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Abstract: Perfluoroalkyl substances (PFASs) are a group of environmentally-persistent 

chemicals that have been widely used in many industrial applications. There is human and 

animal evidence that PFASs may alter levels of reproductive and thyroid-related hormones. 

However, human studies on the potential age-related effects of PFASs on these outcomes 

among males and females are limited. We explored the relationship between serum  

PFASs and serum total testosterone (T), thyroid stimulating hormone (TSH), and free and 

total triiodothyronine (FT3, TT3) and thyroxine (FT4, TT4) among males and females 12 to 

80 years of age from the 2011–2012 cycle of the National Health and Nutrition 

Examination Survey. Associations were assessed using multiple linear regression models 

that were stratified on sex and age categories. Effect estimates from the majority of the 

adjusted models were not statistically significant. However, exposure to PFASs may be 

associated with increases in FT3, TT3, and FT4 among adult females, but during 

adolescence, PFASs may be related to increases in TSH among males and decreases in 

TSH among females. No significant relationships were observed between PFASs and T in 

any of the models. These findings suggest that exposure to PFASs may disrupt thyroid 

hormone homeostasis. 
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1. Introduction 

Perfluoroalkyl substances (PFASs) refer to a broad class of synthetic chemicals that have  

been widely used in a variety of industrial applications (e.g., food packaging, firefighting foams, and  

non-stick pan, paper, and textile coatings) due to their oil, water, and/or stain resistant properties [1–3]. 

While they provide societal benefit, there is concern, however, about the potential adverse ecological 

and/or human health impacts of PFASs as they are persistent in the environment, have been detected in 

air, surface waters, and soils and in a variety of mammals, birds, and fishes around the world, and  

have exhibited liver, developmental, immune, and endocrine toxicity in animal models [4–7].  

The perfluorinated sulfonates and perfluorinated carboxylic acids have been the most extensively 

studied, namely perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but others  

like perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) have been studied  

as well [4,5]. Sources of exposure are numerous and include industrial emissions, PFAS-containing 

consumer products, contaminated drinking and surface water, and house dust [1]. In 2006, the primary 

producers of PFASs committed to globally reducing emissions and product content of PFOA, PFOA 

precursors, and related higher homologue chemicals by 95% and 100% no later than 2010 and 2015, 

respectively [5,8]. Despite these efforts, PFASs are resistant to degradation and, consequently, 

exposure to them may occur long after they have been eliminated from production. However, even if 

the source of exposure is removed, measureable levels of PFASs may be detected in humans due to the 

relatively long half-life of these chemicals. The estimated half-life for PFOS, PFOA, and PFHxS in humans 

ranges from 3.8 to 8.5 years [5]. The half-life of PFNA has not been estimated in humans [9]. In the U.S. 

alone, over 95% of adolescents and adults have measureable serum levels of PFOS, PFOA, PFHxS, and 

PFNA [10], which may reflect current or historic exposures. In May, 2015, hundreds of scientists 

globally signed the Madrid Statement, which called for “limiting the production and use of PFASs and 

in developing safer nonfluorinated alternatives” [11]. 

Testosterone (T) is an important hormone for normal physiology at all life stages, and, as a result, 

even subtle disruptions in the levels of T could adversely impact human health. For example, T is the 

main sex hormone in males and is essential in the development and maintenance of secondary sexual 

characteristics. T also influences muscle mass, bone density, mood, and cognition [12,13]. In females, 

T plays a crucial role in bone metabolism and is necessary for normal ovarian, cognitive, and sexual 

function [14]. Joensen et al. [15] observed that serum concentrations of PFOS were inversely associated 

with total and free T, free androgen index, and reproductive hormone ratios (e.g., T/luteinizing hormone), 

and concentrations of PFNA were inversely related to estradiol in an analysis of young Danish men  

(n = 247, mean age (standard deviation): 19.6 (1.4) years old). No relationships were noted between 

levels of several other PFASs (e.g., PFOA and PFHxS) and reproductive hormones. In an earlier study of 

similarly aged Danish men, unadjusted median levels of serum PFOA were suggestively (p-value = 0.1) 

higher (4.4 vs. 5.0 ng/mL) among individuals with low testosterone compared to those with high 

testosterone [16]. Decreases in serum and testicular T and increases in serum estradiol have also been 
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noted in adult rats that were dosed with PFOA [5], which, collectively with the Danish studies, 

suggests that PFASs may exhibit anti-androgenic effects. Nevertheless, these findings are not 

supported by the small number of other epidemiology studies, which reported no relationships between 

PFASs and T [17,18]. However, both of these epidemiology studies [17,18] did not stratify by age, and, 

in the Raymer et al. [17] study in particular, the associations between PFASs and T were assessed 

using unadjusted correlation coefficients, both of which may have contributed to their inability to 

replicate the findings of the Danish studies. Given the limited number of human studies to date, further 

exploration of the potential influence of PFASs on T is needed. This is especially the case for the U.S. 

in which no previous studies concerning PFASs and T have been conducted among males and females 

from the general population. 

