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Abstract: Vehicle traffic is one of the most significant emission sources of air pollutants in 

urban areas. While the influence of mobile source emissions is felt throughout an urban 

area, concentrations from mobile emissions can be highest near major roadways. At present, 

information regarding the spatial and temporal patterns and the share of pollution 

attributable to traffic-related air pollutants is limited, in part due to concentrations that fall 

sharply with distance from roadways, as well as the few monitoring sites available in cities. 

This study uses a newly developed dispersion model (RLINE) and a spatially and 

temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations 

across Detroit (MI, USA) at very high spatial resolution. Results for annual averages and 

high pollution days show contrasting patterns, the need for spatially resolved analyses, and 

the limitations of surrogate metrics like proximity or distance to roads. Data requirements, 

computational and modeling issues are discussed. High resolution pollutant data enable the 

identification of pollutant “hotspots”, “project-level” analyses of transportation options, 

development of exposure measures for epidemiology studies, delineation of vulnerable and 

susceptible populations, policy analyses examining risks and benefits of mitigation options, 
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and the development of sustainability indicators integrating environmental, social, 

economic and health information.  
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1. Introduction 

Vehicle-related emissions can cause serious air pollution problems in many areas, and air pollution 

associated with traffic is a widespread environmental concern [1] Exposure to traffic generated 

pollutants, which include oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic carbon 

(VOC) and particulate matter (PM), can cause adverse health effects such as impaired lung function 

and asthma [2,3], deficits in lung function growth [4], and cancer [5,6]. Vulnerable groups include 

individuals with existing respiratory and cardiovascular disease, e.g., children with asthma [7,8]. 

Traffic-related air pollutants show steep gradients in concentrations with distance from major roads [9], 

so individuals living or working near major roads could have the highest exposures.  

Air pollutant exposures and specifically impacts due to traffic-related emissions can be estimated 

using a variety of methods, but there are significant gaps and practical issues [10–13]. In many cities, 

information regarding the share of pollution attributable to traffic sources and the variation over time is 

extremely limited. Indicators or surrogate metrics like proximity to roads can be overly simplistic and 

inadequate since these metrics exclude important factors affecting both emissions (e.g., traffic volume 

and fleet mix) and dispersion (e.g., meteorology) [12]. While some air pollutants are regularly 

monitored at several locations in large cities, the number of monitoring locations is never adequate to 

show the spatial patterns. Hence, various sorts of air quality models can be used to help obtain the 

spatial and temporal variations of traffic-generated pollutants. These include “dispersion” models 

using a variety of statistical (e.g., Gaussian plume) and physically-based (e.g., computational fluid 

dynamic) models that simulate emissions and dispersion [14]; “land use regression” (LUR) models 

fitting concentrations measured at multiple sites using statistical models and land characteristics, traffic 

and other data as independent variables, which then are used to predict concentrations elsewhere [15]; 

“receptor” models using measured pollutant characteristics as tracers to identify and quantify emission 

sources [16], and eddy-correlation and other methods that evaluate pollutant emissions arising from 

traffic [17]. 

The use of geocoded data and geographical information systems (GIS) has become routine in many 

types of environmental analyses. While surrogates of pollutant exposure have been widely used, e.g., 

the distance from residences or schools to highways or Superfund sites [18,19], such metrics can have 

significant limitations: they incompletely or improperly account for the nature of emission sources, 

effects of meteorology, orographic features, small scale variation in pollutant concentrations, time-activity 

patterns of emissions and the study subjects, and other factors that can affect pollutant emissions, 

transport, fate and exposure. In consequence, results may be biased and exposures may be 

misclassified [12]. In addition, surrogates do not provide quantitative exposure estimates, which restrict 

interpretations and uses in policy development and management since results cannot be compared to 

ambient air quality standards.  
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The present analysis is motivated by the ‘Near-road EXposures and effects of Urban air pollutants 

Study’ (NEXUS), which has the objective of investigating the adverse health effects of traffic-related 

air pollutants in a cohort of asthmatic children living close to major roads in Detroit (Michigan, USA). 

NEXUS differs from other cohort studies in its use of air quality dispersion modeling to characterize 

the spatial and temporal variability of traffic-related air pollutants, which is used as an input to 

determine the exposure estimates [20]. In addition, NEXUS uses a hybrid modeling system that 

combines several physically-based simulation models to estimate hourly, daily, and long term 

concentrations, including a new line source dispersion model designed specifically for predicting 

concentrations from on-road sources, which is featured in the present analysis. 

