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Abstract: NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible
links to the higher respiratory and cardiovascular mortality and morbidity rates found in the
country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor
environments yet the quality of indoor air is an essential determinant of a person’s well-being,
especially since the average person spends more than 90% of their time indoors. The modelling
conducted in this research aims to provide a framework for epidemiological studies by the use
of publically available data from fixed outdoor monitoring stations to predict indoor air quality
more accurately. Predictions are made using two modelling techniques, the Personal-exposure
Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial
Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach
has been used to predict indoor air concentrations for three inner city commercial buildings in
Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This
modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air
quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5

concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of
those who work and/or live in the city centre, which can then be linked to potential health impacts.

Keywords: indoor/outdoor air quality; Geographical Information System (GIS) modelling; data
mining; artificial neural networks; pollution; health impacts

1. Introduction

The United Nations Urban Environment Unit associates up to one million premature deaths
annually to urban air pollution and over 90% of the air pollution in developing cities has been linked
with poor quality vehicles [1]. Illnesses to which poor outdoor air quality has been attributed include:
cancers of the bladder, kidney, stomach, oral cavity, pharynx and larynx, multiple myeloma, leukaemia,
Hodgkin’s disease, and non-Hodgkin's lymphoma [2].

The predictive models developed in this research were based upon measured concentrations
of PM2.5 and NO2 inside and outside commercial buildings in Dublin, Ireland [3]. A study into
air pollution in 26 cities across Europe [4] noted that Dublin, with a population of approximately
1.2 million [5] in an area of 290 km2, has comparatively low concentrations of air pollutants, such as
NO2 and PM2.5, which were within EU limits. However, a recent report by the Irish Environmental
Protection Authority (EPA) stated that NO2 and particulate matter were the two pollutants of most
concern in Ireland [6] which may be due to the high respiratory and cardiovascular mortality and
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morbidity rates in Ireland compared to most of the rest of Europe [1,7]. Although these illnesses
may not be directly caused by poor air quality, they may be worsened by it. In particular, respiratory
illness (such as asthma and bronchitis) is the third most reported illness in Ireland after cardiovascular
and musculoskeletal diseases. Sufferers of respiratory illnesses are a high-risk group with respect to
air quality and are adversely impacted with declining air quality faster than the general population.
For example, the loss of working hours due to asthma has been estimated at three days per adult
and is estimated to cost the Irish economy €16.6 million [8]. Statistically significant increases in
hospital admissions have been recorded with increased periods of NO2 in Athens [9], which concur
with a calculated 0.5% increase expected for every 10 µg¨m´3 increase in NO2 concentrations [10].
Oxides of Nitrogen (NOx) and PM2.5 put strain on the cardiovascular and respiratory systems, thereby
aggravating illness, and so any reduction in concentrations, regardless of limit values, should benefit a
population with high rates of such illnesses.

Currently, air quality limits in Europe only cover outdoor environments, yet the quality of indoor
air is an essential determinant a person’s well-being, especially since the average person spends
more than 90% of their time indoors [11,12]. Indoor health was not considered when comparing
European PM2.5 and NO2 legislative concentrations, yet poor indoor air quality has been associated
with symptoms like headaches, fatigue, trouble concentrating, and irritation of the eyes, nose, throat
and lungs, all of which effect the productivity of a workforce [2,13–15]. Most cities now have a
number of ambient air quality monitoring stations but studies have found that such ambient outdoor
measurements can prove to be a poor predictor of personal work-day exposure, with the higher
personal exposures often due to increased indoor concentrations of the measured pollutant. For
example the EXPOLIS study found median correlations of personal exposure and outdoor monitoring
of PM2.5 ranging from 0.39 to 0.91 across Europe [16,17]. The link between indoor and outdoor air
quality in commercial buildings was also studied by Mosqueron et al. [18], who found a correlation
of r = 0.05 when comparing urban background concentrations with in-office concentrations for NO2

and PM2.5 in Paris. Zeger et al. [19] also previously found that fixed site monitoring was not ideal for
calculating exposure. A European wide study known as AIRMEX reported that indoor concentrations
of Volatile Organic Compounds (VOCs) and PM10 in two Dublin city centre offices in May 2007 were
often higher than outdoor concentrations [20].

There has been much recent research into the use of different modelling approaches to predict a
variety of different outdoor air pollutant concentrations at higher resolutions for specific locations in
the urban environment to improve upon the relatively sparse ambient monitoring data that is normally
available, see for example [21–25]. However, there have been much fewer studies that have tried to
predict indoor air quality from the local outdoor conditions in such an urban environment. Hence, this
research aims to provide a methodology based upon modelling which can use publically available data
from fixed site monitoring stations in order to predict indoor air quality more accurately. Predictions
are made using two modelling techniques. Initially, Artificial Neural Networks (ANN) models were
developed to determine the dynamic relationship between the measured outdoor and indoor air
quality of several monitored buildings. The Personal-exposure Activity Location Model (PALM)
model [26,27] was then used to predict the outdoor air quality at any particular building in the city
and thus provide an input into the ANN models to predict indoor air quality. This approach ultimately
provides predicted indoor air concentrations, which can then be used to determine urban workers’
pollutant exposures more rigorously. This data could then be linked to future epidemiological studies,
for example the incidence of respiratory illnesses of those who work and/or live in the city centre.

