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Abstract: Weather extremes are associated with adverse health outcomes, including 

mortality. Studies have investigated the mortality risk of temperature in terms of excess 

mortality, however, this risk estimate may not be appealing to policy makers assessing the 

benefits expected for any interventions to be adopted. To provide further evidence of the 

burden of extreme temperatures, we analyzed the effect of temperature on years of life lost 

(YLL) due to all-cause mortality among the population in two urban informal settlements. 

YLL was generated based on the life expectancy of the population during the study period 

by applying a survival analysis approach. Association between daily maximum temperature 

and YLL was assessed using a distributed lag nonlinear model. In addition, cold spell and 

heat wave effects, as defined according to different percentiles, were investigated. The 

exposure-response curve between temperature and YLL was J-shaped, with the minimum 

mortality temperature (MMT) of 26 °C. An average temperature of 21 °C compared to the 

MMT was associated with an increase of 27.4 YLL per day (95% CI, 2.7–52.0 years). 

However, there was no additional effect for extended periods of cold spells, nor did we find 

significant associations between YLL to heat or heat waves. Overall, increased YLL from 
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all-causes were associated with cold spells indicating the need for initiating measure for 

reducing health burdens. 
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1. Introduction 

Extreme weather has been associated with excess morbidity and mortality in many different 

regions, consequently, there is a growing interest in understanding the relationship between weather 

variations and health and how this will be manifest as climate change takes hold and extreme weather 

events become more common [1,2]. Extreme temperatures are known to exacerbate certain medical 

problems, like heart disease, and excess deaths have been observed during periods of extreme 

temperatures in different cities around the world [3]. Generally, most epidemiological studies have 

shown short-term effects of ambient temperature on overall mortality, with a relationship of the 

increased risks in cold and hot weather [4,5]. The effects of extreme temperatures may be delayed to 

last for some days [6,7]. Some studies have investigated extended periods of extreme temperatures, 

known as cold spells and heat waves, and found these to be associated with peaks in mortality [8,9]. 

However, even moderate deviations from temperature norms can pose risks to human. Temperature 

variability is a key factor explaining differences in temperature-related mortalities across regions [10,11]. 

Current findings show that when the temperature changes considerably over the course of a few days, 

even without reaching extremes, it is harmful for vulnerable populations, especially those with existing 

health problems [12]. Evidence of a temperature-mortality relationship exists also for sub-tropical 

countries that experience moderate temperature variations [13–15]. In addition, there is evidence of 

adaptation to temperature extremes [10,16,17] as cold and heat effects have different thresholds for 

increased risk onset for different regions. 

Most of these previous studies have investigated the weather-related mortality by assessing whether 

there is evidence of excess mortality during extreme weather [18–20]. However, the relative risks are 

believed to be heavily driven by short-term mortality displacement. It has been argued that it would be 

more informative to assess mortality impact related to temperature exposure using estimates that takes 

into account the life expectancy [21]. Depending on whether most temperature-related mortality occur 

among people with shorter or longer life expectancy, the expected magnitude of years of life lost 

(YLL) is expected to differ [22]. Summarizing temperature-mortality association in terms of 

attributable risk on estimates such as YLL offers adequate information on the actual impact of 

exposure to temperature variations [23,24]. YLL is a measure of disease burden that uses the life 

expectancy at death. It gives more weight to deaths among younger people compared with the 

traditional measure of relative mortality risk that weights all deaths equally [25].  

Very little is known on weather-mortality relationship among the urban poor population in  

(sub-Saharan) Africa. One previous study among the urban poor population in Nairobi evaluated the 

effect of temperature on all-cause mortality in two informal settlements in terms of mortality risk [13]. 

It was found that both low and high temperatures were associated with excess mortality. This paper 

extends the investigation of weather-related health impacts by examining the association of 
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temperature on YLL using data from two informal settlements in Nairobi. In addition, we also 

investigated whether there are additional cold spell and heat wave effects on YLL. Besides 

contributing to evidence on weather-related mortality, the paper provides information on the burden of 

weather extremes in terms of YLL among a population faced with multiple health and socio-economic 

problems rendering it vulnerable to environmental exposures.  