This paper presents an analysis of PM2.5 and NOx concentrations that result from traffic emissions at 

very high spatial and temporal resolution across Detroit, a large urban area. The analysis includes 

hourly to annual averaging periods and resolutions as fine as 10 m. The paper discusses the 

development of the modeling system, data and computational issues. After presenting key results, 

several applications and recommendations for high resolution air quality information are presented.  

2. Methodology 

Datasets needed to estimate air pollutant concentrations using dispersion models include receptor 

locations, meteorology, road network, traffic information, and emissions factors. The following 

sections summarize these datasets and the modeling approach. 

2.1. Geographic Domain Receptors 

The study domain encompasses Detroit and much of surrounding Wayne County in Michigan, 

USA. Concentrations were calculated at 27,622 “receptors” on 150 m centers over a region 34.5 (E-W) 

× 23 (N-S) km in dimension, with the SW Universal Transverse Mercator (UTM) coordinates of 

(311,500, 4,680,500, Region 17). The southeast (SE) corner of the region, over the Detroit River, Lake 

St. Clair and Canada, is not included. Each receptor represents a discrete point or location, although 

the prediction for that receptor can represent concentrations over its 150 × 150 m grid cell. The 

receptor location is the center of the cell. The 150 m spacing was selected to balance the spatial 

variation expected with computational considerations, as discussed later. We also demonstrate 10 m 

spacing for a subset of the modeling domain.  

2.2. Meteorology 

Meteorological data included hourly surface data (e.g., surface wind speed, wind direction, and 

temperature) from Detroit City airport, which was determined to be representative of the study area. 

Data for the year 2010 through 2012 were processed by AERMET, which extracted data from data 

archives, completed quality assessment checks, merged surface, upper air and on-site data, and 

estimated boundary layer parameters. Unless otherwise stated, analyses reported here use 2010 data. 

AERMET produces files that contain surface data (e.g., hourly boundary layer parameters); and profile 

data (e.g., multiple level observations of wind speed, wind direction, temperature and the standard 

deviation of wind components).  
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While meteorological datasets are generally quite complete (typically greater than 95% available 

and valid data), the lack of complete data can skew dispersion modeling results, and hence it becomes 

imperative (if possible) to compute predictions based on a full set of meteorological data. Some of the 

data missing at Detroit City airport were replaced with data from the four surrounding airports in or 

near to the modeling domain (Detroit Wayne, St. Claire, Gross Isle, Windsor). Measurements at these 

sites typically showed very close agreement. For invalid or missing wind direction data, replacement 

values were rotated slightly to improve agreement. 

The friction velocity parameter U* was re-calculated if the wind speed changed from the original 

meteorological file. U* values were computed using the iterative formula in AERMET. Similarly, the 

Monin-Obhukov (MO) length was calculated using the following equation: 

LMO = ρ C TEMPref U*3 / (k g H) (1)

where ρ = density of air = 1.2041 kg/m3, C = specific heat capacity of air = 1 kJ/kg, and TEMPref = the 

reference temperature for that particular hour; k = von Karman constant = 0.4; g = gravitational 

constant = 9.81 m/s2; H = heat flux = −ρ C U* θ*, where θ* was calculated using the expression in 

AERMET. Finally, the height of mechanically generated boundary layer was computed using U*: 

HBL = 2300 U* 1.5 (2)

Other parameters missing from the AERMET pre-processor were replaced using standard values. 

Relatively few (5%) replacements were needed to obtain a complete set of meteorological parameters. 

2.3. Roadway Links Traffic Activity 

Road network data for the Detroit study area, including the coordinates (start/stop locations) of 

individual links, link classifications, annual average daily traffic (AADT) and average speed 

information, were provided by the Southeast Michigan Council of Governments [21] for 9701 road 

links. For the larger roads, e.g., major arterials and interstate highways, each road direction was 

represented by a separate link. These link data do not include local roads, e.g., neighborhood streets 

and alleys, but these streets generally have very little traffic. 

Hourly traffic volume, fleet mix and vehicle speed was estimated for each link, information used to 

estimate emissions as described below [22,23]. The AADT and speed data for each link were derived 

using road counts and travel demand models (TDM) with link-specific inputs including AADT, 

number of lanes, roadway type and location from the [21], the Michigan Department of Transportation, 

and the US EPA Office of Transportation and Air Quality. The average speed for each link was 

estimated for four periods: morning rush hour peak (7–9 AM), mid-day (9 AM–3 PM), afternoon rush 

hour peak (3 PM–6 PM), and off-peak (6 PM–7 AM). 