Similar to T, hormones that regulate thyroid homeostasis, including thyroid stimulating hormone 

(TSH), triiodothyronine (T3), and thyroxine (T4), are essential in a variety of human physiological 

functions including metabolism and growth and development. Toxicology studies have observed 

thyroid hormone imbalance in both adult and neonate rats treated with PFOS [5]. Epidemiologic 

investigations likewise have found that exposure to PFASs is associated with altered levels of these 

hormones in cohorts from around the world, including Korea [19], China [20], Canada [21,22], and  

the U.S. [23,24]. While the patterns are inconsistent, taken together, the animal and human evidence 

suggest that PFASs can alter normal thyroid function, which may have important implications for 

public health. The two U.S. studies used data from the 2007–2010 cycles of the National Health and 

Nutrition Examination Survey (NHANES), thus, there is opportunity to reexamine these relationships 

using the most recent NHANES data (i.e., 2011–2012 cycle). 

In the present study, our primary aim was to explore the relationship between serum PFASs (PFOA, 

PFOS, PFHxS, and PFNA) and serum T (total) among males and females 12 to 80 years old from the 

2011–2012 cycle of NHANES. Our secondary motivation was to examine in this cohort the association 

between these select serum PFASs and serum TSH, and free and total triiodothyronine (FT3 and TT3) 

and thyroxine (FT4 and TT4). We decided to focus on these hormones as there is evidence from previous 

human and animal studies that exposure to PFASs may disrupt both the hypothalamic-pituitary-testes 

and hypothalamic-pituitary-thyroid axes. This study is unique because it is the first NHANES analysis 

of PFASs and thyroid function to stratify on age and sex, and the first NHANES analysis to explore the 

relationship between PFASs and T. Our approach is notable because PFASs may exhibit sex-specific 

effects on T and thyroid function at different times during life, which may impact the body in different 

ways. Given that it also relies on the most recent data, the present study may represent the effects of 

PFASs on T and thyroid function based on levels most representative of the current exposure burden in 

the U.S. population. 

2. Methods 

2.1. Study Population 

This analysis utilized publicly-available data that was derived from NHANES 2011–2012. 

NHANES is a cross-sectional survey that is administered by the National Center for Health Statistics 

(NCHS) of the Centers for Disease Control and Prevention (CDC) that collects nationally representative 
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data on the health and nutritional status of non-institutionalized civilian residents, and conducts more 

detailed laboratory analyses on a subset of the participants [25]. We analyzed data from a subset of males 

and females that had data on serum PFASs, T, TSH, and thyroid hormones (n = 1887). Data concerning 

measures of thyroid function were not available for participants that were <12 years old, which is why 

our data set was limited to participants that were 12 to 80 years old. Participants with missing data on 

age, sex, body mass index (BMI), race/ethnicity, poverty income ratio (PIR), and serum cotinine were 

excluded from the current analysis (n = 205), resulting in a final sample size of 1682 males and 

females. NHANES received approval from the NCHS Ethics Review Board, and informed consent was 

obtained for all participants. 

2.2. Demographic Data 

Information on family income and race was obtained from subjects in the home by a trained 

interviewer using a Computer-Assisted Personal Interviewing system [26]. The interviews were 

conducted in English or Spanish or with the assistance of an interpreter if necessary. PIR was 

calculated by CDC as the ratio of family income to poverty guidelines established by the Department 

of Health and Human Services [26]. 

2.3. Body Measurements 

Height and weight were collected in a Mobile Examination Center (MEC) by trained health 

technicians with the assistance of a recorder during the body measurements [27]. BMI was calculated 

by CDC as weight in kg divided by height in m2 [27]. 

2.4. Laboratory Measurements 

Whole venous blood samples were collected from participants at the MEC, which were then 

processed, stored, and shipped to laboratories at the CDC (Atlanta, GA, USA) or Collaborative 

Laboratory Services (Ottumwa, IA, USA) (TSH and thyroid hormones only) for analysis. Samples of 

serum were analyzed for the following biomarkers: cotinine, PFOA, PFOS, PFHxS, PFNA, T, FT3, TT3, 

FT4, TT4, and TSH. Serum cotinine/T, PFASs, and TSH/thyroid hormones were measured using isotope 

dilution-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) [28,29], 

solid phase extraction-high performance liquid chromatography-turbo ion spray-tandem mass 

spectrometry [30], and various immunoenzymatic assays [31], respectively. While most of these 

variables were collected in multiple NHANES cycles, data on T measured by HPLC-MS/MS was only 

available for the NHANES 2011–2012 cycle, which is why we limited our analysis to those years. 

Additional PFASs were detected with much less frequency, so we limited our analysis to PFOA, 

PFOS, PFHxS, and PFNA. Concentrations below the limit of detection (LOD) were assigned a value 

of LOD divided by the square root of 2. LODs for the PFASs are reported in the footnotes section of  

Tables 2 and 3. 
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2.5. Statistical Analysis 

Statistical analysis was performed using SAS version 9.3 for Windows (SAS Institute, Cary, NC, 

USA). Descriptive statistics of participant demographics and concentrations of the analytes were 

calculated. The associations between PFASs and hormone concentrations were first assessed using 

simple linear regression in unadjusted models. These associations were then examined using multiple 

linear regression in models that were adjusted for the following variables: age, BMI, PIR, 

race/ethnicity, and serum cotinine. These variables were included in final models because when 

individually added to unadjusted models, the beta estimate for the PFAS biomarker changed by >10% 

and/or increased in precision for the majority of PFAS-hormone combinations. In unadjusted and 

adjusted models, hormones were log-transformed because they did not follow a normal distribution. 

