparametric estimates), and then plugs these 

values into a UTL formula that is specific to the gamma distribution. For the calculation of UTLs for 

samples conforming to a gamma distribution, I opted to use the EM approach for two reasons: (1) it 

utilized the ROS methodology, which the original investigation plan called for (and the state agency 

specifically recommended that ROS be used in a formal response to the site’s initial soil study plan); 

and (2) I was less familiar with the capabilities/performance of the KM approach. 

In the first notice of disapproval from the state agency, concern was expressed over the magnitude 

of the UTL estimates. As noted in the previous subsection, the agency was concerned that outliers 

might be the cause of the large magnitudes, but they were also concerned over the methodology being 

used and the fact that it was not a method implemented by ProUCL. In my response, I showed results 

of simulations I conducted that demonstrate the EM algorithm provided better estimates than the 

gamma ROS implementation of ProUCL and made all of my code available to the agency-both for 

calculating the UTLs via the EM method and for conducting the simulations. Simulation results 

specific to the case study scenario and very similar to those presented to the state agency are presented 

in this paper’s Appendix. Note that the results only address the EM method’s capabilities under the 

study’s typical conditions of n = 12, having a single DL, and having an average of three NDs per 

sample. However, subsequently, in the second notice of disapproval, the agency expressed concern 

over the difficulty involved in reviewing my code-not because it was disorganized or poorly 

commented, but because I had modified an existing function in the R library to implement the EM 
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algorithm. In fact, the notice stated regarding the site’s response that, “While the response included a 

detailed discussion of how the statistical analyses were performed, there are still some concerns with 

the upper tolerance limits.” Trying to determine exactly what those concerns were or how they could 

be addressed was difficult, but hints were given by their later statement that the “modifications appear 

to stray from EPA’s (and (the state agency’s)) preferred/recommended statistical package for 

environmental applications—ProUCL”. However, this was exactly the point, which had been clearly 

stated in the original report—That is, the implementation of the gamma ROS method in ProUCL was a 

poor methodology for our study scenario, and simulations had been provided to demonstrate this, 

along with the simulation code. 

Further insight is gained by the state agency’s statement that, documentation for the R software 

used “would need to be compared to the recommendations in the ProUCL documentation to ensure 

they are similar or that the R software and modules represent a more conservative approach”. This 

statement conveys two important implications. First, the agency is relying heavily on the ProUCL 

documentation of its methodologies for guidance, even when the argument being made is that the 

ProUCL methodology is poor, and second, in the context of other statements made by the state agency, 

from the agency’s perspective, the notion of being a “more conservative approach” means that it yields 

UTL values that are as small or smaller than those given by ProUCL methods. This can be seen in the 

agency’s later statement that if the site wished to use the UTL calculations obtained via the EM 

method, the most straightforward approach would be “to demonstrate that the approach taken is similar 

to and conservative compared to ProUCL.” Ultimately, the agency requested that we examine and 

eventually use the KM method available in ProUCL for many of the UTL calculations. Due to funding 

and time limitations, I did not have an opportunity to investigate the KM method as thoroughly as I 

would have liked and, in particular, was unable to conduct simulations to compare it to the EM 

method. Based on what I have read about the KM method, I have no general qualms in using it, as I 

did with ProUCL’s gamma ROS method. What is disconcerting is the rationale for using it as, in the 

end, the agency specifically requested that the site use the method that gave the smallest UTL 

calculations, giving no consideration to which method was best from a statistical perspective. 

2.3. Use of Nonparametric UTL Formulas 

GOF tests (along with various graphical methods) are generally used to ascertain if a distribution 

type can reasonably describe the population from which a sample was obtained. In situations where no 

distribution can be reasonably assumed to describe the underlying population, a category of methods 

known as nonparametrics may be useful. By definition, nonparametric methods do not rely on the 

shape or other properties of any particular distribution type, but are generally based on mathematics 

that rely on the probabilities of the various possible combinations that might be obtained. It is 

important to realize that nonparametric methods typically are not free of assumptions or conditions, 

and are often used inappropriately without reasonable verification of the assumptions and conditions. 

Nonparametric UTL formulas are no exception and have minimum sample size conditions in order to 

obtain the specified level of confidence and coverage. 