2. Experimental Section

2.1. Experimental Data

As part of a wider research project, summarized in Challoner and Gill [3], ten commercial
buildings were chosen for air quality monitoring, all located along busy street canyons in Dublin’s city
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centre. Three of these buildings were chosen for this more detailed study which has developed ANN
based models to predict indoor air quality from of outdoor air quality measurements, as discussed later.
These buildings were chose due to their proximity to each other, on one side of a heavily trafficked
inner city street (Pearse Street), in addition to having different ventilation and use attributes: two
are mechanically ventilated and the third is naturally ventilated (see Table 1 for details). The indoor
monitoring at the first of the mechanically ventilated buildings (Mc2) took place in a small office space
(2.9 m ˆ 4.2 m plan and 4.5 m high) while the indoor monitoring at the second mechanically ventilated
building (Mc3) was in a large open gallery space (room volume 702 m3). The ventilation systems for
both buildings were controlled upon a set-point temperature and humidity matrix rather than on a
specific number of air changes per hour. The naturally ventilated space (Nt2) was a medium sized
office (9.7 m ˆ 4.0 m plan and 4.0 m high) with six occupants. PM2.5 and NO2 concentrations were
measured simultaneously indoors and outdoors of the different buildings (shops and offices). Outdoor
concentrations were measured in two locations either at ground level outside the building or at the air
intake of the building’s ventilation system. For example, for the first monitoring period (Run 1) at Mc2,
outdoor air quality was monitored at roof level whilst for Run 2 outdoor air quality was monitored at
ground level (as detailed in Table 1). For Run 2 at Mc3 an extra set of monitors was resourced to enable
outdoor monitoring to be conducted at roof and ground level simultaneously to the indoor monitoring.
Both indoor and outdoor measurements were taken at a height of 1 to 1.5 m above ground level.

Table 1. Monitoring sites summary and details.

Site
No.

Building
Type

Vent.
Type

Age
(Years) Opening (h) Run 1 Run 2

Nt2 Office Nat. ~120 10 a.m.–6 p.m. 26–29 April 2011 Ground 27 June–1 July 2011 Ground
Mc2 Office Mech. ~5 8 a.m.–6 p.m. 6–9 July 2010 Roof 12–15 July 2010 Ground
Mc3 Shop Mech. ~5 8 a.m.–8 p.m. 13–16 December 2010 Ground 27–31 March 2011 Roof/Ground

The indoor and outdoor measurements of PM2.5 were measured by two identical Haz-Dust
monitors (Environmental Devices Corporation, EPAM-5000, Haz-Dust) set at a flow rate of 2 L¨min´1.
For NOx, two Teledyne, M200 monitors (which work on the principle of chemiluminescence) were
used to measure NO and NO2: a M200E model was used for outdoor monitoring with a limit of
detection of less than 1 ppb and a M200EU model used for indoor monitoring with limit of detection
of 0.05 ppb. Both monitors were set to a flow rate of 0.479 L¨min´1. Weather data were sourced from
the national meteorological (Met Eireann) monitoring stations located in Phoenix Park and Dublin
Airport. Full details of the results are contained in Challoner and Gill [3].

2.2. Artificial Neural Network Model

An artificial neural network (ANN) is a robust non-linear computational method which was
originally designed to emulate biological nervous systems but has since been applied to many fields
of study including air pollution [28,29]. ANNs do not have pre-defined assumptions such as prior
hypotheses regarding variable relations; they have a low sensitivity to error term assumptions and a
high tolerance to noise. ANN makes use of a complex combination of weights and functions to convert
input variables into an output (prediction). It can be employed to examine relationships in complex
non-linear data sets in the same way as conventional statistical techniques, but without many of the
parametric restrictions about the nature of the data relationships. ANNs use previously collected
times series data (e.g., indoor concentrations and outdoor meteorological data in the case of this
research), that the model is being developed to predict. In the current study, the Levenberg-Marquardt
Algorithm [30,31], a type of feed-forward ANN, is utilised for the modelling procedure Equation (1).
This algorithm provides a numerical solution to the problem of minimising a function, generally
nonlinear, over a space of parameters of the function. The Levenberg-Marquardt Algorithm (LMA)
interpolates between the Gauss-Newton Algorithm [32,33] and the method of gradient descent, which
is a first order optimisation algorithm.
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where:

J—Local gradient of f with respect to β

β—Parameters
y—Independent and dependent variables
δ—Increment

The ANN has an inputs layer, at least one neuron layer (although usually a group of
interconnecting neurons are present) and an outputs layer [34]. Using input data the ANN is “trained”
by inputting a set of “target” values (in this case the indoor air quality concentrations), which the
ANN should achieve by processing the input data. Once trained and tested, the ANN can be applied
widely in a number of applications because of their fascinating characteristics of robustness, fault
tolerance, adaptive learning ability and massive parallel processing capabilities. For example, ANNs
have been used for time series prediction of air pollution levels at monitoring station locations [35], at
street level [24,36] and at locations of particular interest such as road intersections [25].

Input Parameters

A Matlab toolbox called “Neural Network Time series Tool” using a non-linear auto-regression
with external input networks (NARX) modelling technique was chosen to calculate interactions
between indoor and outdoor concentrations of PM2.5 and NO2, and meteorological data. The NARX
network is a two-layer feed forward time delay neural network (TDNN) which uses a sigmoid transfer
function in the hidden layer and a linear transfer function in the output layer. In order to train the
system, the feedback loops between the output and input (which are usually closed) were opened. A
pre-set time lag of two time steps, between input variables and target reactions was initially selected.
The input variables chosen were; time of day, barometer level pressure (hPa), sea level pressure
(hPa), temperature (˝C), relative humidity (%), wind speed (knots), wind direction (knots), Pasquill
atmospheric stability class, global solar radiation (j¨ cm´2) and outdoor pollutant concentrations.

The indoor concentration datasets, or targets, were divided into three subsets in order to train,
validate and test the Matlab NARX model. The proportion of this division was chosen to be 75% for
training, 10% for validation and 15% for testing of the model as used in other studies [25,36]. The
idea of training is to pick up on hidden neurons or interactions between the data, which may be a
combination of several variations in meteorological data that vary the relationship between indoor
and outdoor concentrations. These neurons increase the prediction ability of the ANN over a simple
regression. The validation process was then used to further refine the neural network construction and
to minimise over-fitting. Validation checks ensured that increases in the accuracy of the network as a
result of training were due to increased accuracy over the data set that was not previously seen. Finally,
once the Matlab routine had found the best solution to the training and validation of the network,
testing of the remaining 15% of data was performed. Testing was carried out in order to confirm the
actual predictive power of the network.