Hourly traffic flows were derived for each link and vehicle class. The hourly number of vehicles on 

link i was calculated as: 

Vi,k,t = FMNFC(i),k MAFMON(t) DAFk,DAY(t) HAFNFC(i),t AADTi (3)

where Vi,k,t (counts h−1) is the number of vehicles on link i (i = 1 to 9701) for vehicle class k (k = 1 to 

8) and hour of the year t (t = 1 to 8760), and AADTi is the annual average daily flow for link i, as 

noted above. Equation (1) uses three temporal allocation factors to account for variation by month of 
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the year, day of the week, and hour of the day, as well as a fleet mixture factor, each described below. 

The eight vehicle classes represent aggregations from MOVES emission model and represent 

motorcycles, light-duty gasoline vehicles, light-duty diesel vehicles, light-duty gasoline trucks with 

gross vehicle weight (GVW) less than 6001 pounds, light-duty gasoline trucks with GWV > 6001 

pounds, light-duty diesel trucks, heavy-duty diesel trucks, heavy-duty gas vehicles, and heavy-duty 

diesel vehicles (MC, LDGV, LDDV, LDGT1, LDGT2, LDDT, HDGV, HDDV). These classes were 

derived using state-level data from the Federal Highway Administration, and information from the 

U.S. EPA Emission Inventory Improvement Program.  

The fleet mix allocation factor FMNFC(i),k (dimensionless) gives the fraction of vehicles in vehicle 

class k for link i, which depends on its National Functional Class (NFC) designation. Allocation factors 

were based on Table VM-4 from the FHWA Highway Statistics Series (http://www.fhwa.dot.gov/ 

policyinformation/statistics/2010/vm4.cfm) in conjunction with information from the U.S. EPA 

Emission Inventory Improvement Program (USEPA, 1996). Modeled NFCs included interstates, other 

freeways, other principal arterials, minor arterials, major collectors, minor collectors and bridge (NFC 

designations 11, 12, 14, 16, 17, 19 and 90). For example, for urban interstates (NFC = 11), LDGV and 

HDDV respectively represent 70.8 and 7.7% of AADT. This adjustment has the constraint that 

summed across the eight vehicle classes, Σk = 1...8 FMNFC(i), k = 1 for each road link. In Detroit, only three 

links were designated as NFC = 90, of which one had AADT = 0 and the others were quite short and 

were 245 and 163 m in length. Since fleet mix allocation factor were not available for NFC = 90, NFC 

= 11, which had the highest allocation of diesel vehicles, was used. 

The month-of-year allocation factor MAFMON(t) (dimensionless, with month indexed by hour t) had 

values that ranged from 0.86 (December) to 1.10 (August), reflecting higher summer traffic. This 

allocation factor has the constraint that summed across the 12 months, Σt = 1...12 MAFt = 12. 

The day-of-week allocation factor DAFk,DAY(t) (dimensionless), where DAY(t) is the day of week 

(indexed by hour t), has the effect of slightly increasing daily total flows for most vehicle classes on 

Friday (by 8%), and decreasing flows on Saturday (by 9%) and Sunday (21%), all compared to other 

weekdays. However, patterns differ for the HDGV and HDDV classes, which have slightly lower 

flows on Friday (by 3%) and significantly lower flows on Saturday and Sunday (61 and 71%, 

respectively). This factor has the constraint that summed across the 7 days in a week, Σt = 1...7 

DAFk,DAY(t) = 7 for each vehicle class k. 

The hour-of-day allocation factor HAFNFC(i),HR(t),DT(t) (dimensionless) represents the proportion of 

traffic volume for hour of the day (HR(t) = 1 to 24, indexed by hour t) and day type DT(t) = 1 to 3 

(indexed by t), respectively representing weekdays, Saturday, and Sunday. This factor was obtained 

from SMOKE [24]. Separate patterns are used for weekdays, which are typically bimodal with peaks 

representing morning and afternoon rush hour peaks, and weekends, which are typically unimodal with 

a broad afternoon peak. However, patterns vary by road type as given by NFC. This factor has the 

constraint that summed across the 24 h in a day, Σt = 1 to 24 HAFNFC(i),DT(t),HR(t) = 1 for each NFC and DT. 

For traffic on holidays, a Sunday schedule was assumed, accomplished by setting both the day-of-week 

and hour-of-day allocation factors DAFk,DAY(t) and HAFNFC(i),HR(t),DT(t) to Sunday values. Holidays in 

year 2010 considered were New Year’s Day (1 January), Memorial Day (31 May), Independence Day  

(5 July), Thanksgiving (25 November), and Christmas (25 December). 
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We confirmed that these adjustments obtained the correct AADT by summing link specific-flows 

over vehicle classes and hours of the year, that is: 

AADTi ≈ 365−1 Σk = 1...8 Σt = 1to8760 Vi,k,t  (4)

Because the AADT does not account for holidays, Equation (4) is not an equality, although the 

difference between the AADT and the calculated average was very small. 