2. Methods  

2.1. Study Area 

The study was based on data from Nairobi Urban Health and Demographic Surveillance System 

(NUHDSS) run in the two slums of Korogocho and Viwandani in Nairobi, Kenya since 2003. 

Approximately, a population of 66,000 people were under surveillance in the two study sites by the 

year 2012. Nairobi is the capital of Kenya, located at 1°16' Latitude South and 36°48' Longitude East 

at an altitude of 1700 m. Although the city of Nairobi is situated close to the Equator, it experiences an 

equable climate as opposed to tropical climate. The city experiences a short rainy period in 

November/December and a heavy rainy season from March till the beginning of June. The city has a 

population of about 3.1 million, with more than a half of the population residing in informal 

settlements [26].  

2.2. Data  

Daily mortality data from 1 January 2003 to 31 December 2012 (the whole period for which data 

are available) were obtained from the NUHDSS database. All deaths among residents from the two 

study areas and information on movements in-and-out of the study areas were recorded. The data 

included date of start event (birth, enumeration or in-migration), date of last event (death, outmigration 

or exit), sex, age, and cause of death. However, for this analysis we considered all-cause mortality. The 

data were used to generate age-sex specific life expectancies to estimate the YLL for each death by 

matching their age and sex. The daily YLL are the total YLL for all deaths that occurred on the same 

day. The calculation of YLL for each death (ܻܮܮ௜)	and subsequently for each day (ܻܮܮ௧)	can be 

summarized by the following two expressions: ܻܮܮ௜ = ௥ܧܮ − ܣ) − ܤܮܣ) + 0.5)) (1)

௧ܮܮܻ = ෍ܻܮܮ௜௡
௜ୀଵ  (2)

where A is the actual age at death for individual i, ܧܮ௥ is the remaining life expectancy at age A and 

ALB is the age lower bound from the life table. The letter t denotes day of the year and n is the number 

of deaths on that particular day of the year. The expression is modified from the general formula for 

group YLL [27] to calculate individual YLL and account for the fraction of a year lived. The applied 

calculation of YLL does not incorporate age discounting, which adjusts for social preferences for the 

age at which death occurred. To illustrate first expression, we consider an individual who died with an 

actual age of 75.86 and the life expectancy at age 75 is 9.85—the YLL for this individual is obtained 

as 9.85 ‒ (75.86 ‒ (75 + 0.5)) = 9.85 ‒ 0.36 = 9.49. 



Int. J. Environ. Res. Public Health 2015, 12 2738 

 

 

Daily weather data were obtained from the National Oceanic and Atmospheric Administration 

(NOAA) website (http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets) 

for the Moi Airbase Eastleigh weather station for the study period of 2003 to 2012. The weather station 

is located in between the two study sites (4 kilometres from each study area). We obtained daily values 

of maximum, minimum, and mean temperatures. When daily weather data were missing (22% of the 

days) for the Moi Airbase station, data from Jomo Kenyatta International Airport (JKIA) were used. 

The temperature data from the two stations were found to be highly correlated with a correlation 

coefficient of 0.92 (92%). The two weather stations are 9 kilometres apart. The daily maximum 

temperature was used for the analysis because it is used for defining the cold and hot days [28]. 

2.3. Definitions of Temperature Extremes 

Due to a lack of standard definitions of a cold spell or heat wave, we used percentiles as suggested 

in the literature to define thresholds for extreme cold and heat over a period of consecutive days [29]. 

These definitions describe heat wave and cold spells relative to the usual weather in the area and 

relative to normal temperatures for the season. This implies that temperature people from a hotter 

climate consider normal can be termed a heat wave in a cooler area if they are outside the normal 

climate pattern for that area [30,31]. We considered a combination of different intensities measured by 

percentiles and duration measured by the days of sustained temperature extreme to define cold spells 

and heat waves [32,33]. The indicator variables for cold or heat were defined according to different 

percentiles of the temperature distributions expressed as: ܫ஼ = ቄ1	݂݅	݁ݎݑݐܽݎ݁݌݉݁ݐ < ߬௖0	ݐ݋ℎ݁݁ݏ݅ݓݎ														  and ܫு = ቄ1 ݂݅ ݁ݎݑݐܽݎ݁݌݉݁ݐ > ߬ு0 ݁ݏ݅ݓݎℎ݁ݐ݋ 							 (3) 

where ܫ஼  and ܫு  represent indicators for cold spell and heat wave days, respectively. The different 

percentiles of 90th, 95th and 98th were used for different intensities of heat waves and 10th, 5th and 