2.3. Prediction of Outdoor Levels using PALM Model

The PALM-GIS model [27] was used to predict the outdoor pollution levels at the locations of
the test sites. The PALM-GIS model uses custom Python scripts to integrate various air dispersion
models (such as the Operational Street Pollution Model [37], the General Finite Line Source Model [38]
and Gaussian Dispersion models) with a Geographic Information Systems (ArcGIS) platform; the
advantage of this solution is that scripts are used to automate the time-consuming and complex GIS
workflows, such as the iteration of the modelling procedure for different modelling tests and weather
conditions. ArcGIS also allows the user to create a custom user script tool by coding the workflow and
the succession of commands. The custom tool can then be easily called and used by any ArcGIS user.
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This integration aims to provide the researchers, Local Authorities and others with a tool to calculate
the concentration levels of air pollutants and to correlate them with other thematic layers, such as land
use and population density, in order to link localized peaks in air pollutants with particular activities.
As such, the following outcomes were obtained by using dedicated ArcGIS workflows and tools:

(1) Modelled background concentration levels;
(2) Modelled traffic related concentration levels in urban and sub-urban environments;
(3) Modelled industrial sources related concentration levels;
(4) Modelled domestic sources related concentration levels;

The concentration levels were then combined in ArcGIS in order to obtain total concentration
levels at the test locations for the periods during the different monitoring runs.

Data for PALM Model

The following datasets were used in the models described in the previous section:

(1) Weather data: weather data at an hourly time step was obtained from Met Eireann for the Dublin
Airport synoptic stations (located 8 km from the city centre on the north side of the city) for: wind
speed, wind direction, temperature, humidity, dew point, atmospheric pressure, rainfall, solar
radiation and atmospheric stability classes.

(2) NO2 and PM2.5 data: daily average NO2 and PM2.5 concentration levels were sourced from the
monitoring stations in the Great Dublin Area, classified as “Background” stations by the Irish EPA.

(3) Traffic data: the traffic data used for the OSPM (Operational Street Pollution Model) model [37]
was obtained from Dublin City Council (DCC). DCC monitors traffic continuously at different
traffic intersections (critical junctions) around the city. The time resolution is was generally 15 min
aggregate data. For the motorways, Port Tunnel, etc., information is collected by The National
Road Authority (NRA) and then stored/archived by DCC.

(4) Building geometry and road network: streets and buildings data for the Great Dublin Area were
supplied by Dublin City Council in GIS format; as such the initial main challenge in using OSPM
in this project is to import these street and buildings data into the environmental software. The
buildings and road network were imported in OSPM using AirGIS [39].

2.4. Forward Prediction of Indoor Air Quality using Artificial Neural Networks

The training of open networks as previously discussed is a useful method to check if hidden
connections between indoor and outdoor air quality and other meteorological factors can be found,
therefore increasing the prediction power over that of a simple regression. While this is useful, the real
power in the use of an ANN lies in forward prediction. The forward prediction model used the original
ANN run at a specific site to train a network as previously discussed. This network was then closed,
meaning that no more target (i.e., indoor) data could be provided. Once the network was closed, new
inputs for the second run, i.e., the outdoor concentrations and meteorological conditions, were used in
conjunction with the previously trained network to predict the new indoor concentrations.

The add-on code required three input files (original inputs, original targets and inputs for forward
prediction model). Changes to the input delays or hidden networks were specified at this point if
required, in addition to changes in the amount of data used for training, validation and testing of
the open network. At this point the network was trained using the first run of data, as was done
in the previous sections. Once the original network was trained, the code automatically closed the
network, which means that no more target data (i.e., indoor concentrations) would be provided. The
new input data, as calculated in the previous section, for forward predictions was then fed into the
trained network and the model predicted the response of the indoor air quality concentrations due to
fluctuations in outdoor air quality and weather data.
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3. Results

3.1. Development of ANNs for Individual Sites

ANNs for all three buildings were computed for both NO2 and PM10 using the real data from
the parallel indoor and outdoor monitoring described in Section 2.1. An illustrative set of figures
are shown for the first site and other pertinent examples, whilst all other data has been plotted and
provided as Supplementary Information (see Figures S1–S17).

3.1.1. NO2 Artificial Neural Network Model Performance

Mc2 (Office)

The trained data set for Mc2 run 1, where the outdoor monitoring was located at roof level
produced an R value of 0.967 for testing, with an overall R of 0.990 for the testing, validation and
training periods, as shown on Figures S1 and S2. Mc2 run 2 (when outdoor monitors were located at
ground level) resulted in only 2 errors above 1 ppb, the highest of which occurs at Time = 52, (i.e., 52 h
into the data set) as shown in Figure S3. The goodness of fit for testing of the newly trained network
was R = 0.91, with a perfect fit for the training period data.

Mc3 (Mechanically Ventilated Gallery Space)

The errors for the training, testing and validation phases of Mc3 run 1 are shown in Figure 1.
The neural network has a test data set R value of 0.988 (Figures 1 and 2), indicating that a
well-trained Neural Network was developed using the meteorological variables and monitored outdoor
concentrations of NO2 to predict indoor concentrations. Run 2 also produced a very well trained
Neural Network with few errors as shown in Figure S4. Figure S5 shows the regression of the training,
validation and test data, with test data showing an R = 0.964 for Mc3 run 2.Int. J. Environ. Res. Public Health 2015, 12 8 
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Figure 2. Mc3 run 1 NO2 regression of trained output data set.