Serum cotinine, age, BMI, and PIR, were modeled untransformed, whereas all PFASs were log-

transformed to improve model fit. Race/ethnicity was categorized as Mexican American, other 

Hispanic, non-Hispanic Black, non-Hispanic White, and other/multi-racial. We chose not to use 

sampling weights in our analysis because when variables employed in the calculation of sampling 

weights are also included in statistical models, a weighted analysis can lead to decreased precision of 

effect estimates [32,33]. This approach has been employed in other recent studies using data from 

NHANES [33,34]. In NHANES 2011–2012, there was oversampling of certain racial, income, and age 

groups and, as a result, race, income, and age were also used in the calculation of sampling weights [35]. 

Because we adjusted for race, income, and age in our statistical models, an unweighted analysis was 

more appropriate than a weighted analysis. Regardless, by subsetting the analysis into smaller age-sex 

groups, adjusting for the survey methodology was not possible [36]. To facilitate interpretation of the 

beta coefficients, results were expressed as percent change in hormone concentration associated with a 

doubling (i.e., 100% increase) in PFAS concentration (equation: % change = [2^beta – 1] × 100). We 

stratified analyses by sex and age (12 to <20, 20 to <40, 40 to <60, and 60 to 80 years old) as we 

hypothesized that the relationships between PFASs and hormones varied in age and/or sex-specific 

manners. As a sensitivity analysis, we also re-ran the models where PFAS concentrations were 

categorized into quartiles (the lowest quartile as the referent) to explore potential non-linear 

relationships. We defined statistical significance as p < 0.05. 

3. Results 

Table 1 shows the characteristics of the subset of participants (n = 1682) from NHANES analyzed 

in our study. Overall, this subset had a median age of 40 years, was predominantly non-Hispanic White 

(34%), and was equally comprised of males and females. This subset was comparable to the overall 

sample of participants (n = 1887) on age, race, and sex, as well as BMI, PIR, and serum cotinine. 
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Table 1. Characteristics of participants from NHANES 2011–2012. 

Variable 
Overall Sample (n = 1887) Sub-Sample (n = 1682) a 

% P50 (P25, P75) % P50 (P25, P75) 

Age (years)  41 (24, 60)  40 (24, 59) 
Male 51  51  

Female 49  49  
BMI (kg/m2)  27 (23, 32)  27 (23, 32) 

Mexican American 11  11  
Other Hispanic 10  10  

Non-Hispanic White 35  36  
Non-Hispanic Black 26  26  
Other/multi-racial 18  17  

PIR (no units)  1.89 (0.99, 3.93)  1.89 (1.00, 3.93) 
Serum cotinine (ng/mL)  0.04 (0.01, 1.07)  0.04 (0.01, 1.05) 

P25, 25th percentile; P50, 50th percentile; P75, 75th percentile. a Individuals with data 

on age, sex, BMI, race/ethnicity, PIR, serum cotinine, serum PFASs, serum T, and 

serum thyroid hormones. 

Tables 2 and 3 show the distributions of the serum PFAS and hormone concentrations in males and 

females, respectively, across all age categories. PFOA, PFOS, PFHxS, and PFNA were detected in  

97%–100% of the serum samples. Median concentrations of PFASs were higher in males compared 

with females within each age category, except for levels of PFOA among the 60 to 80 year-olds, and 

PFNA among the 12 to <20 and 60 to 80 year-olds, which were similar between sexes. Median 

concentrations of T were much higher (16–23 times higher) in males compared with females, but the 

levels of the other hormones were relatively comparable between sexes across all age categories. 

Table 2. Median (25th percentile, 75th percentile) serum concentrations of PFASs and 

hormones among males from NHANES 2011–2012. 

Analyte Units 
12 to <20 years old  

(n = 158) 

20 to <40 years old  

(n = 268) 

40 to <60 years old  

(n = 218) 

60 to 80 years old  

(n = 213) 

PFOA a ng/mL 1.85 (1.46, 2.45) 2.35 (1.87, 3.24) 2.31 (1.72, 3.39) 2.48 (1.81, 3.48) 

PFOS b ng/mL 4.60 (3.12, 6.88) 7.75 (5.17, 10.80) 9.28 (5.61, 13.9) 11.1 (6.94, 18.4) 

PFHxS c ng/mL 1.28 (0.77, 6.88) 1.55 (0.96, 2.53) 1.81 (1.03, 2.59) 1.72 (1.08, 2.61) 

PFNA d ng/mL 0.78 (0.56, 1.19) 0.98 (0.67, 1.31) 1.00 (0.67, 1.57) 1.07 (0.77, 1.58) 

T (total) ng/dL 384.0 (240.7, 496.6) 411.9 (313.3, 507.8) 349.4 (261.1, 462.7) 345.7 (269.0, 494.3) 

T3 (free) pg/mL 3.7 (3.5, 4.0) 3.4 (3.2, 3.6) 3.3 (3.1, 3.4) 3.0 (2.7, 3.2) 