When the site began developing the study plan in 2012, the most recent incarnation of ProUCL was 

Version 4.1.00, and the site project team utilized the corresponding ProUCL Technical Guide [9] in 
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developing an analysis strategy that provided different methods of computing UTLs depending on the 

presence and quantity of NDs, the sample size, and the ability to identify a suitable distribution for the 

underlying population. The introduction of the ProUCL Version 4.1.00 Technical Guide discusses the 

difficulty of assessing the underlying distribution when NDs are present, and then states, “In such 

situations, it is preferable to use nonparametric (e.g., KM method) methods to compute statistics of 

interest such as UCLs, UPLs, and UTLs. Nonparametric methods do not require any distributional 

assumptions about the data sets under investigation. Singh, Maichle, and Lee [10] also concluded that 

the performance of the KM estimation method is better (in terms of coverage probabilities) than 

various other parametric estimation (e.g., MLE, EM, ROS) methods.” This led the site project team to 

believe that the referenced KM method was nonparametric, and thus to develop an analysis strategy 

that stated KM methods for calculating UTLs would be used under certain situations where an 

underlying distribution could not be satisfactorily identified. After the plan was approved by the state 

agency and I began to read more about implementing the KM methods for calculating UTLs, I came to 

the realization that these methods are not actually nonparametric as the above statement in the ProUCL 

documentation directly implies. Rather, while the KM estimations of the population mean and standard 

deviation are nonparametric, the UTL calculations referred to in this statement merely utilize these KM 

estimates in various parametric-based equations, thus still necessitating reasonable identification of the 

underlying population. Additionally, I also discovered that the cited paper by Singh, Maichle, and  

Lee [10], concluding that the KM method was better only pertained to UCL calculations, and the paper 

does not attempt to address UTLs. 

This caused a conundrum in the analysis process since the investigation plan called for a 

nonparametric method (and the state agency was expecting one), yet the KM methods were not 

appropriate as they are not actually nonparametric. Further, the usual nonparametric method utilizing 

maximum order statistics requires minimum sample sizes of n = 59 to achieve 95% confidence in a 

UTL with 95% coverage. Our sample of n = 12 would only provide 95% confidence for a coverage of 

77.9% of the population, which defeats the purpose of calculating a UTL to be used as a BTV. To 

address this issue in an ad hoc manner, I used a nonparametric method that used the KM calculations 

of the mean and standard deviation in Chebyshev’s formula (ProUCL Technical Guide v. 5.0.00, 

Section 3.5.4.1) to calculate a 95% Upper Prediction Limit (UPL) for a single future observation. A 

UPL is a numeric value calculated from the sample data in a manner such that it will exceed a 

specified number of future observations from the population from which the sample was selected with 

a specified level of confidence. This UPL was then bootstrapped (randomly selecting twelve 

observations with replacement from the original sample of twelve observations and calculating the 

UPL with the resampled values, and repeating this many times) and the 95th percentile of  

1000 bootstrapped UPL values was taken as an approximate UTL. 

Some simulations bootstrapping a gamma-based UPL in a similar manner (for samples of n = 12 

without NDs from various gamma distributions) resulted in UTL approximations that ranged from 0% 

to 10% under the usual gamma UTL formulation (based on the Wilson–Hilferty approximation [11]). 

As the Chebyshev inequality is conservative, it will give larger estimates, and simulations 

bootstrapping a Chebyshev-based UPL resulted in UTL approximations that ranged from 17% to 40% 

above the usual gamma UTL formulation. This implementation of the Chebyshev UPL to get an 

approximate UTL resulted in UTL values that were often two times larger than the sample maximum, 
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and occasionally approaching three times as large. This ratio of the UTL estimate to the sample 

maximum generated great concern from the state agency. However, ProUCL does implement the 

Chebyshev UPL formula as a nonparametric UPL calculation, though it does state that for larger 

skewed data sets the user may want to compute the Chebyshev UPL using a confidence level of 85% 

or 90% rather than 95%. Some simulations implementing the Chebyshev UPL calculation as per 

ProUCL guidance (for gamma distributed data with n = 12) resulted in Chebyshev UPLs exceeding 

UPLs from the gamma-based formula by 25%–75%. In light of this, the 17%–40% exceedance for the 

UTL estimates does not seem unreasonable. In the last response from the state agency, which was a 

notice of approval with modifications, the agency did not even address the mechanism for calculating 

UTLs in this situation, i.e., when no distribution can be reasonably assumed to describe the underlying 

population, thus apparently leaving this to the discretion of the site. 