Nt2 (Naturally Ventilated Office)

The difference between indoor and outdoor concentrations for Nt2 was significant during both
monitoring runs. This was attributed to an unknown process (suspected to be heterogeneous reactions)
significantly influencing the data set. In order to ensure this was not due to a once off event, data was
collected again several months later for this ground floor naturally ventilated office. For both runs the
outdoor data were collected directly outside the main entrance to the office, located less than 10 m
from the internal door to the office. Very low indoor concentrations of less than 9 ppb were measured
during both runs with outdoor concentrations averaging just under 30 ppb. The training, testing and
validation of the ANN for run 1, resulted in a single error above 1 ppb on the second morning near
Time = 25 h (see Figure S6). This error occurred as a sharp spike, and similar to Sites Mc2 and Mc3
did not influence the trend-line. Errors occurring between Time = 35 h and 50 h however did drag the
trend-line down by 1 ppb, which is a considerable error as the range here is only between 3 ppb and
9 ppb. Figures S6 and S7 give an R of 0.956 for the testing of the trained neural network.

The errors for run 2, when the monitor was again outside the office door, were less frequent than
run 1. The range of indoor NO2 data during this run was 0.5 to 4 ppb and, therefore, even errors
of 0.5 ppb are significant. In reviewing the individual errors, they occurred at times when sharp
spikes in data occurred and have little influence on the trend-line of the data set. Figure S8 shows the
regression analysis of the training, validation and test data, with an overall R = 0.990 and R = 0.81 for
the testing phase.

3.1.2. PM2.5 Artificial Neural Network Model Performance

In general, the modelling of the PM2.5 data showed a higher number of errors, a larger range of
errors and lower Pearson’s R values for regressions, than the previously described NO2 models. The
range of hidden neurons was from 10–14 and delays were up to 3 intervals. The delay was set to 30 min.

Mc2 (Mechanically Ventilated Office)

The ANN model for PM2.5 at Mc2 resulted in some large errors (Figure 3). The monitoring for
Run 1 was conducted at the ventilation intake level and the room where indoor monitoring took place
had a direct feed to this air intake. Errors for this site range from ´8.09 to 4.93 µg¨m´3. The errors
are largest for the validation and training data with only 1 test error point lying outside the range
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of ´1.23 to 0.82 µg¨m´3. The regression analysis of the neural network also returned poor R values
compared to the NO2 data set for this site of 0.647, 0.234, and 0.708 for training, validation and testing
respectively, as shown in Figure 4.

The regression analysis for run 2 yielded better R values for training (R = 0.984), validation (R = 0.780)
and testing (R = 0.776) than for run 1. These predictions were strong compared to the original regression
done between indoor and outdoor air quality concentrations which had an R2 = 0.11. Errors ranged from
´6.86 to 4.62 µg¨m´3 although all except for six were within the range of ´2.02 and 2.20 µg¨m´3.Int. J. Environ. Res. Public Health 2015, 12 10 
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Mc3 (Mechanically Ventilated Gallery Space)

Errors for Mc3 run 1 ranged between ´2.73 to 7.37 µg¨m´3, although only five points were
outside the range of ´1.14 to 1.52 µg¨m´3 (Figure S9). The regression analysis on the ANN data in
Figure S10 shows R values for training, validation and testing of 0.953, ´0.011 and 0.864, respectively.
The poor validation regression is mainly due to 1 high leverage error; other than this, the validation
points produced a relatively good prediction.
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During run 2, PM2.5 at Mc3 was monitored simultaneously at roof level, ground level and indoors.
This therefore presented an opportunity to see if the extra data i.e., from both ground and roof level
simultaneously, improved the ANN performance. The performances of the three different ANNs to
predict the indoor data are assessed as follows. Run 2 provided a better R value for the regression
of the modelled and target values than for run 1, particularly for the validation of the training data
(Figure S11). The errors for this run were higher than other runs due to the greater range over which
data is spread—between ´54.78 and 38.55 µg¨m´3 (although all instances except for six lie between
´25.31 and 4.16 µg¨m´3).

The roof level data inputs showed a higher R value and fewer errors than the street level data, as
shown in Figure S12. The errors were within the range of ´25.67 to 61.02 µg¨m´3 but all except five
were in the range of ´16.54 to 6.27 µg¨m´3. Most of the larger errors again occur during the peaks,
but the roof level data seems to account for a greater number of these than the street level data.

Mc3 run 2 produced a strong ANN from training using the target data but with high errors
due to the significant spike that was seen for the first day and a half of monitoring (see Figure S13).
These errors range from ´30.05 to 30.95 µg¨m´3 but all, except seven, lie within the range of ´14 to
8.47 µg¨m´3. An extra input was included in this run as both ventilation intake, or roof level PM2.5

data, and ground level data were included, unlike the two previous runs at this site. The inclusion
of both roof and ground level data significantly reduced errors during the first day and a half of
monitoring during which period the large increase in indoor concentrations were monitored. The large
spike at Time = 7 h and magnitude ´30.05 occurs for testing data, this error creates a dip in the data
between the previous and proceeding data points. Regression analysis for the training, validation and
testing of the ANN versus the target data yielded high R values of 0.992, 0.973, and 0.957, respectively,
the high R value for testing being due to a high leverage point. These points occurred due to testing
and validation points being checked during the first two days, a time when unusually high peaks
occurred. The R value seems reasonable if these high leverage points were removed.

The actual indoor data, or target, and the three neural networks trained using data containing
roof level data, street level data and a combination of the two as well as meteorological data for each
network have been plotted on Figure 5. A comparison of the three trained networks reveals its strong
prediction ability with R values above 0.95. The results of two sample t-tests show estimates of the
difference of 1.29, ´5.51 and ´1.04 between target and roof level, street level and a combination of
the two respectively. The two sample t-tests found that all three 95% confidence intervals contained
zero, therefore, the predicted data using the trained networks for all three situations predicts outputs
that have a mean value statistically indifferent from zero. Furthermore, the R values found that the
target was best predicted by a combination of ground level data and roof level data R = 0.976, a lower
R = 0.965 was found for roof level and finally the lowest R was found between street level and target
data. While the combination of roof and ground level combined with meteorological data found the
best prediction ability, both street level and roof level found good prediction ability individually.Int. J. Environ. Res. Public Health 2015, 12 12 

 

 

 

Figure 5. Time series of ANN trained versus measured indoor concentrations at Mc3 (run 2). 