T3 (total) ng/dL 137.0 (125.0, 156.0) 119.0 (108.0, 132.0) 117.5 (105.0, 129.0) 106.0 (91.0, 122.0) 

T4 (free) ng/dL 0.8 (0.8, 0.9) 0.9 (0.8, 0.9) 0.8 (0.7, 0.9) 0.9 (0.8, 0.9) 

T4 (total) µg/mL 7.5 (6.8, 8.3) 7.7 (6.7, 8.5) 7.8 (7.0, 8.8) 8.0 (7.0, 9.1) 

TSH µIU/mL 1.4 (1.1, 2.1) 1.4 (1.0, 1.9) 1.4 (1.1, 2.1) 1.7 (1.2, 2.5) 
a 99%–100% ≥ LOD (0.10 ng/mL); b 99%–100% ≥ LOD (0.20 ng/mL); c 98%–100% ≥ LOD (0.10 ng/mL);  
d 99%–100% ≥ LOD (0.08 ng·mL). 
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Table 3. Median (25th percentile, 75th percentile) serum concentrations of PFASs and 

hormones among females from NHANES 2011–2012. 

Analyte Units 
12 to <20 years old  

(n = 145) 

20 to <40 years old  

(n = 257) 

40 to <60 years old  

(n = 224) 

60 to 80 years old  

(n = 199) 

PFOA a ng/mL 1.53 (1.15, 2.15) 1.49 (0.95, 2.25) 1.62 (1.21, 2.39) 2.55 (1.78, 3.44) 

PFOS b ng/mL 3.76 (2.33, 5.57) 4.20 (2.68, 6.62) 4.93 (2.75, 8.18) 9.50 (5.51, 14.50) 

PFHxS c ng/mL 0.83 (0.56, 1.74) 0.69 (0.43, 1.10) 0.87 (0.52, 1.33) 1.47 (0.9, 2.34) 

PFNA d ng/mL 0.73 (0.52, 1.10) 0.72 (0.53, 1.02) 0.78 (0.56, 1.20) 1.06 (0.77, 1.72) 

T (total) ng/dL 23.3 (16.4, 31.4) 26.0 (18.3, 37.9) 16.8 (12.1, 24.8) 15.0 (9.7, 23.0) 

T3 (free) pg/mL 3.4 (3.2, 3.7) 3.2 (3.0, 3.4) 3.0 (2.8, 3.2) 2.9 (2.8, 3.1) 

T3 (total) ng/dL 125.0 (113.0, 142.0) 117.0 (106.0, 134.0) 109.5 (96.0, 120.0) 106.0 (95.0, 119.0) 

T4 (free) ng/dL 0.8 (0.8, 0.9) 0.8 (0.8, 0.9) 0.8 (0.7, 0.9) 0.9 (0.8, 0.9) 

T4 (total) µg/mL 7.7 (7.1, 8.9) 8.0 (7.2, 9.0) 8.0 (7.2, 9.0) 8.3 (7.5, 9.4) 

TSH µIU/mL 1.4 (0.9, 1.9) 1.5 (1.0, 2.1) 1.5 (1.1, 2.1) 1.7 (1.2, 2.5) 
a 99%–100% ≥ LOD (0.10 ng/mL); b 99%–100% ≥ LOD (0.20 ng/mL); c 97%–99% ≥ LOD (0.10 ng/mL);  
d 98%–100% ≥ LOD (0.08 ng·mL). 

Tables 4 and 5 present the adjusted percent change in serum hormone concentrations associated 

with a doubling (100% increase) in serum PFAS concentration among males and females, respectively, 

across all age categories. Effect estimates from the unadjusted models are available in Supplementary 

Materials Tables S1 and S2. For the adjusted models, no statistically significant associations were 

observed between PFASs and T for males and females, and the majority of effect estimates for thyroid 

hormones were also not statistically significant. However, among 12 to <20 year-olds, PFOS (12.3%, 

95% CI: 0.7, 25.2%) and PFNA (16.3%, 95% CI: 4.0, 30.2%) were positively associated with TSH in 

males, whereas PFOA (−16.6%, 95% CI: −28.6, −2.6%) was inversely related with TSH in females. 

PFOA (2.0%, 95% CI: 0.0, 4.1%), PFOS (2.2%, 95% CI: 0.5, 3.9%), and PFNA (2.4%, 95% CI: 0.4, 

4.4%) were also positively related to FT4 among 20 to <40 year-old females, and PFOA was also 

positively related to FT3 (1.8, 95% CI: 0.2, 3.4) and TT3 (3.3, 95% CI: 0.6, 6.0%) among 60 to 80 

year-old females. When PFAS levels were categorized into quartiles, the results corroborated the 

findings of the continuous measures analysis (data not shown). 
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Table 4. Percent change (95% CI) in serum hormone concentration associated with a doubling (100% increase) in serum PFAS concentration 

among males from NHANES 2011–2012 (adjusted results). 