2.4. Emissions 

A source inventory for NOx and PM2.5 was compiled for roads in Detroit and surrounding Wayne 

County for the year 2010. Hourly estimates of emissions were calculated for each of the 9701 links. 

First, emission factors for primary exhaust emissions of each pollutant were calculated using 

MOVES2010a [24]. MOVES is designed to estimate emissions from vehicle sources using a power-based 

approach. Emission rates in MOVES vary by vehicle class, vehicle speed, ambient temperature, and 

fuel properties. Thus, emission factors EFk, SPEED, TEMP, MON (g mile−1 vehicle−1) were calculated for eight 

vehicle class (k = 1…8), 16 vehicle speeds (2.5, 5, 10, 15 ... 75 mph), 11 ambient temperatures (0, 10, 

20 ... 90, 100 °F), and 12 months (January through December). Monthly average properties for fuels in 

the modeling domain were based on survey information from SEMCOG. MOVES inputs were 

adjusted for the vehicle age distribution of the 2010 Detroit fleet, based on an analysis of vehicle 

registration information by the Lake Michigan Air Directors’ Consortium. 

The pollutant-specific emission factors from MOVES were applied to each of the 9701 road links in 

the study domain to generate an hourly and link-by-link emissions inventory that accounted for traffic 

activity on each link, including the estimated hourly flows of each vehicle type and the average speed 

for each link and hour. Link-specific emission rates Ei,t (g m−1 s−1) for link i and hour t were calculated 

as follows: 

Ei,t = 1.72604 E−07 Σk = 1...8 EFk, SPEED(i, t), TEMP(t), MON(t) Vi,k,t (5)

where the first constant converts units of distance (1 mile/1609 m) and time (1 h/3600 s), thus 

matching the vehicle counts and emission factors from MOVES; EFk,SPEED(i, t), TEMP(t),Month(h) = emission 

factor (g vehicle−1 mile−1) from MOVES for link i, vehicle class k, link speed SPEED(i, t), hourly 

average ambient temperature TEMP(t), and month MON(t); and Vi,k,t = number of vehicles per hour 

for link i, vehicle class k, and hour of the year t, as given in Equation (1). Temperature and vehicle 

speed were placed into 11 and 16 bins, described earlier, and lookup tables were used to select values. 

Calculations in Equation (5) were performed for NOx and PM2.5. Temperatures in Equation (5) were 

calculated using the average of five local airport weather stations. This provided a complete and robust 

dataset. Due to large uncertainties, tire, brake and pavement generated PM is excluded. As mentioned, 

local neighborhood roads are not included in the road network, but this exclusion will not alter 

modeling results since these roads contribute a negligible fraction of traffic emissions. Further details 

on the development of the emissions inventory are provided elsewhere [23]. 

In summary, the spatially and temporally road network for Detroit contained 9701 links that totaled 

3064 km in length. The total PM2.5 emissions from all links (the product of the emission rate and link 

length summed across individual links was 15.9 g s−1 or 501 ton yr−1. This is comparable to values in a 

recent inventory for southeast Michigan, which estimated primary on-road PM2.5 emissions in Wayne 
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County (a slightly larger area than Detroit) as 1664 ton yr−1 in 2008, and projected emissions of  

613 tons yr−1 in 2018, respectively, a decrease attributable to cleaner vehicles.  

2.5. Dispersion Modeling 

Primary PM2.5 concentrations from vehicle emissions were predicted using RLINE, a steady-state 

plume-dispersion model [14,25,26] following standard guidance for roadway sources [27]. RLINE 

incorporates newly developed algorithms for predicting concentrations from on-road sources, e.g., 

tailpipe emissions from cars, buses, trucks and motorcycles. As a line source model, it uses a 

numerical integration of multiple point sources along the road link, and it automatically determines the 

number of points needed to represent each link. Dispersion parameters are derived from field data and 

recent wind tunnel experiments for near road sources. The model is capable of predicting 

concentrations at receptors very close to roads, and thus is particularly suited to health and other 

studies examining near-road concentrations. Unlike other line source models, RLINE simulates the 

‘upwind’ concentrations that can result from plume meandering. Currently, RLINE is available as beta 

test version from US EPA, and it is considered a “research” model (not a “regulatory” model). 

2.6. Computational Considerations 

Estimating annual concentrations over the modeled domain is computationally intensive. Given the 

9701 road links, 27,622 receptors, and 8760 h per year, 2.34 trillion source-receptor calculations must 

be performed for each pollutant. Each source-receptor calculation involves iterative numerical 

algorithms. For this problem, a standard workstation would require many centuries, and even a large 

computer cluster can require many months.  