Nt2 (Naturally Ventilated Office) 

Nt2 run 1 shows a reasonable output for the error during the time series (Figure S14). Errors were 

between –6.85 and 4.62 μg·m−3 although all except five of these error points lie between −2.02 and  

2.20 μg·m−3. The regression analysis carried out on the 15% of target data set aside for testing yielded 

an R = 0.984, with the validation data yielding a lower R = 0.630 and the testing data an R = 0.660. 

Run 2 for Nt2 had a very noisy time series, as reflected with a larger number of errors due to the 

high number of fluctuations (Figure S15). The errors range from −7.21 to 5.03 µg·m−3 and have a 

Gaussian distribution. Regression analysis returned R = 1 for training and R = 0.936 for testing of the 

trained data. A stronger R of 0.813 was also found for validation compared to run 1. 

3.1.3. Discussion of Trained ANNs 

The predictions of indoor air quality using the ANNs were much stronger for NO2 than PM2.5 due to 

the less erratic NO2 time series. The measured NO2 time series had more regular diurnal patterns due 

to the fact that the pollutant is more affected by meteorological variables (e.g., global radiation, etc.) 

than PM2.5. R values for NO2 data were usually above 0.90 for training, validation and testing with 

error points which usually did not affect the time series of the data. Therefore, a reasonable prediction 

for exposure could be calculated over an annual average to make some estimates as to the health 

impacts in these working environments. The prediction of PM2.5 indoor air quality however, were 
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Nt2 (Naturally Ventilated Office)

Nt2 run 1 shows a reasonable output for the error during the time series (Figure S14). Errors were
between –6.85 and 4.62 µg¨m´3 although all except five of these error points lie between ´2.02 and
2.20 µg¨m´3. The regression analysis carried out on the 15% of target data set aside for testing yielded
an R = 0.984, with the validation data yielding a lower R = 0.630 and the testing data an R = 0.660.

Run 2 for Nt2 had a very noisy time series, as reflected with a larger number of errors due to the
high number of fluctuations (Figure S15). The errors range from ´7.21 to 5.03 µg¨m´3 and have a
Gaussian distribution. Regression analysis returned R = 1 for training and R = 0.936 for testing of the
trained data. A stronger R of 0.813 was also found for validation compared to run 1.

3.1.3. Discussion of Trained ANNs

The predictions of indoor air quality using the ANNs were much stronger for NO2 than PM2.5

due to the less erratic NO2 time series. The measured NO2 time series had more regular diurnal
patterns due to the fact that the pollutant is more affected by meteorological variables (e.g., global
radiation, etc.) than PM2.5. R values for NO2 data were usually above 0.90 for training, validation
and testing with error points which usually did not affect the time series of the data. Therefore, a
reasonable prediction for exposure could be calculated over an annual average to make some estimates
as to the health impacts in these working environments. The prediction of PM2.5 indoor air quality
however, were considerably more varied with some R values for training, testing and validation of
the networks below 0.53 ranging up to 0.97 (average R value = 0.819). Errors generally fell within the
range of ˘7 µg¨m´3 although most are much less than this. Error points for PM2.5 had higher leverage
causing the removal of peaks and troughs. This would ultimately affect the accuracy of the average
exposure that could be calculated from such a modeled output. The R value decreases if training data
is removed; when only test and validation data is calculated, the value decreased to 0.604 for validation
and 0.779 for testing. For NO2 this value remained higher with R values of 0.893 for validation and
0.945 for testing.

The improvement of the prediction ability by the ANNs over use of best subsets regression can be
seen at all sites. The R values significantly increased as hidden connections between the input data
and the indoor concentrations were developed. The R = 0.952 (Table 2 and Figure S1) for testing of the
newly trained NO2 network at Mc2, while the best subset regressions for the same data set had found
R2 values above 80% without using the hidden networks. Equally, an R value of 0.988 was attained
for the ANN test data set for NO2 at Mc3 indicating that a well-trained ANN had been developed
using the meteorological variables and monitored outdoor concentrations of NO2 to predict indoor
concentrations. This is compared to a best subset regression correlation of R2 values of 79.9% for the
same data set. For PM2.5 a low correlation at Mc2 (R2 = 0.2) was found between indoor and outdoor
concentrations when a best subsets regression was carried out prior to training of the ANN. This
indicates that there was little direct interaction between indoor and outdoor concentrations and so
other factors must have been influencing the indoor fluctuations. However, for the training, validation
and testing the ANN produced an R value of 0.525. Mc2 run 2 produced a much stronger trained
network than run 1. Mc2 run 2 outdoor monitoring was at ground level and the better-trained network
may be due to the longer time that meteorological conditions have to influence the concentrations
and therefore are more useful predictors. Challoner and Gill [3] previously found that ground level
concentrations had a greater influence on indoor fluctuations than the roof level concentrations for
this site. The prediction ability of R = 0.899 were strong compared to the original regression between
indoor and outdoor values which had an R2 = 0.11 in Mc2 run 2.
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Table 2. Summary of Pearson R values for each run.

Site Training Validation Test All

NO2

Mc2 Run 1 0.999 0.988 0.967 0.991
Mc2 Run 2 1.000 0.815 0.952 0.968
Mc3 Run 1 0.996 0.994 0.988 0.994
Mc3 Run 2 1.000 0.903 0.965 0.986
Nt2 Run 1 0.977 0.804 0.956 0.968
Nt2 Run 2 1.000 0.915 0.814 0.980

PM2.5

Mc2 Run 1 0.648 0.235 0.709 0.526
Mc2 Run 2 0.985 0.781 0.776 0.900
Mc3 Run 1 0.954 0.012 0.865 0.668

Mc3 Run 2 (street) 0.984 0.969 0.925 0.951

PM2.5

Mc3 Run 2 (roof) 0.999 0.965 0.811 0.966
Nt2 Run 1 0.984 0.631 0.666 0.844
Nt2 Run 2 1.000 0.814 0.940 0.908

The significance of errors on the models depend upon when they occur-those which drag or push
the time series away from its target trend-line are considerably more important than those which do
not. In general, the errors found for the training of the ANNs, particularly for NO2 concentrations,
did not all have high leverage on the data sets. Although many were large errors, the impacts on
the data series trend-line were small, due to the positioning of the previous and proceeding data
points. However, for the PM2.5 data, the errors did significantly influence the time series over an
extended period of time, over-predicting for certain time periods and under-predicting for others (see
for example Mc3 run 1).