Hormone PFAS 12 to <20 years old  
(n = 158) a 

20 to <40 years old  
(n = 268) a 

40 to <60 years old  
(n = 218) a 

60 to 80 years old  
(n = 213) a 

T (total) PFOA 17.3 (−9.4, 51.8) −0.5 (−5.0, 4.1) −1.4 (−7.9, 5.5) 7.2 (−1.9, 17.1) 
 PFOS 7.9 (−9.1, 28.1) −1.2 (−5.1, 2.9) −2.7 (−7.3, 2.2) 4.9 (−1.9, 12.1) 
 PFHxS 2.4 (−9.1, 15.2) −1.2 (−4.7, 2.4) −3.6 (−8.2, 1.2) 3.3 (−3.8, 10.8) 
 PFNA 1.8 (−14.9, 21.7) 0.9 (−4.1, 6.1) −0.6 (−6.2, 5.3) 5.6 (−3.9, 16.0) 

T3 (free) PFOA 0.8 (−2.2, 3.9) −0.2 (−1.4, 0.9) −0.2 (−1.8, 1.4) 0.1 (−1.4, 1.6) 
 PFOS −0.3 (−2.3, 1.7) 0.0 (−1.0, 1.0) 0.7 (−0.4, 1.9) −0.5 (−1.5, 0.6) 
 PFHxS 0.0 (−1.4, 1.4) 0.1 (−0.8, 1.0) −0.6 (−1.7, 0.6) −0.7 (−1.8, 0.5) 
 PFNA 0.3 (−1.8, 2.4) 0.2 (−1.0, 1.5) 1.1 (−0.3, 2.4) −0.3 (−1.8, 1.3) 

T3 (total) PFOA −1.9 (−6.4, 2.9) −0.8 (−2.7, 1.2) 0.5 (−2.3, 3.5) 1.4 (−1.4, 4.2) 
 PFOS −1.6 (−4.7, 1.5) −0.0 (−1.8, 1.8) 0.2 (−1.8, 2.3) −0.6 (−2.7, 1.4) 
 PFHxS 0.2 (−1.9, 2.4) 0.5 (−1.1, 2.0) 1.0 (−1.1, 3.1) −1.3 (−3.4, 0.9) 
 PFNA −1.1 (−4.2, 2.2) −0.0 (−2.2, 2.2) 0.5 (−1.9, 3.0) 0.3 (−2.6, 3.2) 

T4 (free) PFOA −0.6 (−4.9, 4.0) −0.2 (−2.0, 1.8) −1.9 (−4.7, 0.9) 0.4 (−1.9, 2.8) 
 PFOS 0.6 (−2.4, 3.6) −0.5 (−2.1, 1.2) 0.2 (−1.9, 2.3) 0.8 (−1.0, 2.6) 
 PFHxS −1.5 (−3.5, 0.5) −0.7 (−2.2, 0.8) 0.4 (−1.7, 2.5) 0.5 (−1.4, 2.4) 
 PFNA 2.6 (−0.5, 5.8) 0.6 (−1.5, 2.8) −1.1 (−3.5, 1.3) 0.5 (−2.0, 3.1) 

T4 (total) PFOA −1.6 (−6.6, 3.6) −1.2 (−3.4, 1.1) −3.1 (−6.2, 0.1) * −0.5 (−3.4, 2.4) 
 PFOS −1.1 (−4.4, 2.3) −1.5 (−3.4, 0.5) −0.8 (−3.1, 1.5) −0.6 (−2.8, 1.6) 
 PFHxS −2.1 (−4.4, 0.2) * −0.3 (−2.1, 1.5) −0.7 (−3.0, 1.7) −1.3 (−3.5, 1.0) 
 PFNA 0.6 (−2.9, 4.3) −0.5 (−2.9, 2.1) −2.5 (−5.2, 0.2) * −0.4 (−3.4, 2.7) 

TSH PFOA 9.6 (−7.1, 29.4) 0.1 (−6.5, 7.2) 0.2 (−10.4, 12.1) −0.7 (−10.1, 9.7) 
 PFOS 12.3 (0.7, 25.2) ** −2.9 (−8.6, 3.2) −1.3 (−8.9, 7.1) −2.3 (−9.4, 5.3) 
 PFHxS 6.2 (−1.5, 14.5) −0.4 (−5.6, 5.1) 0.6 (−7.2, 9.0) −3.6 (−10.9, 4.4) 
 PFNA 16.3 (4.0, 30.2) ** −0.5 (−7.7, 7.3) 0.9 (−8.3, 11.0) 0.4 (−9.7, 11.7) 

a Adjusted for age (continuous), BMI (continuous), PIR (continuous), serum cotinine (continuous), and race/ethnicity (categorical). * 0.05 ≤ p < 0.10. ** p < 0.05. 
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Table 5. Percent change (95% CI) in serum hormone concentration associated with a doubling (100% increase) in serum PFAS concentration 

among females from NHANES 2011–2012 (adjusted results). 