It should be noted that the section in the ProUCL Version 4.1.00 Technical Guide containing the 

above noted statement that led to the inappropriate specification of the “KM method” has been 

substantially rewritten in Version 5.0.00, and now more clearly describes the available methods. In 

fairness, documenting the methods available for such a broad combination of situations is complex and 

the effort required is, no doubt, substantial. In total, the ProUCL Version 5.0.00 Technical Guide is an 

impressive document with lots of useful information, often accompanied by relevant technical details. 

3. Discussion 

3.1. The Role of the State 

For the three issues with the state agency discussed in the previous section, what was most 

concerning was (1) the reliance the agency had on the ProUCL software and its documentation; (2) the 

agency’s inability to independently assess the statistical methodologies used to perform the statistical 

analyses; and (3) the fact that its criterion for selecting the UTL method to be used was based on which 

method gave the lowest UTL, regardless of the statistical evidence behind the methodologies to  

be considered. 

Unfortunately, the three issues discussed in the previous section for the current scenario are not 

isolated issues. Additionally, in the first notice of disapproval, the state agency misinterpreted the 

implication of high p-values in the GOF tests, stating that, “it appears that even if the p-values were 

greater than 10%, when nonparametric distributions may be applied, the data were still forced into one 

of the four distributions.” In fact, when the p-value for a GOF test was greater than α = 10%, it 

indicated failure to reject the null hypothesis that the sample data came from the tested distribution, 

which would mean we did not have evidence against the appropriateness of that distribution. Hence, 

we were not forcing a distribution on a data set, but were adhering to fairly standard statistical 

practices for determining the appropriate distribution using GOF tests. The agency’s concern would 

have been valid only if the p-values had been low, not high. 

Additionally, in a previous study to compare up-gradient ground water to down-gradient ground 

water, the site called me because the state agency wanted an early assessment when the site had only 

collected samples of nu = 5 and nd = 1, respectively. In this case, the state agency gave the site a 

formula for a two-sample t-test it wanted the site to use to assess whether a difference existed in the 
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up-gradient and down-gradient population mean concentrations, but the formula completely omitted a 

variance term in the denominator for the down-gradient sample. Most likely this was because the 

agency adapted a two-sample t-statistic from an EPA guidance document but, being unable to calculate 

the sample variance for the down-gradient sample since nd = 1, they simply dropped the variance term 

from the formula. This had the effect of inappropriately magnifying the t-value by a factor of 

approximately 2.45 (assuming the variances are reasonably similar in the two populations), thus 

magnifying the estimated difference between the population means relative to the estimated variability 

in their differences due simply to random error, and greatly increasing the likelihood of rejecting the 

null hypothesis of no difference in the population means. 

In yet another study, the site called me on three different occasions to do fairly substantial statistical 

analyses on the same data with the same analysis objective—Each time using a different methodology 

(each dictated by the state agency) because the state agency changed its mind twice about how it 

wanted the data analyzed. 

The take away point is that the state agency is charged with overseeing processes that it does not 

have the statistical expertise to oversee and either does not have the resources to contract it out or is 

not willing to do so. In the scenario discussed in the previous section, the state agency even hired an 

external individual that it referred to as a “risk assessment subcontractor” to review the statistical 

analyses performed, yet this individual also did not have adequate expertise. Some of the statistical 

issues the agency deals with are not very complicated, but many of them are quite complicated. These 

complicated issues simply cannot be assessed without substantial statistical expertise and will often, at 

the very least, necessitate the involvement of an individual with a Masters degree in statistics and 

substantial relevant experience, and in some cases will absolutely require the expertise of someone 

having a Ph.D. in statistics. As is demonstrated by the interactions with the state agency illustrated in 

the previous section, the state agency’s failure to acquire such expertise often costs their supervised 

sites substantial resources in attempting to alleviate concerns from the state agency. If the state had 

adequate statistical expertise, many of its concerns would be addressed internally and never even be 

presented to the sites. In the end, a site may not even be able to convince the state agency to implement 

good statistical practices even when the site employs a Ph.D. statistician because the state agency is 

not able to assess the statistical work. 