Finally, the simultaneous outdoor air quality monitoring at both roof level and ground level
during run 2, PM2.5 at Mc3 demonstrated how the ability of the ANN to predict the indoor monitored
data was significantly improved.

3.2. Results from PALM Model

The PALM-GIS model was applied to the three inner city sites with the purpose of modelling
the NO2 and PM2.5 outdoor concentrations for the “Run 2” periods (Table 3). The purpose of this
modelling step is to provide a modeled input for the forward prediction of Indoor Data model
presented in Section 4.

Table 3. Summary statistics for the PALM-GIS model for NO2.

Model Summary

Building R2 Std. Error

Mc2 0.854 3.15
Mc3 0.870 4.66
Nt2 0.829 3.91

3.2.1. NO2

The correlation between NO2 measured and modelled data (using PALM-GIS) is described in
detail in the model summary statistics (Table 3) and analysis of variance (ANOVA) (Table 4) tables
presented below. The coefficient of determination ranges between 83% and 87% means that the
PALM-GIS model was able to predict with good accuracy the NO2 levels outside the selected buildings.
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Table 4. Analysis of variance between measured and modelled data for NO2.

ANOVA

Building Model Sum of Squares Degrees of
Freedom (DF) Mean Square F-Test Significance Level

Mc2
Regression 4357.6 1 4357.6 438.2 0
Residual 745.9 75 9.95

Total 5203.4 76

Mc3
Regression 10,009.2 1 10,009.2 460.9 0
Residual 1498.5 69 21.72

Total 11,507.6 70

Nt2
Regression 6980.9 1 6980.9 455.9 0
Residual 1439.3 94 15.31

Total 8420.3 95

3.2.2. PM2.5

The correlation between PM2.5 measured and modelled data is described in detail in the model
summary statistics (Table 5) and ANOVA (Table 6) tables presented below. The coefficient of
determination ranges between 71% and 77%, revealing a lower correlation than for the NO2 cases. This
might be due to the contribution from long-range sources of PM2.5, which is not explicitly accounted
for in the PALM-GIS model.

Table 5. Summary statistics for the PALM-GIS model for PM2.5.

Model Summary

Building R2 Std. Error

Mc2 0.711 2.17
Mc3 0.760 2.06
Nt2 0.770 1.85

Table 6. Analysis of variance between measured and modelled data for PM2.5.

ANOVA

Building Model Sum of Squares DF Mean Square F Sig.

Mc2
Regression 810.0 1 810.0 172.48 0
Residual 328.7 70 4.696

Total 1138.7 71

Mc3
Regression 927.1 1 927.1 218.44 0
Residual 292.9 69 4.244

Total 1220.0 70

Nt2
Regression 1071.6 1 1071.6 311.96 0
Residual 319.5 93 3.435

Total 1391.0 94

4. Forward Prediction of Indoor Data

4.1. Forward Prediction Using the Trained ANNs

The outdoor NO2 and PM2.5 air quality data as predicted by the PALM-GIS model at the three
inner city sites for the “Run 2” periods of monitoring were entered as input data into the ANN models
to forward predict the indoor air quality in these buildings. This has then been compared against the
actual monitored indoor air quality.
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4.1.1. Results of Forward Prediction of NO2 Concentrations

The availability of monitoring data with two runs at the same monitoring locations left two
opportunities to carry out a forward prediction for NO2, at Mc3 (a recently constructed mechanically
ventilated building) and Nt2 (an older naturally ventilated building). Both sites showed different I/O
ratios between the data for run 1 and 2 and a varying influence of meteorological parameters.

Mc2 (Mechanically Ventilated Office)

140 h of data were inputted into the model using indoor and outdoor concentrations from run
1 plus outdoor concentrations from run 2 (see Figures S1 and S2); these were supplemented by
meteorological conditions for the two runs. Figure 6 shows the modelled concentrations of NO2

compared to the measured indoor concentrations. While the R2 correlation between measured and
modelled indoor concentrations was only 0.14, a 2 Sample t-test of the indoor and predicted data gave
reasonable result with a t-value = ´1.51, p-value = 0.132, degrees of freedom (DF) = 129. The 95%
confidence interval for the difference was (´4.68, 0.62). Hence, whilst the model does not predict the
exact timings of the peaks and troughs in the monitored data, it does give a fairly accurate reflection of
the average level of exposure throughout the day, which is of importance from a health perspective.
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Figure 6. Measured versus modelled NO2 concentrations at Mc2.

Nt2 (Naturally Ventilated Office)

The outdoor data for site Nt2 had comparable mean values for run 1 and run 2 (29.13 and
30.29 ppb respectively,) however, indoor concentrations revealed a greater difference in mean values
(5.36 and 1.63 ppb respectively)—see Figure 7, with a varying start to the morning peaks giving the
plots of both indoor concentrations a lagged effect. The difference in average indoor concentrations
affected the ANN Model. As discussed previously, this reduction in concentrations indoors was due
to a suspected increase in heterogeneous reaction rates indoors, which was not explicitly included as
an additional input variable in the model. The modelled concentrations were therefore consistently
higher than actual values for run 2, as shown in Figure 8, although the model did forecast relatively
good predictions for the fluctuations. The difference in mean indoor concentrations (attributed the
NO2 sink) over the run was 3.735 ppb which, if removed from each time step of the modelled values
results in a much closer revised prediction, as shown Figure 8. Results from this adjusted model
show a two Sample t-test give a 95% Confidence interval for difference: (´0.217, 0.494), t-value = 0.77,
p-value = 0.443 and DF = 132.
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Figure 7. Measured indoor and outdoor NO2 concentrations at Nt2 (run 1 and run 2).
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Figure 8. Measured versus modelled indoor NO2 concentrations at Nt2 (run 2).