The following steps were used to speed up calculations. First, an analytical solution in RLINE (also 

incorporated into the beta version of the model) was used. This solution provided similar results to the 

numerical solution. Second, only link-receptor distances less than 25 km were considered, since roads 

25 km or more from a receptor will provide negligible impacts. Third, to limit further the number of 

source-receptor pairs, an adaptive algorithm accounting for both distance and the magnitude of road 

link emissions was developed. This algorithm, which shortened the distance cut-off if the emission rate 

on the link was low, was developed and tested by running RLINE simulations using a medium 

resolution receptor grid on (worst-case) high pollution days, and comparing results with and without 

exclusion of link-receptor pairs. Fourth, the spatial resolution and receptor network was adjusted 

(initially 100 m was considered). Fifth, annual average results were based on a subset of meteorology, 

specifically, every 6th day in 2010 starting 1/3/2010. The selected 61 days were found to provide 

representative results (e.g., model runs using a smaller set of receptors and all 365 days of the year 

gave equivalent concentrations). Sixth, RLINE was recoded to allow variable (hourly) emissions 

without post-processing, and portions were optimized to eliminate repetitive calculations using lookup 

tables and other methods. Seventh, the emission generator was revised to eliminate the huge emission 

inventory files (hourly data for each link), and instead used pre-computed emission profiles for each 

NFC and speed class combination, an approach that gave identical results. Finally, receptors were 

broken down into several subsets, and calculations were performed using several computers 

simultaneously by subset. 
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These steps described above allowed computation of annual averages at the at 27,622 receptors in 

approximately 2 days using two workstations simultaneously, with results that were very similar to 

those that included all link-receptor pairs and the numerical algorithm. For example, PM2.5 

concentrations were about 0.2 µg/m3 lower at most receptors, mainly due to the exclusion of distant 

sources, and the correlation between streamlined and exact models was 0.984. Agreement was nearly 

perfect for concentrations above 1.0 µg/m3. 

3. Results and Discussion 

Several maps illustrate key modeling results, as described below. 

3.1. Annual Average PM2.5 Concentrations 

Figure 1 (top panel) displays annual average PM2.5 levels across the 30 × 40 km Detroit region due 

to local traffic emissions. The road network extends beyond the receptor network (where 

concentrations are calculated), which is shown as the shaded area. The lower panel of Figure 1 zooms in 

on a 10 × 12 km area and shows the detail of the road network and the spatial coverage of  

each (150 × 150 m) area corresponding to a single receptor. In both panels, X and Y axes use the 

Universal Transverse Mercator (UTM) projections, and scales are in meters. Each map has grouped 

concentrations into five levels (shown on the scale in the figures), and each displays results from the 

annual simulation using hourly data, as described earlier. The highest concentrations occur near major 

roads, e.g., I-75, I-96, I-94, M-10 and M-39, and particularly at the intersections of these (and other) 

high traffic roads. Several major arterials also have relatively high concentrations, e.g., 8 Mile Road. 

The highest annual average concentration is 4.05 µg/m3. PM2.5 emissions arise from each vehicle class 

considered, but heavy diesel trucks produce a disproportionate share, thus the highest PM2.5 

concentrations are near high diesel-traffic roads like I-94 and I-75. 

Annual average concentrations might appear to be symmetrical on either side of major roads. 

However, pollutant levels tend to be higher on the east side of roads, as compared to the west side, an 

effect of prevailing winds and other meteorological factors. As discussed later, daily averages show 

much greater variation and asymmetry, e.g., higher concentrations on the downwind side of the road. 

Predicted levels of traffic-related air pollutants in Detroit fall below the U.S. national annual 

ambient air quality standard for PM2.5 (currently 12 µg/m3 averaged over three years) and below PM2.5 

levels monitored in Detroit, which currently average around 10 µg/m3 (again, Figure 1 displays 

concentrations from only on-road traffic emissions). Predicted PM2.5 levels are comparable to those 

estimated in recent receptor modeling apportionments in Detroit, which suggest that vehicle emissions 

contribute 24%–36% of PM2.5 at residential sites, with the balance provided by secondary sulfate/coal 

combustion (17%–35%), secondary nitrate (16%–37%), organic matter (17%–21%), road dust, steel 

manufacturing, and mixed industrial sources (11%) [28]. Annual average concentrations often are 

considered the most representative indicator of pollutant levels, particularly when examining effects 

that depend on long-term exposures, e.g., cancer risk. 
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Figure 1. Annual average PM2.5 concentrations from traffic emissions across Detroit  

(40 × 30 km area, top) and in central area (10 × 12 km area, bottom).   