A question that may arise in the mind of the reader is whether good communication between the 

state and the site could help alleviate the consequences of the agency’s lack of statistical expertise. The 

answer is-very likely, yes. Unfortunately, the state agency is extremely reluctant to allow direct 

communication between external subcontractors. In the current scenario, the site requested a meeting 

with the agency’s risk assessment subcontractor so that we could communicate interactively and 

clarify some issues, but the state agency flatly turned down the request. In fact, it has been my 

experience that the state agency’s employees are very reluctant to talk with statisticians. On the one 

occasion, I was able to arrange a conference call (many years ago), the two individuals on the call from 

the state agency were exceptionally hesitant. This is not an uncommon scenario when there is an 

imbalance of knowledge, and the only solution is to increase the expertise within the state agency. To 

be more pointed, states have an ethical responsibility to ensure that their agencies acquire and maintain 

adequate expertise to perform the duties with which they are charged. Statistics is a complicated field 

and environmental monitoring scenarios frequently encounter complex statistical issues. Often only a 
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Ph.D. statistician can adequately address these issues. Not having such expertise available when 

needed in areas such as environmental monitoring is costly to the state’s businesses and risky for the 

state’s residents. 

3.2. The Role of the EPA 

When I think about the broad goal of the EPA—to protect human health and the environment—I am 

overwhelmed with how tremendous a task this is. One major role of the EPA is to develop guidance 

for states to follow, and these are set forth in a variety of documents that are revised as new advances 

are made. I have witnessed the evolution of some of these guidance documents and they have 

improved substantially over the years. However, the EPA also does site assessments, and in speaking 

with the Director of the Site Characterization and Monitoring Technical Support Center (SCMTSC), 

which is responsible for supporting and developing the ProUCL software, I was told that the EPA will 

assess statistical analyses performed using any software product. Of course, the EPA has much more 

depth and expertise than any state agency, and this is partly the price states pay for having autonomy in 

overseeing the protection of their own state’s environment. While the EPA provides guidance to states, 

it does not generally dictate how states implement processes to protect their environments. While such 

liberty has its appeal, it can often result in poor implementations. While working with a site to develop 

a particular assessment plan some years ago, I contacted the governing agencies for six different states 

and inquired how they generally analyzed the data obtained from such an assessment plan. While a 

couple of the analysis strategies were similar, there was substantial variation in them, and there was 

only one analysis strategy of the six that I thought had merit, and even it was lacking. 

With such autonomy given to the states, it is difficult to make recommendations as to what more the 

EPA could do to improve the capabilities at the state level. It is clear that states would benefit from 

having greater statistical expertise available; so one recommendation to the EPA would be that it 

strongly encourages acquiring such expertise. In fact, the ProUCL Version 5.0.00 Technical Guide 

states that a project team may want to consult with a statistician nine different times throughout. Yet 

this is clearly not adequate encouragement for many state agencies. I believe seeking expertise could 

be further encouraged by incorporating statements at several places in the ProUCL documentation that 

(1) the methodologies it provides are not all-inclusive; (2) some of the methodologies may not be 

appropriate or optimal in some situations; and (3) some situations may necessitate consultation with a 

statistician who can provide other insights and useful methods. Such language would have allowed me 

to point the state agency away from ProUCL as their definitive standard and encourage them to rely on 

the expertise of another consulting statistician. 

The ProUCL software has progressed steadily since its inception, and has a substantive set of 

methodologies available in it. As a statistician, I have found its Technical Guide to be a valuable 

resource for learning about useful methodologies in environmental monitoring. I have also contacted 

the director of the EPA’s SCMTSC and requested copies of the Technical Review Forms that were 

completed by a number of users for version 5.0.00 of ProUCL. I was reasonably impressed with the 

effort this office made to solicit critique of the software from users of ProUCL and the replies made in 

response to the reviews. However, in reading the reviews it was clear that almost none of the reviewers 

had much statistical expertise, as this could be easily inferred by the gaps in knowledge in one or more 
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statements made by almost every reviewer. It is difficult to believe that such a review process is very 

comprehensive when the software contains complex statistical methodologies yet is not reviewed by 

statisticians with advanced degrees. It would be my recommendation that the EPA’s SCMTSC 

specifically engage statisticians with advanced degrees in the reviews of ProUCL. As ProUCL is 

reasonably large at this point and, to my knowledge, has not undergone such a comprehensive review, 

initial reviews of the various components of the software should each be delegated to a  

few statisticians. 