Hormone PFAS 12 to <20 years old  
(n = 145) a 

20 to <40 years old  
(n = 257) a 

40 to <60 years old  
(n = 224) a 

60 to 80 years old  
(n = 199) a 

T (total) PFOA −10.6 (−21.5, 1.8) * 3.4 (−4.3, 11.8) −5.4 (−13.4, 3.3) 1.8 (−8.2, 12.8) 
 PFOS −6.9 (−14.7, 1.6) 2.0 (−4.4, 8.7) −0.4 (−6.7, 6.4) 6.7 (−1.2, 15.4) 
 PFHxS −5.3 (−11.6, 1.5) −3.3 (−8.7, 2.5) −2.4 (−8.7, 4.3) −0.2 (−8.3, 8.7) 
 PFNA −9.6 (−18.7, 0.5) * 6.3 (−1.5, 14.8) −1.9 (−10.4, 7.4) 3.5 (−5.5, 13.5) 

T3 (free) PFOA 1.1 (−2.4, 4.7) 0.4 (−1.1, 1.9) −0.0 (−1.6, 1.5) 1.8 (0.2, 3.4) ** 
 PFOS −1.1 (−3.3, 1.3) 0.5 (−0.7, 1.8) −0.4 (−1.5, 0.8) 1.1 (−0.1, 2.2) * 
 PFHxS −0.8 (−2.6, 1.1) 0.5 (−0.6, 1.7) −0.0 (−1.2, 1.1) 1.0 (−0.2, 2.3) 
 PFNA −1.9 (−4.7, 0.9) 0.6 (−0.9, 2.1) 0.8 (−0.8, 2.4) 1.0 (−0.4, 2.4) 

T3 (total) PFOA 0.3 (−4.2, 5.1) −0.3 (−2.8, 2.4) −0.5 (−3.3, 2.5) 3.3 (0.6, 6.0) ** 
 PFOS −2.3 (−5.2, 0.8) 0.2 (−1.9, 2.4) −1.3 (−3.4, 0.9) 1.1 (−1.0, 3.1) 
 PFHxS −1.3 (−3.7, 1.1) 1.0 (−1.0, 3.0) 0.8 (−1.4, 3.0) 2.0 (−0.2, 4.3) * 
 PFNA −1.6 (−5.3, 2.2) −0.8 (−3.4, 1.8) −1.4 (−4.3, 1.6) 1.9 (−0.5, 4.3) 

T4 (free) PFOA 2.1 (−2.2, 6.7) 2.0 (0.0, 4.1) ** 1.2 (−1.3, 3.8) −2.0 (−4.6, 0.7) 
 PFOS 0.1 (−2.8, 3.1) 2.2 (0.5, 3.9) ** 1.3 (−0.5, 3.2) −0.5 (−2.5, 1.5) 
 PFHxS 0.2 (−2.1, 2.6) 1.3 (−0.2, 2.8) * 0.5 (−1.4, 2.4) −2.0 (−4.2, 0.1) * 
 PFNA −2.6 (−6.0, 0.9) 2.4 (0.4, 4.4) ** 2.1 (−0.5, 4.8) −1.5 (−3.8, 0.9) 

T4 (total) PFOA 4.1 (−0.6, 8.9) * −0.1 (−2.7, 2.6) 0.8 (−2.2, 3.9) −0.9 (−3.4, 1.6) 
 PFOS −0.3 (−3.4, 2.8) −0.0 (−2.1, 2.2) −0.7 (−2.9, 1.6) 0.2 (−1.7, 2.2) 
 PFHxS −0.3 (−2.8, 2.1) −0.6 (−2.5, 1.4) 0.9 (−1.4, 3.2) −0.7 (−2.8, 1.4) 
 PFNA −3.2 (−6.7, 0.5) * 0.0 (−2.5, 2.6) −0.2 (−3.2, 3.0) 0.0 (-2.2, 2.4) 

TSH PFOA −16.6 (−28.6, −2.6) ** 0.7 (−7.7, 10.0) 3.5 (−6.3, 14.4) 4.6 (−6.6, 17.0) 
 PFOS −6.6 (−16.0, 3.8) −1.0 (−7.9, 6.4) 0.0 (−7.1, 7.7) −1.5 (−9.6, 7.3) 
 PFHxS −4.1 (−11.8, 4.3) −0.1 (−6.4, 6.7) 5.0 (−2.5, 13.2) −0.3 (−9.1, 9.3) 
 PFNA 4.2 (−8.4, 18.5) −2.5 (−10.6, 6.4) 1.7 (−8.2, 12.7) 2.8 (−7.0, 13.7) 

a Adjusted for age (continuous), BMI (continuous), PIR (continuous), serum cotinine (continuous), and race/ethnicity (categorical). * 0.05 ≤ p < 0.10. ** p < 0.05. 
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4. Discussion 

In this study, we assessed the associations between serum biomarkers of exposure to select PFASs 

(PFOA, PFOS, PFHxS, and PFNA) and serum T, TSH, and thyroid hormones (FT3, TT3, FT4, and 

TT4) in male and female adults and adolescents from NHANES 2011–2012. Statistically significant 

relationships were observed for PFASs and FT3, TT3, and FT4 among adult females and for PFASs 

and TSH in a sex-specific manner among adolescents. Despite these findings suggesting that exposure 

to PFASs may disturb normal thyroid function, the effect estimates from the majority of our models 

were not statistically significant. Consequently, caution should be used when interpreting our findings. 