Int. J. Environ. Res. Public Health 2015, 12 3655 

 

 

3.2. Daily Average PM2.5 Concentrations 

Much greater variation is displayed in daily (24-h) averages, as shown in Figure 2, which maps 24-h 

averages for 8 February 2010 (Monday, top panel) and 29 December 2010 (Wednesday, bottom panel), 

respectively. These days were selected as two of the higher PM2.5 days, a result of poor dispersion 

conditions and higher emissions (due to weekday traffic and higher emissions during cold 

temperatures). Concentrations reached 11 to 12 µg/m3 at some near-road receptors, and greater 

asymmetry is observed, especially on 29 December when winds were light (2.2 to 3.3 m s−1) and 

blowing primarily to the north. 

3.3. Maximum Daily Average PM2.5 Concentrations 

A third PM2.5 example is provided that uses the maximum daily average concentration occurring 

over the year, determined as the highest 24-h average occurring at each receptor on any day during the 

year. As shown in Figure 3 (top panel), the portion of Detroit experiencing high concentrations 

increases with this indicator.  

The maximum daily average PM2.5 concentration can be compared to the short-term National 

Ambient Air Quality Standard, currently 35 µg/m3 (98th percentile, averaged over 3 years). Figure 3 

(lower panel) shows the maximum daily average for the central portion of Detroit. Note that the 

concentration scale has been changed to more clearly show gradients. As before, the highest 

concentrations occur near major roads and intersections. In addition, areas 1 km or more distant from 

the roadway can experience PM2.5 concentrations that are elevated by over 1 µg/m3. The maximum 

daily average concentration is useful to indicate areas that may be affected by high short-term pollutant 

levels, e.g., potential hotspots, and this indicator is relevant for examining effects that depend on acute 

exposures, e.g., asthma exacerbation and cardiovascular effects. 

3.4. Annual Average NOx Concentrations 

Figure 4 displays annual average predictions of NOx from local traffic emissions for the same 

regions presented earlier for PM2.5 (Figure 1). Vehicle exhaust emissions include both NO and NO2, 

which is summed together as NOx. In contrast to PM2.5 emissions, which are dominated by diesel-

powered vehicles, both gasoline- and diesel-powered vehicles emit substantial levels of NOx. Thus, 

predicted NOx concentrations tend to reflect total traffic (both cars and trucks), thus roads that have 

extensive car traffic but relatively low truck traffic (e.g., I-96 and M-39) can have NOx levels 

comparable to roads that have high volumes of both cars and trucks (e.g., I-75 and I-94). Still, NOx and 

PM2.5 concentrations are highly correlated, as shown by the similar spatial patterns in Figures 1 and 4. 

However, actual concentrations will be affected by background concentrations resulting from non-traffic 

sources, moreover, chemical transformations producing both secondary PM2.5 and NO2 will affect 

concentrations with the effect of decreasing both spatial and temporal correlation.  
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Figure 2. Daily (24-h) PM2.5 concentrations from traffic emissions across Detroit (30 × 40 km) 

for 8 February 2010 (top) and 29 December 2010 (bottom).  
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Figure 3. Maximum daily PM2.5 concentrations from traffic emissions across Detroit  

(30 × 40 km area, top) and in central area (10 × 12 km area, bottom).   
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Traffic emissions constitute a large and often the dominant source of NOx emissions in urban areas. 

Analysis of the latest National Emission Inventory data shows that on-road NOx emissions represent 

45% of total NOx emissions in Wayne County (encompassing Detroit) and 48% in the seven county 

southeast Michigan area (http://www.epa.gov/ttn/chief/net/2011inventory.html). Receptor model or 

other apportionments of NOx are unavailable. Background sources of NOx tend to be less important 

than for PM2.5. To show the importance of vehicle emissions, we simplistically assume that all NOx 

emissions from vehicles are in the form of NO2, i.e., transformation is immediate. In this case, 

predicted levels approach or exceed the previous U.S. annual average air quality standard (100 µg/m3). 

(Recently, the US NAAQS switched to a 1-h averaging period.) However, the assumption of 

immediate transformation is not realistic (NO to NO2 conversion rates depend on temperature, free 

radical concentrations and other factors), and NO2 levels observed at both near-road and distant sites in 

Detroit do not exceed either NO2 standard.  

3.5. Hourly NOx Concentrations with 10 m Resolution 

Figure 5 provides an example of extremely high resolution modeling using receptors on a 10 m grid 

near a high impact area, the intersection of I-75 and I-94. A 1.0 ×1.2 km region was simulated for the 

first 12 days in 2012, and the second-highest hour was selected for display. The prevailing 

meteorology was cold (−6 °C) with low winds (1.1 m/s) from the WNW (314°). NOx concentrations 

show smooth gradients, large decreases in concentrations at a distance of 200 to 300 m from the major 

roads, and results that generally match those seen in the earlier figures. Such modeling might be used 

to evaluate compliance with the 1-hour ambient air quality standard for NO2.  