2nd percentiles for different intensities of cold spells. Therefore, cold spell and heat wave were defined 

as indicators for at least two days of consecutive days with temperatures below or above the identified 

temperature thresholds for cold and heat. The sustained heat wave or cold spells of at least 2 days with 

extreme temperature were considered for analysis. As an example for at least 2 days of sustained cold 

spell, if July 5th and 6th were days with maximum temperatures below the cold threshold, then July 

6th would have a value of “1” for cold spell while July 5th would have a value of 0. A similar 

approach was used to define values for heat wave days. 

2.4. Data Analysis 

The analysis followed a scheme for evaluating the effect of cold and heat waves proposed in the 

literature [32,33]. The methodology decomposes the effects of cold and heat into main and added 

effects. The general model is represented as: ܧ( ௧ܻ) = ௧ߤ = ߙ	 + ,݌݉݁ݐ)ݏ ݂݀) + ,݁݉݅ݐ)ݏ ݂݀) + ஼ܫ + ுܫ + ௧ (4)ߝ

The outcome, ௜ܻ  is the daily total YLL for day i assumed to follow a normal distribution. The 

smoothing function, s(.) represents the nonlinear relationship of main temperature and time trend 
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which accounts for both long term as well as seasonal variation. The term df represents degrees of 

freedom while ܫ஼ and ܫு represent the indicators for cold spell and heat wave as defined above. The 

analysis was performed in two parts: first, the general association of temperature and YLL was 

estimated; secondly, the additional effect of cold spells and heat waves on YLL was assessed. 

2.5. General Association of Temperature and YLL 

We used a distributed lag nonlinear model to estimate the association between daily maximum 

temperature and daily total YLL. The approach has been widely used to model the association of 

environmental exposure and health outcomes [32,34]. This model allows the main effect to vary along 

both temperature and lag dimensions. The relationship in the temperature space was captured using a 

natural spline with two df. To capture the delayed effects of temperature, we considered a maximum 

lag of 14 days between exposure and death then evaluated the sensitivity of the results using a 

maximum lag of 21 days. The lag effect was modelled using a natural spline with three df. The choice 

of df for temperature and lag splines was made after comparing AICs for different combinations of df 

for both terms. We adjusted for both long-term trends and seasonality in the YLL estimates using a 

natural cubic spline with a total of 60 df corresponding to six df per year based on sensitivity from 

earlier study [13]. The general distribution of expected YLL and daily maximum temperature was 

plotted with corresponding 95% confidence intervals (CIs).  

2.6. Effects of Cold Spells and Heat Waves 

First, the lag effect of the cold spells and heat waves were explored and displayed graphically 

considering a maximum lag of 14 days and check for the sensitivity using a maximum lag of 21 days. 

The different lag effects were not adjusted for each other; each lag was fitted in the model one at a 

time. The cold spell and heat wave indicators were included in the above described general model to 

assess the effect of cold and hot temperatures. The main effect of cold (or heat) was obtained from the 

model by predicting expected YLL between the median temperatures among cold (or heat) wave days 

versus the minimum mortality temperature (MMT). The MMT was obtained from the predictions of 

the overall cumulative exposure-response association. The heat wave and cold spell indicator variables 

were included in the model to estimate the additional effect of heat wave and cold spell. Therefore, 

those estimates compared YLL on extreme temperature days with non-extreme days.  

3. Results  

3.1. Characteristics of Temperature, Daily Mortality and YLL 

The average daily maximum temperature in the study area was 25.8 °C (median of 26.0 °C), with a 

minimum of 15.0 °C and a maximum of 38.2 °C. The inter-quartile range of the daily maximum 

temperature was 24.1–27.6 °C. Summary statistics for daily mortality and YLL for a period of 2003–2012 

are provided in Table 1. A total of 4671 deaths were recorded in the NUHDSS during the study period, 

with an average of 1.3 deaths per day. There was not much variation in the daily average number of 

deaths between gender and by age group. However, there were more deaths among males (56.8%) 
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compared to females (43.2%). There were 56.6 YLL per day due to all causes of death and a total of 

206,712 YLL over the study period.  