The interface to ProUCL is limited by a few licensed technologies that the authors have utilized to 

reduce some of the programming necessary (e.g., to import data and export analysis results). These 

technologies are less than optimal and make working with ProUCL more difficult than it otherwise 

would be with better technologies. In particular, extracting specific results is not well facilitated when 

numerous analyses are conducted “by group”. This was also reflected in multiple comments in the user 

reviews that I read. 

ProUCL does not allow much automation because it lacks any type of programmatic interface.  

A comprehensive programming language would be useful for several reasons, including allowing more 

control over output and extraction of results, permitting simulations to allow comparison among 

various methods (both those included in ProUCL and others that are not), and automation of repeated 

analyses. However, the incorporation of a comprehensive programming language would be a major 

task and very unlikely to be funded. Because of this, and for other reasons outlined below, I contacted 

the director of the EPA’s SCMTSC and asked if the source code for ProUCL was available to the 

public. The director stated that it had never been requested before, but that such a request could be 

considered if there were specific reasons for it. Hence, I emailed the director with an outline of points 

as to why I believe the community would benefit from making the source code available. An 

abbreviated version of those points is included here: 

1. It would facilitate side-by-side comparisons of methodologies via simulations and ensure that 

the methodologies used in the simulations faithfully represent those in the ProUCL software. 

2. It would facilitate extraction of specific results from a large number of analyses. In particular, 

once the code was incorporated into programming environments, such as R or Python, a user 

could quickly extract just the outputs that are needed for a report. 

3. It would allow users to better understand how calculations are performed where the manuals 

are lacking explanation. Having the code available would allow a sophisticated user to study 

the implementation and determine precisely what is being done in the ProUCL implementation 

of a particular method. 

4. It would improve analysis workflow, as having the code available would allow a user to 

implement analysis processes that could be replicated or modified/updated with minimal effort. 

5. It would promote the philosophy of reproducible research, which has gained tremendous 

momentum in the past couple of years. This would be accomplished by incorporating the code 

into the many software packages where reproducible research tools are already available. It is 

also very difficult to describe an analysis process that was followed for a large analysis when 

performed via a graphical interface, and a programmatic interface is generally necessary to 

ensure the analysis workflow is reproducible. 
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6. It would reduce the local environmental agencies’ views of ProUCL being the sole standard for 

comparison. Having the code available would eventually result in its implementation in other 

environments, and thus ultimately push local environmental agencies to more readily consider 

analyses performed in other software environments. 

7. It would allow implementation of the ProUCL methodologies on non-Windows operating 

systems without having to run via virtual machines. Many software packages used for analysis, 

such as R and Python, are implemented across most platforms. 

8. It would allow the statistics community to contribute code for consideration for use in ProUCL. 

With the code available, statisticians would be encouraged to investigate it and compare 

existing ProUCL methodologies to other methodologies, including new ideas for future 

methodologies. This will also lead to the development of more extensive guidelines as to when 

various methodologies should be used. 

9. It would lead to faster fixing of bugs and general difficulties in ProUCL and its documentation. 

Any major software product has bugs, and having other statisticians evaluating and using its 

code base would lead to quicker identification of bugs and fixes, ultimately improving  

its reliability. 

When I recently contacted the director about the status of this request, I was told that it would be 

discussed with the project support team for consideration and that it would be necessary to check on 

the proprietary issues. 

3.3. The Role of the Statistician 

Statisticians have responsibilities in their role as well. When a client of mine has been tasked by a 

state agency to perform an analysis using specific methodology that I believe is inappropriate or less 

than ideal, there is no doubt that it is going to be implemented by my client regardless of whether I 

perform the specified analysis or not, since they are under contract with the state agency. However, it 

has been my policy that if I am going to participate, I will do what the client has been tasked to do, but 

also implement a methodology that I deem to be appropriate for the analysis goals. Then, in my report, 

I present both sets of results and I attempt to make the case for why the mandated method is 

inappropriate/inferior while the newly proposed method is appropriate/superior. I have been fortunate 

that my clients have been open to affording me the resources to do this, and I believe that it has 

enhanced our relationship because they perceive it is a beneficial approach-accomplishing the 

contracted work while educating the state agency. Continuing to educate researchers in other fields 

about statistical principles, methodologies, and complexities should be a goal for every statistician, and 

we should seek opportunities to do so. 