4.1.2. Results of Forward Prediction of PM2.5 Concentrations

As noted previously the relationship between pollutants for PM2.5 showed a much greater
amount of variability compared to that for NO2. This led to weaker network predictions for PM2.5, and
consequently poorer forward predictions using the trained network, as detailed below.

Mc3 (Mechanically Ventilated Gallery Space)

The relationship between indoor and outdoor for run 1 and run 2 differed significantly; with
a considerable increase in indoor PM2.5 concentrations indoors during run 2. These peaks, as seen
in Figure 9 on a log scale and Figure 10, were not picked up in ground level outdoor data, but were
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present at roof level. These indoor peaks during run 2, which were not present outdoors at ground
level or apparently caused by a change in meteorological conditions, meant that it was not likely that
the trained network would be able to anticipate their presence, as was the result shown in Figure 10.

While the model achieved the indoor value range for the beginning and second half of the data
set, the peaks as shown in Figure 9 are not present and therefore, modelled data shows no indication
of the peaks indoors (Figure 10). The use of outdoor roof level data, which showed reduced versions
of peaks, may have improved the predictions but since only street level outdoor data was available for
run 1, the network could not be trained using roof level data.
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Figure 10. Measured versus modelled indoor PM2.5 concentrations at Mc3 (run 2).
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Nt2 (Naturally Ventilated Office)

Figures S16 and S17 show the relationships between run 1 and 2 for indoor and outdoor
concentrations for PM2.5 at Site Nt2. Outdoor concentrations produced similar patterns with a clear
diurnal pattern for both runs. Conversely, indoor concentrations did not show the same pattern
(2 sample t-test results: 95% C estimate of difference (´4.850, ´3.253), t-value = 10.1, p-value = 0.0,
DF = 80) with run 1 having a considerably smoother pattern than run 2 and a higher mean. Again,
as for the NO2 results at this site, this pattern appeared to be due to indoor variations rather than
meteorological changes or a difference in outdoor concentrations, which the trained network did
not incorporate.

The forward prediction model was run using PM2.5 data from run 1 at Site Nt2 as inputs, with the
resultant output concentrations shown in Figure 11. A 2 Sample t-test found with 95% confidence that
indoor run 1 and the modelled indoor run were not statistically significantly different (t-value = ´1.37,
p-value = 0.174, DF = 121). This indicates that the model may not be able to predict very short-term
fluctuations, however it can predict a mean indoor value using the outdoor and met data that is
statistically similar to the actual value. A further two Sample t-test was run to compare the modelled
value and indoor run 2 concentrations. The results show that the two are significantly different
statistically (t-value = 8.98, p-value = 0.000, DF = 92). This was expected as the two indoor runs vary in
both magnitude and pattern.Int. J. Environ. Res. Public Health 2015, 12 20 
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Figure 11. Measured PM2.5 concentrations versus modelled concentrations at Nt2.

4.2. Forward Prediction of a Generic Inner City Commercial Building

The forward prediction ability of the modelling approach was further assessed by using a trained
ANN model from one site (Mc3) to predict the indoor air quality at another site (Mc2) of similar
properties (i.e., both mechanically ventilated) using the inputs (outdoor pollutant concentrations and
meteorological data) from the second site. Figure 12 shows that the results yielded a poor prediction
with an estimate of the difference between the mean predicted indoor concentrations and actual
concentrations of 4.58 ppb and 11.1%. Although these two buildings were similar; both built at the
same time, located next to each other, and both with mechanical ventilation systems, other differences
in building characteristics such as different uses and layouts were obviously not accounted for in the
ANN model which had been trained to the characteristics of just one building.
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Figure 12. Modelled indoor NO2 concentrations at Mc2 (using Mc3) vs. measured indoor concentrations.

5. Discussion

5.1. Forward Prediction Ability

The ANN modelling approach does show an ability to predict mean indoor NO2 exposure values
from outdoor air quality data and ambient meteorological conditions for a given building, providing
there is no other significant indoor production or degradation process occurring between the period
where data is collected to train the network and the period for which the model is being used to make
predictions. The ability of the model to predict PM2.5 however is much reduced. Improved predictions
should be found if longer monitoring periods can be used to train the model, particularly if these
include more variation in indoor and outdoor conditions. The ANN did show the ability to adapt to
variations in the relationship between indoor and outdoor air quality. For example, at the end of run 1
at Mc3 a change in the air pressure caused the relationship to change between indoor and outdoor
which was similar to the relationship fluctuation seen in run 2. As the network was trained with run 1,
the resultant forward prediction ability for indoor concentrations during run 2 was strong. This was
not the case however, at Nt2 where the run 1 data upon which the network was trained, did not seem
to include the full dynamics between outdoor and indoor air quality that occurred during the second
run. The relationship seen in run 2 showed a stronger sink between outdoor and indoor for NO2 with
the results that the trained model was unable to correctly predict the level of indoor concentrations
during run 2.

The ANN models also proved to be not so flexible when trying to transfer their indoor air quality
predictions to other inner city buildings of apparently similar characteristics (on which they had not
be explicitly trained) which indicates a significant limitation to the approach of this type of air quality
modelling, based upon such limited monitoring data at least. It would obviously be infeasible to carry
out detailed indoor and outdoor air quality monitoring for all buildings of interest in order to develop
appropriate models.