Generally, it is impractical to model large areas with very fine resolutions like 10 m. For example, 

compared to the 150 m receptor network, the 10 m network requires 225 times more receptors (e.g.,  

7 million receptors for Detroit). Results obtained at 150 m resolution may adequately represent 

concentrations at locations that are close (e.g., within 50 to 75 m) to major roads. As often used in 

modeling point sources, “nested” sets of receptors might be used, e.g., a 10 or 20 m grid might be  

used very near major roads, a 100 or 150 m grid at intermediate distances, and a coarser grid at  

longer distances. 

3.6. Applications 

The use of geocoded data and geographical information systems (GIS) has become routine in many 

types of environmental analyses. Surrogates of pollutant exposure have been widely used, such as the 

distance from residences or schools to highways or Superfund sites [18,19]. However, surrogates can 

have significant limitations: they incompletely or improperly account for the nature of emission 

sources, effects of meteorology, orographic features, small scale variation in pollutant concentrations, 

time-activity patterns of emissions and the study subjects, and other factors that can affect pollutant 

emissions, transport, fate and exposure. In consequence, results may be biased and exposures may be 

misclassified [12]. Another important limitation is that quantitative exposure estimates are not 

obtained, which limits interpretations and use in policy development and management since results 

cannot be compared to ambient air quality standards.  
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Figure 4. Annual average NOx concentrations from traffic emissions across Detroit  

(30 × 40 km area, top) and in central area (10 × 12 km area, bottom).   
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Figure 5. NOX concentrations from traffic emissions for 11 January 2010 at 5 pm for  

I-75/I-94 area at 10 m resolution. Top: green arrow indicates modeled area; green squares 

also show locations of schools; Bottom: 1.0 × 1.2 km area modeled.  
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Several recommendations are made for using spatially- and temporally-resolved air quality 

information. First, to obtain population-specific exposures, this information can be mapped to census 

block groups, census blocks and parcels. Mapping to the smaller geographic units is preferable since 

larger units such as zip code and block groups do not provide the necessary spatial resolution to 

provide accurate results [29]. Second, as noted in the Introduction, spatially-and temporally-resolved 

data can be utilized in epidemiology studies that link exposures and health outcomes, e.g., 

cardiovascular disease, asthma symptoms, and viral infections. Ideally, this requires the collection of 

health surveillance data on a spatial scale that matches the sharp gradients demonstrated in this paper 

for traffic related air pollutant concentrations. To reflect representative or typical levels, the use of 

annual average data is preferred. To show potential hotspots, the use of the maximum daily average is 

preferred. Third, air quality data can identify pollutant “hotspots” and critical areas with potentially 

vulnerable populations, e.g., schools, hospitals, parks, athletic fields and other locations where children 

and other susceptible individuals may be exposed. For example, air quality data could be incorporated 

into analyses assessing the impacts of highways on schools [18].  

The development and evaluation of policies relevant to traffic-related air pollutants can benefit from 

spatially explicit pollutant data. This includes the development of recommendations or guidelines to 

reduce exposure and adverse health impacts using buffers (e.g., vegetated linear “parks”) along 

highways [30], minimum separation distances for schools and other critical facilities from highways, 

and requirements for filters, air intakes and other ventilation system controls in buildings near major 

roads [31]. The relevance of environmental impact assessments and other analyses conducted for 

transportation projects, including corridor and transit-oriented development, would be enhanced by 

incorporating spatially resolved analyses of pollutants. In addition, such data could improve estimates 

regarding the environmental and health benefits of emission reduction policies, such as retrofits to 

older buses and trucks, improved transit options, and incentives for zero-emission vehicles.  