Comparing NHANES 1999–2000 (n = 1562) with NHANES 2003–2004 (n = 2094), there were 

statistically significant reductions in geometric mean serum levels of PFOA, PFOS, and PFHxS  

and statistically significant increases in geometric mean serum levels of PFNA among the U.S.  

population [2]. Based on comparison with NHANES 2007–2010 (n = 1181) [24], our results that relied 

on data from NHANES 2011–2012 suggest that geometric mean serum concentrations of PFOA  

(4.15 vs. 1.98 ng/mL), PFOS (14.2 vs. 6.21), PFHxS (2.00 vs. 1.19 ng/mL), and PFNA (1.54 vs.  

0.91 ng/mL) have all decreased in Americans. Given this decreasing trend in serum levels of PFASs 

among the U.S. population, it may be informative to compare our results with those of earlier 

NHANES cycles using the same sex-age strata to see if exposure level modifies the observed 

associations. Aside from sex and age, other studies have also demonstrated that race, education, and 

pregnancy-related factors (e.g., parity and breastfeeding duration) may modify PFAS exposure [24,37] 

and, as a result, should be explored as effect modifiers in future studies as well. 

Outside of the U.S., several studies have reported on concentrations of serum PFASs in males and 

females. For example, in 12–19 year-old Koreans (n = 77, sample year: 2008), median levels of PFOA, 

PFOS, PFHxS, and PFNA were 1.94, 4.57, 0.85, and 1.40 ng/mL, respectively [19]. In this same age 

strata, median levels for males and females collectively from our analysis were lower for PFOA  

(1.71 ng/mL), PFOS (4.19 ng/mL), and PFNA (0.75 ng/mL), and higher for PFHxS (1.05 ng/mL).  

In 17–37 year-old pregnant Japanese women (n = 15, sample year: 2003) [38], median concentrations 

of PFOS were higher compared with women in the same age range from our analysis (8.1 vs. 5.57 

ng/mL). In addition, in young Danish men (n = 247, sample years: 2008–2009) [15], median levels of 

PFOA (3.02 vs. 2.25 ng/mL), PFOS (7.79 vs. 6.42 ng/mL), and PFNA (1.07 vs. 0.95 ng/mL) were 

higher, whereas PFHxS (0.67 vs. 1.23 ng/mL) was lower relative to similarly aged men from our 

analysis. These differences by country may reflect geographic variability in the types of sources that 

intentionally contain or are contaminated with PFASs. This, combined with variability in the lifestyle 

behaviors in different age or sex groups, may lead to different interactions with PFAS sources and, 

consequently, variations in the intensity, frequency, and duration of exposures. 

Consistent with our findings, several other human studies have reported no associations between 

PFASs and T. These epidemiologic investigations were examined in adult males from Greenland/ 

Poland/Ukraine (n = 197–208) [18] and the U.S. (n = 256) [17]. However, other studies among adult 

males have reported inverse associations between serum levels of PFASs and T [15,16]. Several 

animal studies have corroborated these findings showing decreased serum and testicular T levels 

following administration of PFASs to male rats [39–41]. Given the current conflicting epidemiological 

evidence, perhaps due to analytical limitations present in previous human studies (e.g., lack of age 



Int. J. Environ. Res. Public Health 2015, 12 6108 

 

 

stratification in analyses or presentation of unadjusted correlation coefficients only), further 

epidemiological investigations are warranted not only in men, but also in women and adolescents. 

Puberty induces profound changes in thyroid hormone levels to compensate for physiological 

demands associated with growth and sexual development [42]. Among adolescents, we observed that 

the relationship between PFASs and TSH levels varied by sex. No associations were observed between 

PFASs and FT3, TT3, FT4, and TT4 levels. It is possible that the differences observed in the effect of 

PFAS exposure on TSH levels between adolescent girls and boys may be due in part to the dramatic 

increases in sex hormones during puberty. Additional prospective studies are necessary to characterize 

potential PFAS-induced changes in circulating thyroid hormone levels among pubertal boys and girls. 

While overt thyroid disease during adolescence has a direct effect on various aspects of puberty [43–46], 

less is known about the hormone-mediated health effects of subclinical alterations in thyroid hormone 

levels during puberty. It is possible that the even subtle PFAS-induced disturbances in these hormones 

during this stage of development may have profound effects on growth and reproduction. 

On the other hand, among adult women, we observed positive associations between PFASs and FT3, 

TT3, and FT4. No associations were observed in adult men. Subclinical thyroid disease in adulthood 

may have a significant impact on morbidity as it has been associated with an array of chronic diseases  

(e.g., cardiovascular disease and insulin resistance) and psychiatric disorders (e.g., depression) [47–50].  

In addition, our results indicate that PFAS-associated thyroid hormone alterations in females may vary 

by age of exposure, which has implications for studies aimed at identifying periods of susceptibility to 

thyroidal disturbances across the life course. The mechanisms through which PFASs may act to 

influence thyroid hormone levels in both adolescents and adults are potentially varied. Animal and 

cellular studies have shown that PFASs may disturb thyroid hormone homeostasis along multiple 

points of the hypothalamic-pituitary-thyroid axis [51]. As such, PFASs may alter thyroid hormone 

synthesis, transport, metabolism, and/or action on target cells, all of which are involved with the 

regulation of thyroid hormone homeostasis [52]. 