Additionally, I am always learning more about the areas in which I consult (such as environmental 

monitoring, though I consult in many areas), and hopefully learning better ways to do things as a 

consequence. For example, while I have always expressed to the site that continuing to take 

background samples over time can help refine the UTL calculations, in the future I will likely try to 

encourage that this be written into the investigation plan as part of the data quality objectives (DQOs). 

This would allow adapting to the lack of statistical techniques available when a reasonable underlying 

distribution cannot be identified and the sample sizes are too small to implement available 
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nonparametric methods. Over time, the site has brought me into the planning stages more and more, 

and I have developed a greater awareness of the issues around DQOs, and consequently will try to 

have more input on them in future studies. 

4. Conclusions 

Environmental monitoring is obviously an important issue in our society, and it involves the 

bringing together of many scientific fields to properly assess sites that may present a threat to our 

environment. Statistical analyses are integral to any evaluation process where data are collected and 

used to make decisions, and environmental monitoring is no exception. In fact, analysis of 

environmental monitoring data often necessitates very complicated statistical methods. This is due to 

the limitations of machinery to measure chemical concentrations which often results in NDs in 

samples, the expense of collecting and measuring environment samples which leads to small sample 

sizes, the skewed distribution types that tend to best represent many environmental concentration 

populations, and commonly not being able to identify any distribution to model environmental data 

which then necessitates using nonparametric methods. To address such issues requires capable 

software and a high level of statistical competence. The EPA has implemented useful analysis tools in 

their ProUCL software, and provided a good resource for learning about the methodologies 

implemented in the ProUCL Technical Guide. However, ProUCL does have its limitations, largely due 

to funding. These limitations could be largely overcome if, instead of just providing these tools as a 

unified software product, the EPA would release the source code so that it could be implemented in 

other software environments and further built upon by researchers outside of the EPA and  

its contractors. 

States have been delegated the responsibility to protect their own environment with guidance from 

the EPA. But to do this well requires adequate resources, and statistical expertise appears to be a 

greatly neglected resource by many, if not most, states. States have an ethical responsibility to both the 

sites that they monitor and the residents that they serve to ensure that adequate resources are provided 

to protect the state’s environment. In addition, state agencies overseeing environmental monitoring 

need to recognize the necessity for being able to conduct independent assessment of complicated 

statistical issues that may not be directly addressed by using EPA resources. There is, after all, very 

good reason that the ProUCL documents and various EPA guidance documents state that, project 

teams may want to consult a statistician. 
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Appendix–Some Simulation Results 

To demonstrate to the state agency the capability of the EM algorithm using gamma MLE 

estimation relative to the gamma ROS method, I presented them with simulation results for three 

gamma distributions having parameter sets (i.e., shape and rate) that were fairly representative of the 

estimated gamma distributions encountered in the study. Namely, 
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1 Gamma (3, 3), 

2 Gamma (7, 1), and 

3 Gamma (1, 0.2). 

Figure A1 shows the probability density functions (pdfs) for these distributions. From this plot one 

can see that the second distribution is approaching symmetry and somewhat approximates a normal 

distribution. Figure A2a–c show some results of the simulations implementing both the Gamma ROS 

method and the EM method. In the simulations, samples of size n = 12 were generated (since the 

simulations were targeted at the situation in the study we were working on) and NDs were inserted 

based on a DL that was selected in a manner that would produce an average of three NDs in a sample 

(since this was fairly common for the samples in the study). In Figure A2a–c, the pdf of the original 

gamma distribution from which simulation data were generated is shown with a heavy black curve. For 

each figure, 100 data sets were randomly generated and the EM method was used to estimate the 

gamma parameters-the corresponding pdfs are displayed in blue; and the gamma ROS method was 

used to estimate parameters for the same 100 data sets—these pdfs are displayed in green. In each of  

Figure A2a–c, the pdf’s obtained by the EM method generally approximates the original pdf more 

closely than the pdf’s obtained from the gamma ROS method. 

 

Figure A1. Probability density functions (pdfs) of the gamma distributions used in  

the simulations. 
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(b) 

 
(c) 

Figure A2. (a) Original Gamma(3, 3) pdf (black) for simulated data with n = 12 with an 

average of three NDs, and pdf’s estimated by the EM method (blue) and the GROS method 

(green); (b) Original Gamma(7, 1) pdf (black) for simulated data with n = 12 with an average 

of three NDs, and pdf’s estimated by the EM method (blue) and the GROS method (green); 

(c) Original Gamma(1, 0.2) pdf (black) for simulated data with n = 12 with an average of 

three NDs, and pdf’s estimated by the EM method (blue) and the GROS method (green). 