However, once trained, these networks can be used to predict future longer-term averages in
indoor air quality concentrations in the monitored buildings using updated outdoor concentrations
provided by the PALM-GIS model and weather data from ambient stations. In Ireland, the EPA does
not monitor PM2.5 data at hourly intervals therefore forward prediction would only be applicable for
use in conjunction with NO2, which is available in hourly resolution. However, the testing of PM2.5 for
forward prediction using data from Nt2 showed a poor result indicating that even if hourly data was
available it is unlikely to predict indoor pollutant exposure sufficiently.
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It is interesting to note that interviews with building occupants showed an enthusiasm to learn
about their air pollutant exposure levels. Hence, a future application of this work could be online
tool or phone application to give building occupants indicative indoor concentrations. This would
require a robust data base of generalized building types trained with a forward prediction model
which could be linked with an online tool. Linking with real time traffic information and metrological
data has the potential to give real time data feeds. Such a generalised model could realistically be
fully developed for NO2 but maybe not for PM2.5 due to the model’s apparent poor ability for forward
prediction. However, the WHO has previously stated that NO2 is strongly correlated with other toxic
traffic related pollutants, such as benzene and toluene. Therefore, NO2 could be used as a surrogate to
indicate concentrations of various other pollutants.

5.2. Implications to Public Health

The quality of air is rarely, if ever, considered when choosing a place of work, yet poor air quality
will significantly affect the quality of health enjoyed by the employees. The average human inhales
20,000 litres of air daily or 14 litres per minute increasing to 50 litres per minute under intense physical
exercise [40]. Over the past two decades strong evidence has been gathered showing links between
fine particulate matter and respiratory/cardiovascular illnesses [14,41–45]. These illnesses include
asthma, acute bronchitis, lung cancer, damage to nasal passages and respiratory tract inflammation.
Previous research [46], noted that even a 2 µg m´3 difference in average exposure to PM2.5 over a life
time in Dublin can reduce the life expectancy of a person by 6 months. Recent indoor studies have also
provided evidence of effects on respiratory symptoms among infants at NO2 concentrations below the
annual mean 21 ppb limit [47]. Hence, the modelling approach as presented in this research can help
to provide information as to realistic daily and longer-term exposures and thereby feed into debates
surrounding new indoor air quality legislation.

The data presented here was part of a wider research project (see [3]) that was carried out on
10 inner city buildings (five mechanically ventilated, five naturally ventilated). This found that the
indoor air quality in several of the buildings showed an exceedance of the WHO annual mean 21 ppb
guideline value for NO2 [48] during averaged working hours, but no site exceeded the maximum
1 h NO2 concentration WHO guideline limit of 105 ppb. In general, naturally ventilated buildings
showed lower NO2 concentrations indoors, than the mechanically ventilated buildings. The highest
maximum 1 h values recorded indoors were at Mc3 (run 2) of 38.6 ppb. An interesting feature from
the indoor data at many sites was that the indoor NO2 concentrations only dropped to 10 to 12 ppb,
particularly inside the mechanically ventilated buildings, even though outdoor concentrations had
dropped to much lower levels. Outdoor roadside NO2 concentrations at the 10 monitored sites had an
average concentration at 22.4 ppb and a max 1 h concentration of 79.6 ppb in heavily trafficked areas of
Dublin city centre. For comparison, the European average for trafficked sites in 2008 was found to be
43.2 ppb, almost double the average roadside concentration found in Dublin [49]. Equally, a study in
Osaka, Japan found average winter concentrations of NO2 of 53 ppb and summer time concentrations
of 49 ppb for urban monitoring.

For PM2.5 there is no outdoor 1 h or daily limit under EU legislation currently, but an annual mean
limit of 25 µg¨m´3 has been set out by the CAFE directive [50]. The mean indoor PM2.5 concentration
in the naturally ventilated buildings during working hours was 24.2 ˘ 8.5 µg¨m´3, compared to
18.9 ˘ 6.2 µg¨m´3 during non-working hours. Equally, in the mechanically ventilated buildings
the mean indoor PM2.5 concentration during working hours was 23.7 ˘ 9.2 µg¨m´3, compared
to 20.9 ˘ 12.0 µg¨m´3 outside working hours. Five sites were found to exceed the annual mean
25 µg¨m´3 PM2.5 objective value during working hours.

This combined modelling approach of developing trained ANNs for specific inner city buildings,
which are then fed by realistic outdoor concentrations at that street in the city from the PALM-GIS
model could be used to provide a reasonable estimate of long-term indoor air quality in such
workplaces. Such data can then be used to make assessments of public health given the amount
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of time an average person spends indoors at their workplace; it has been estimated, for example, that
up to 75% of daily NO2 exposure occurs during working hours [51]. This modelling approach could
also be used to assess how different building types, sites and other operational characteristics may act
to either enhance or mute the ingress of outdoor pollutants into such working environments, which
will be of interest to urban planners, architects and engineers in the future.

6. Conclusions

The ANN predictions showed stronger predictive abilities for indoor NO2 concentration
fluctuations when compared to PM2.5 using outdoor concentrations, with meteorological variables.
This was attributed to the more uniform NO2 diurnal patterns which are influenced by meteorological
variables such as global radiation to a much greater extent than PM2.5.

Use of the forward predictions for NO2 showed an ability of the ANN model to accurately predict
mean exposure values as long as similar meteorological conditions occurred to the data set that the
model was trained upon. If longer monitoring periods, which covered a variety of meteorological
conditions and indoor/outdoor relationships, were used in order to initially train the network, errors
may be reduced.

Unfortunately, it was found that the ANN could not use a network trained using data from
one site to predict indoor concentrations at another site. This was due to the differences in various
buildings relationships between indoor and outdoor concentrations. Hence, its use as a predictive
model may be somewhat limited and only applicable to sites which have gathered detailed indoor and
outdoor air quality data previously.

Finally, the study has shown that the greatest influence on the quality of indoor air for the majority
of buildings was the quality of outdoor air. Hence, once outdoor air is at a standard which protects
human health, the implication is that indoor air will more than likely be close to this level. The
monitoring undertaken for this paper was short term in nature but indicates that the air quality in
Dublin is within EU limit values.
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