Additional applications of highly resolved air quality information pertain to forecasts of future air 

quality and associated impacts. At the project-level, spatially-resolved predictions of future air quality 

could be used to ensure compliance with standards and to evaluate exposure and environmental justice 

implications of specific actions, e.g., the environmental impact assessment for a proposed freeway 

expansions might examine impacts using the spatially-resolved predictions. In this case, emissions 

would use projected rather than historical vehicle volumes. More broadly, predictions can be used in 

exposure, impact, risk and health assessment studies to quantify exposure, estimate risks, and 

determine the fraction of attributable disease. As an example, health impact studies might incorporate 

Census and surveillance data to identify the numbers of individuals exposed to specific pollutant 

levels, adjust for time activity patterns (e.g., time outdoors) and other factors (e.g., prevalence of 

existing disease), and then predict the expected mortality and morbidity impacts using concentration-

response functions [32,33]. Such predictions can help evaluate the health consequences of alternative 

mitigation options aimed at reducing emissions and exposures, e.g., use of optimized traffic signaling, 

improved emission controls, and buffers around highways or critical facilities (e.g., schools and 

playgrounds). Lastly, predictions of air quality and its sequel are useful for the development of yet 

more comprehensive “sustainability indicators.” These might overlay air pollutant data with other 

environmental, social and physical stressors, e.g., household income, access to medical facilities, 

housing quality, noise, etc.  
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3.7. Limitations 

Like any modeling study, the limitations and uncertainties of predictions should be recognized. 

Simulation modeling involves a large number of parameters, assumptions, and input data. While 

predictions use the best available information, uncertainties can be large and actual concentrations will 

likely differ from predictions. For example, hills, tall buildings and other obstacles can modify the 

wind field and affect predictions, particularly short term maximum concentrations. The practical 

ability to model urban-scale micrometeorological phenomenon is limited, and airport meteorological 

data often are considered to be representative. This applies to Detroit where topography is flat and 

buildings (outside a small urban core) are mostly low-rise. As a second example, only primary 

pollutants are modeled, thus neither NO2, nitrate (both resulting from NOx emissions) or secondary 

organic aerosol is predicted. Despite such limitations, the approach used is believed to represent actual 

conditions better than previous models, a result of RLINE’s tailoring for near-road environments and 

the extensive road network used. Errors will likely decrease at longer averaging times, e.g., annual 

average estimates will likely be more reliable than estimates for a particular hour or day. While 

absolute levels of predictions involve uncertainties, spatial patterns are likely to be accurate. 

Additional spatial resolution, as shown with the 10 m grid, would likely increase the highest 

concentrations since more receptors would be placed very close to roads. However, such fine resolution 

also brings into play issues related to the accuracy of geocoding of roads and other features [34], the 

increased computational burden discussed earlier, and fundamental issues regarding the formulation of 

plume models.  

This paper presents results that include contributions from only on-road traffic exhaust emissions.  

As discussed, predictions excluded stationary sources (e.g., power plants, boilers) and distant or 

“background” sources (located out of the study area). Only primary emissions from traffic-related 

sources were modeled (chemical reactions that were not modeled), and PM2.5 derived from road, tire 

and brake wear was not modeled. The available data and source apportionments suggest that the 

predictions are in a reasonable range; however, no attempt was made to validate the model in this 

paper. The hybrid modeling system used in Detroit for both mobile, stationary and background sources 

has shown reasonably good agreement to observations obtained at fixed monitoring sites [26]. The use 

of site-specific time allocation factors for vehicle activity may improve model performance, especially 

for short-term averages [35]. Only one year (2010) was evaluated. Generally, very similar results are 

obtained using meteorology for other years, but changes in traffic and emissions rates over the years 

may alter results. In particular, on-road diesel emissions of both PM2.5 and NOx have been greatly 

reduced, a result of the use of low sulfur fuels and emission controls that were phased in starting 

around 2007. 

4. Conclusions 

This study has shown the level and spatial distribution of PM2.5 and NOx concentrations in Detroit 

attributable to on-road emissions. The modeling involved a uniquely high degree of temporal and 

spatial resolution that allows investigation of short- and long-term pollutant impacts and near-road 

concentrations. On-road emissions are significant given the extent of commuting, extensive truck 
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traffic, the international crossing, and the many houses, schools and other populated areas located near 

major roads where pollutant concentrations and exposures are often highest. The spatial patterns for 

annual averages and high pollution days show contrasting patterns, with the highest concentrations 

occurring near major roads and intersections of major roads. Understanding the distribution of 

pollutant concentrations along near-road environments in urban areas such as Detroit can be 

particularly important since many residents may be medically underserved and disproportionately 

suffer from diseases linked to environmental factors.  

High resolution pollutant data are essential for many types of analyses. These include identification 

of pollutant “hotspots”, “project-level” analyses of future transportation options, use as exposure 

measures in epidemiology studies, delineation of populations that are vulnerable and susceptible (e.g., 

children and elderly at schools, hospitals, parks, and athletic fields), and policy-level analyses 

examining risks and benefits of mitigation options and transportation improvements. We also suggest 

their use in composite “sustainability” or “vulnerability” indicators developed by overlaying air 

pollutant data with spatial information representing other environmental, social, or health stressors. 

Spatially-resolved pollutant data increase the relevance and potentially the accuracy of such applications. 
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