Table 1. Descriptive summary statistics for daily deaths and YLL in NUHDSS by gender 

and age group (2003–2012). 

 
Daily Average Deaths 

(SD) 
Total Deaths 

Daily Average YLL 
(SD) 

Total YLL 

Sex/Gender 

Male 0.7 (1.3) 2651 31.9 (56.7) 116,349.4 

Female 0.6 (0.9) 2020 24.7 (42.6) 90,362.9 

Age group 

0–5 years 0.4 (0.7) 1487 25.6 (44.1) 93,460.2 

5–15 years 0.0 (0.2) 146 2.4 (12.0) 8601.5 

15–25 years 0.1 (0.4) 415 5.5 (19.4) 20,049.3 

25–50 years 0.5 (1.2) 1966 19.8 (19.8) 72,263.4 

50+ years 0.2 (0.5) 657 3.4 (9.5) 12,337.9 

Overall  1.3 (1.9) 4671 56.6 (82.0) 206,712.3 

Figure 1 shows scatter plots for the distribution of both the daily mortality and YLL over time for 

the entire study period. The plot shows a similar trend pattern for both measures but with a discernible 

difference in the magnitude. 

 

Figure 1. Distribution of deaths and YLL the over study period. 

3.2. Association of Temperature and YLL 

The general association of temperature and YLL is illustrated in Figure 2a which represents the 

cumulative effect over 14 days. The exposure–response curve between daily temperature and YLL is  

J-shaped, with the lowest YLL between 24 and 30 °C. The predictions from the exposure-response 

curve indicate 26 °C as the MMT, and a corresponding minimum mortality percentile (MMP) of 60%.  

The plot indicates the existence of an association between cold temperatures and YLL. For a constant 
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exposure to an average temperature of 21 °C (5th percentile) for 14 days, the YLL will increase by 

27.4 YLL in a given day (95% CI, 2.7–52.0 years) for a change of temperature from 26 °C. 

Considering the association between heat and YLL, there was an increase of 3.3 YLL in a given day 

for a constant exposure to an average temperature of 30 °C for 14 days, a change from the reference 

temperature of 26 °C (95% CI, −19.7–26.4 years). The cumulative association of temperature and 

YLL, thus, did not show a significant heat effect in the study area. As part of sensitivity we considered 

the maximum lag of 21 days and obtained non-significant results for both cold and heat effects i.e., 

22.8 (−7.9–53.5) and 12.3 (−16.3–40.9) respectively. The lag effect specific to 25th percentile 

temperature of 24 °C is shown in Figure 2b. The graph is generated by plotting YLL corresponding for 

the temperature of 24 °C for different lags. The lag curve in the plot represents an increase in YLL for 

each future day following exposure to a temperature of 24 °C. The figure shows the delayed effect for 

average temperature of 24 °C which diminishes after six days of exposure. 

 

Figure 2. The overall effects of temperature on YLL (a) and the corresponding  

lag-response for temperature of 24 °C (b) due of all-cause mortality in NUHDSS with 95% 

confidence intervals. 

3.3. Effects of Heat Waves and Cold Spells 

Figure 3 shows the delayed associations of cold spell and heat wave on YLL due for different 

intensities in addition to the association presented in Figure 2 up to lag of 14 days. The plots show no 

clear pattern for both cold spells and heat waves. However, a cold spell signal that is significant at 

different lags and for different intensities is visible. 

Thresholds based on different percentiles and number of consecutive days of cold spell/heat wave 

with corresponding effect are given in Table 2. The association of cold spell defined as the 10th 

percentile representing 22.4 °C showed significance at lag 3 and 6 days. Cold spells defined as the 5th 

percentile representing 21.1 °C showed significance at 14 and some effect at lag 5. The high intensity 

cold wave defined by 2nd percentile showed similar effect as cold spells defined by the 5th percentile 

with significance at lag 5 and 14.  
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Figure 3. The delayed associations of cold spell (green) and heat wave (red) of at least two 

days heat wave or cold spell on years of life for different definitions: (a) <10th and >90th 

percentiles, (b) <5th and >95th percentiles and (c) <2nd and >98th percentiles. 