The results of the human studies to date have been somewhat inconsistent with respect to the 

direction of the observed associations between PFASs and TSH and thyroid hormone levels. Two other 

studies have explored the potential relationship between PFASs and thyroid function using data from 

NHANES. Wen et al. [24] analyzed data from adult men (n = 672) and women (n = 509) in NHANES 

cycles 2007–2010. They reported that PFOA was positively associated with TT3 in females, and 

PFHxS was positively related to TT3 and TT4 in females and inversely related to FT4 in males. In the 

second study, Jain [23] found that among participants >12 years old from NHANES 2007–2008, 

PFOA was positively associated with TSH and TT3, and PFHxS was positively associated with TT4. 

Contrary to our study, the NHANES analyses by Wen et al. [24] and Jain [23] did not stratify by age, 

which our analysis suggests may be an important factor to consider in the toxicity of PFASs on thyroid 

function. Furthermore, in cohorts of Chinese adolescents and young adults (n = 545) [20] and pregnant 

Canadian women (n = 151) [22], positive relationships between PFNA and FT4 and TSH, respectively, 

were noted. Dallaire et al. [21] also reported that PFOA was positively associated with FT4 and 

inversely related to TT3 and TSH in adult Inuit (n = 621). Although not measured in NHANES, 

perfluorotridecanoic acid has been linked to decreased TT4 and increased TSH in Korean females (n = 

633) [19]. While most of the human studies to date have focused on adults and adolescents, a few have 
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observed altered levels of TSH and thyroid hormones in newborns from the Netherlands [53] and 

Korea [54] in relation to prenatal exposure to PFASs. 

Contrary to these human studies, Inoue et al. [38] and Bloom et al. [55] observed no relationship 

between PFASs and thyroid function using data collected in Japanese infants (n = 15) and American 

adults (n = 31), respectively. However, the robustness and generalizability of these studies is limited 

given the small sample size of each cohort. Aside from changes to hormone levels, several studies 

have also explored the effects of PFASs on thyroid-related conditions. Specifically, no associations 

were observed in a cohort of pregnant Canadian women (n = 271) between PFOA, PFOS, or PFHxS  

and hypothyroxinemia [56], but a positive relationship was reported between PFOA and PFOS and 

current thyroid disease in adults from the U.S. using data from NHANES cycles 1999–2000 and  

2003–2006 [52]. 

Strengths of our study included analysis of serum T by HPLC-MS/MS, which provided greater 

sensitivity than commonly-used immunoassay-based methods [57] used in earlier NHANES cycles,  

a large sample size, and the first of its kind to explore the potential relationship between PFASs and T 

and stratify by age categories using the most recently available data from NHANES (which helped to 

identify sex-specific associations of PFASs with TSH among adolescents). Limitations included the 

cross-sectional study design, which limited conclusions of causality due to temporal ambiguity, the 

large number of comparisons made, which may have led to some significant findings due to chance 

alone, and the lack of data on free T and sex-hormone binding globulin, which precluded further 

statistical analyses. In addition, it is possible that our findings among the adults may be related to the 

age categories selected. As a sensitivity analysis, we reanalyzed the adult data using 20 to <50 and 50 

to 80 years old as the age cutoffs instead of 20 to <40, 40 to <60, and 60 to 80 years old and the results 

that we found in younger and older adults were similar in direction and magnitude as the original 

analysis (see Supplementary Materials Tables S3 and S4), which lends credibility to our original age 

strata. Because we chose not to use sampling weights in our analysis, the results may not be fully 

generalizable to males and females of the same age range from the general U.S. population. While 

others [24] adjusted their statistical models for iodine, we do not believe that our decision to not adjust 

for this variable confounded the observed relationships. In the age-sex strata in which we observed 

significant associations, Spearman correlations between relevant PFASs and creatinine-corrected urinary 

iodine were weak [median (range) of the absolute values: 0.05 (0.01–0.18)]. Thus, the possibility of 

residual confounding due to urinary iodine is limited. Furthermore, Spearman correlations between pairs 

of PFASs were moderately strong and positive [median (range): 0.62 (0.40–0.63)]. Therefore, 

confounding due to co-exposures to other PFASs, as well as other common environmental chemicals 

(e.g., polychlorinated biphenyls, phthalates, and flame retardants) that have been linked to altered 

thyroid function [58], cannot be ruled out. In addition, while we did not include time of blood sample 

collection as a covariate in our relevant models, both T [59] and TSH [60] have circadian variation in 

humans. However, because this covariate would only be associated with the outcome of interest and 

not the exposure, our approach should only reduce the precision of the effect estimates in our relevant 

models and not introduce any confounding bias. Lastly, it is possible that the associations observed in 

this study may be influenced by the interference of PFOS with serum binding proteins when using an 

analog method for FT4 determination, which has been shown to result in artificially decreased serum 

FT4 in rats highly exposed to PFOS [61]. However, the findings of this animal study were not 
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corroborated by a subsequent study conducted in a sample of U.S. adults [62]. Thus, any interference 

by PFOS on FT4 in our analysis is expected to be minimal. 

5. Conclusions 

The results from this study suggest that exposure to PFASs are associated with increased thyroid 

hormone levels in adult females. However, exposure to PFASs may exhibit sex-specific effects on 

TSH during adolescence. Future studies should consider the potential age- and sex-specific effects of 

PFASs on thyroid function as this will help to tease apart the identified relationships.  
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