Simulations using 10,000 iterations were also conducted to numerically compare the parameter 

estimates to the true parameter values and to compare the calculated 95%-confidence–95%-tolerance 

UTLs to the 95th percentile of the original gamma distribution. Table A1 shows the results of  

these simulations. 
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Table A1. Simulation results showing mean distances and root mean squared deviations 

from the true parameter values. UTL measures are from the 95th percentile of the true 

distribution. UTL % exceedance is the percentage of 95%–95% UTLs that exceeded the 

95th percentile of the true distribution. 

 Gamma (3, 3) Gamma (7, 1) Gamma (1, 0.2) 

 GROS EM GROS EM GROS EM 

Shape Mean Distance 6.384 −0.787 4.626 −0.770 1.765 −0.166 
Shape Root-MS-Deviation 9.500 2.169 7.942 4.015 2.478 0.608 

Rate Mean Distance 5.225 −0.761 0.614 −0.103 0.299 −0.022 
Rate Root-MS-Deviation 8.572 2.119 1.114 0.569 0.522 0.129 

UTL Mean Distance 2.451 1.915 4.059 5.074 22.89 14.97 
UTL Root-MS-Deviation 3.245 2.319 5.274 6.337 27.06 18.26 

UTL % Exceedance 93.88 96.30 92.73 95.29 95.49 95.37 

From Table A1 we see that for the first and third distributions (which are more skewed) the EM 

method was more on target in estimating the gamma parameters by a factor of about 8–10, and by a 

factor of about 4–6 for the second distribution (which is more symmetric). For the first and third 

distributions the EM method had a smaller typical deviation (as measured by the root mean squared 

deviation) by a factor of about 4, and by a factor of about 2 for the second distribution. For the first and 

third distributions the EM method was more on target with its UTL by a factor of about 1.5, and had a 

smaller typical deviation also by a factor of about 1.4–1.5. For the second, more symmetric 

distribution, it was actually further off in its being on target and typical deviation, each having a factor 

of about 1.2 of the ROS UTL, but the ROS method fell a little short of obtaining the prescribed 

confidence of 95% for both this distribution and the first distribution, whereas the EM method 

obtained the prescribed confidence for each distribution, though never by much (0.29%–1.30%). In 

general, for this limited scenario, it appears that the EM method performs substantially better at 

parameter estimation and gets closer to the desired population percentile for all of the distributions 

examined, and is marginally better (factor of 1.5) at estimating the 95th percentile with the UTL 

calculation when the distribution is not symmetric. For the symmetric distribution the EM’s UTL 

accuracy and precision is slightly lower (a factor of 1.2 of the ROS values), but achieved the 95% 

confidence while the ROS method fell a little short. All of the R code used to produce Figures A2a–c 

and to conduct the simulations presented in Table A1, including the starting random number seed, are 

available as a supplement to this paper on the journal’s web site. 

These simulations were conducted with the specific goal of addressing issues with the 

environmental agency in the study that was being conducted. As this paper is a case study perspective, 

it is not the goal to present a more thorough simulation analysis here. Rather the goal is to illustrate the 

situation with the state agency. Of particular note is that these simulations are targeted at data that have 

only a single DL since the vast majority of the data in the case study were covered by this case  

(just over 80%). Additionally of note is that at the time of the discussion with the state agency, the KM 

method was not being considered because it was not part of the original proposal and the state agency 

had recommended we use an ROS method. Since the EM method uses an approach similar to the ROS 

method, we felt it fit within the specifications of the agency whereas the KM method clearly did not. 
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However, it is also worth noting that an extension to the EM method has been developed that works 

well with multiple DLs but takes a different approach in dealing with the multiple DLs than the ROS 

method, and limited initial simulations appear to indicate that it performs well. Some adjustment in the 

algorithm has also been made that appears to improve the consistency in the parameter estimations 

(even for the single DL case) and in how well the estimated pdf curves track the original pdf  

(for example, in a plot similar to Figure A2a there are far fewer EM-estimated pdfs that asymptote on 

the Y-axis). This EM-based algorithm and its capabilities will be presented in a future paper once more 

simulations have been conducted. 
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