The lag effect for the cold spells seems to last up to 14 days since there is no significance observed 

after 14 days up to 21 days (data not shown). However, when considering the maximum lag up to  

21 days, the heat wave effect seems to be present at long lags of 18–19 days. The heat wave defined by 

98th percentile showed significant effect at lag 18 and 19. These graphical results of exploring the lag 

effect were based on separate models for different lags. 

Table 2. Heat wave and cold spell temperature thresholds and number of consecutive days 

with corresponding effect on YLL. 

 
Threshold (°C) No. of Days 

Main Effect Added Effect 

YLL 95% CI YLL 95% CI 

Cold Spell Intensities 

≤2nd percentile 20.0 24 56.7 4.4 109.1 −6.2 −42.8 30.4 

≤5th percentile 21.1 67 35.8 2.3 69.2 −0.4 −24.2 23.5 

≤10th percentile 22.4 169 26.1 0.6 51.6 1.9 −14.8 18.5 

Heat Wave Intensities 

≥98th percentile 29.0 23 3.4 −20.7 27.5 −0.6 −37.5 36.2 

≥95th percentile 29.6 88 1.3 −25.5 28.2 −1.6 −16.5 13.3 

≥90th percentile 30.4 221 8.1 −28.0 44.2 7.5 −12.9 27.9 

Table 2 shows average YLL associated with the main and added effects of heat waves and cold spells 

in those days matching the different definitions cumulatively over 14 lags. The results show the existence 

of a cold spell signal. However, as observed from the lag plots and the general temperature-YLL 

response, there is no significant association between heat wave and all-cause mortality observed in the 

study area.  
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A significant association between low temperatures and YLL was observed and increased with the 

intensity (10th, 5th and 2nd percentiles) computed relative the median temperature during the cold 

spell days. The median temperature for days with temperatures below 2nd percentile (20.0 °C) of 18.0 

°C was associated with 53.2 YLL (95% CI: 1.3 to 105.0). The median temperature of 21.0 °C for least 

strict definition of days defined by temperature below 10th was associated with a loss of 23.7 years 

(95% CI: 0.6 to 51.6). These effects were estimated relative to the minimum mortality temperature of 

26 °C corresponding to minimum mortality percentile of 60th. Upon increasing the lag effect to a 

maximum of 21 days, a similar result as that observed for exposure-response association of no 

significant effect for both cold and heat. However, there was an increase in the heat wave estimates 

with no much change for cold spells. After observing this no significant addition effect, we fitted the 

model without the cold and heat indicators. The reduced model produced small changes in the main 

cold spell and heat wave effect estimates. 

4. Discussion  

The study characterizes the health burden associated with temperature variations in an urban 

informal residential area in Nairobi, Kenya. The impacts of weather and climate on population health 

in this region are to date under-researched. The study brought forward estimates on how temperature 

and heat and cold waves impact on population level YLLs. The existence of cold spell and heat wave 

effects were explored using a newly described approach that has been developed for studies of 

mortality counts [32,33], but here expressed in terms of YLL. The study took full advantage of the 

longitudinal cohort design provided by the NUHDSS and its mortality data to enable this health risk 

assessments of temperature extremes among the socially deprived population. In this study, we 

considered the effect of temperature on YLL from all-cause mortality. We found that the association 

between temperature and YLL was a J-shaped curve, with a significant increase of YLL associated 

with cold temperatures. We observed a significant cold spell association with YLL for the three 

different definitions ranging from an average of 26 to 57 YLL per day of cold spell. We found that the 

effects of temperature on the YLL were well explained by the overall relationship of temperature to 

mortality, and that heat or cold waves did not appear to result in additional mortality effects.  

The majority of previous studies have examined the relative risk of temperature-related mortality [4,35], 

and only a few have considered YLL [22,23,36]. YLL is an informative measure for assessing the 

health impacts from weather compared to mortality risk as it accounts for deaths at different ages by 

gender. It also accounts for mortality displacement by definition in addition to providing information 

on the preventable loss of life years due to the exposure [25,37]. Understanding the impact of 

temperature exposure on YLL is helpful in evaluating the health risks for other exposures in a 

population such as slum residents who are faced with multiple health risk stressors.  

Cold weather is associated with a variety of involuntary responses in humans, including peripheral 

vasoconstriction (contraction of skin blood vessels), shivering, and increased blood pressure and heart 

rate. Therefore, for patients with heart disease, exposure to cold may cause a decrease in coronary 

blood flow leading to coronary spasms, chest pains, and even myocardial infarction [38–40]. Cold 

weather interferes with lung mechanisms and available biological information is sufficient to make 

plausible hypothesis that exposure to cold is a risk factor for pneumonia in all ages [41]. Exposure to 
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cold weather is also often associated with use of fires among slum residents to generate warmth and 

correspondingly increase exposure to air pollution causing both higher indoor and outdoor air pollution 

levels. On the contrary, exposure to heat has been found to induce physiological changes such as an 

increases in blood viscosity and cardiac output leading to dehydration and hypotension [42,43]. In fact, 

exposure to extreme temperatures in general (both cold and heat) can act as a trigger for cardiovascular 

events due to changes in blood pressure, blood viscosity, blood cholesterol, and heart rate [44–46].  

This study showed that an effect of cold temperatures on YLL was observed and was limited to the first 

five days after exposure. Cold-related mortality has been established before in different regions [14–16,47]. 

This study found no significant added impact of neither cold spells nor heat waves in general. This is 

similar to many other studies [32,36] and was expected in this kind of setting with a small temperature 

range. The observed effect of cold is consistent with results for a multi-country study that reports more 

than 70% of temperature related mortality attributable to cold across countries and minimum mortality 

percentile is similar to that reported for sub-tropical countries to be around 60th percentile [48]. 

It is important to create greater awareness of the dangers of extreme temperatures to inform the 

public about how to minimize their risks. However, there is need for individual level studies to 

establish vulnerable groups and help in designing adaptive strategies [44]. The information on the 

delayed effect of temperature exposure and YLL is vital for developing response plans for extreme 

temperature events [18,36]. However, it is likely that basic improvements of housing conditions, and 

better sources of heating in the housing particularly in the slum areas of Nairobi would mitigate risks 

related to cold exposures. The fact that the slum population is deprived of basic amenities, they may 

have no alternatives, even if they are aware of the dangers related to exposure to cold temperatures. 

Exposed to multiple environmental stressors together with poor housing facilities [49], the slum 

residents are less likely to acclimatize to temperature variations. The association of poor or old 

buildings, manual work, low socio-economic status and temperature variation [50] implying that the 

slum population is a more vulnerable group. These characteristics hinder this kind of deprived 

population from adapting to weather variations. 

The study contributes to a better understanding of the burden of temperature variations in a location 

with a smaller temperature range among the disadvantaged population in Africa. The study uses a new 

analytical approach which offers several advantages. Among those: the use of distributed non-linear 

functions gives assurance that the main effect is adequately accounted for; the analysis takes into 

consideration different definitions of cold spell and heat wave intensities; the study allows a more 

accurate estimation of temperature effects by making a distinction between effects from independent 

daily temperatures and from the duration of prolonged extreme temperatures. However, we 

acknowledge some study limitations. First, the data were available for only two slum areas, which 

makes our results hard to generalize to other communities in Nairobi and beyond. Second, temperature 

measurements were obtained from a monitoring station located outside the study area, which may not 

represent well the actual individual exposures, creating a potential misclassification of exposure. 

However, we consider that the fact that the slum population is not well protected from low and high 

temperatures by housing standards counteracts this exposure bias. We also acknowledge the small 

population under study that resulted in a small number deaths per day which might affect the power of 

the study.  
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5. Conclusions 

To conclude, this study shows evidence that exposure to ambient temperature variation is associated 

with YLL due all causes of death in Nairobi; specifically, cold temperatures appear more harmful. This 

is contrary to the general believe that Nairobi is a cool city compared to other African locations. 

Understanding of people’s perceptions and behavior towards weather extremes is required for better 

targeted awareness campaigns to reduce the health burden from temperature exposure. The findings 

also point to the need to think of environmental exposures in an effort to reduce disease burden among 

the urban poor population. 
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