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Abstract: In this paper, we introduce an alternative to Yuen’s test for the comparison of several
population trimmed means. This nonparametric ANOVA type test is based on the empirical likelihood
(EL) approach and extends the results for one population trimmed mean from Qin and Tsao (2002).
The results of our simulation study indicate that for skewed distributions, with and without variance
heterogeneity, Yuen’s test performs better than the new EL ANOVA test for trimmed means with
respect to control over the probability of a type I error. This finding is in contrast with our simulation
results for the comparison of means, where the EL ANOVA test for means performs better than
Welch’s heteroscedastic F test. The analysis of a real data example illustrates the use of Yuen’s test
and the new EL ANOVA test for trimmed means for different trimming levels. Based on the results of
our study, we recommend the use of Yuen’s test for situations involving the comparison of population
trimmed means between groups of interest.
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1. Introduction

The comparison of the means of several populations is frequently encountered in the statistical
analysis of data from environmental research and public health studies. Typically, ANOVA is used to
compare these means of interest, for example, for the comparison of means of blood lead levels between
groups of children receiving different interventions. Practical situations may involve complications
such as unbalanced designs (i.e., unequal sample sizes for the groups), variance heterogeneity, and
departures from normality. It may be the case, for instance, that the distributions underlying the
data from each group are truly heavy tailed or skewed, but it is also possible that such departures
from normality are due to few observations located away from the bulk of the data in the tails of the
distribution. It is well-known that the classical ANOVA F test cannot handle such violations of its
assumptions, and, as a consequence, it has problems controlling the probability of the type I error at
the specified nominal level. Heteroscedasticity and/or outliers can completely break down the results
of the ANOVA F test when not properly taken into account (see, for example, [1]). Given this limitation
of the ANOVA F test, there is a need for ANOVA type tests that are robust to both heteroscedasticity
and outliers.

A statistical test that satisfies these requirements is the test developed by Yuen [2], who proposed
a modified version of Welch’s heteroscedastic F test [3]. The latter test is designed to deal with
heteroscedasticity for normally distributed data, and it is using the sample means and sample variances

Int. J. Environ. Res. Public Health 2016, 13, 953; doi:10.3390/ijerph13100953 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 953 2 of 13

to estimate their population counterparts. Since the sample mean and the sample variance are not
robust to outliers, Yuen [2] proposed to replace them with a pair of robust estimators consisting of
the trimmed mean and the Winsorized variance. Such an approach provides a better control of the
probability of the type I error for one-way ANOVA situations involving unbalanced designs and
skewed distributions (see [4]). There are two important comments to be made. The first comment
is that the construction of Yuen’s test has a somewhat ad hoc nature, by replacing the least squares
estimators with robust versions. The second comment is that Yuen’s test is no longer a test for the
comparison of populations means, but, rather, it is a test to compare population trimmed means. It may
be preferable to make inferences regarding the population trimmed means rather than the population
means when the underlying distributions for the groups are skewed, since the trimmed means are
more representative for the bulk of the data in those situations [5].

In this paper, we present an alternative to Yuen’s test, a new nonparametric test that can be used
to compare several trimmed means based on the empirical likelihood (EL) approach to statistical
inference [6–8]. The EL method (see [9] for a detailed overview) is a popular nonparametric approach
that does not require normality (or other distributional assumptions) and can be regarded as a data
adaptive method. We develop an EL-based ANOVA test for the comparison of trimmed means
that takes advantage of the nonparametric nature of the EL approach, by extending the results of
Qin and Tsao [8] who introduced the EL method for a trimmed mean (see also the results from [10]).
All technical details regarding the tests considered in this paper (including the asymptotic results for
the new EL-based ANOVA for trimmed means) are provided in the Appendices A–D.

The paper is organized as follows. In Section 2, we present and interpret the results of a simulation
study that compares the performance of the EL-based ANOVA for trimmed means and means with
alternative methods under several scenarios involving skewed distributions. In Section 3, we analyze
a real data set using different types of tests for the comparison of population trimmed means and
population means. We end the paper by presenting conclusions in Section 4.

2. Simulation Study

For simplicity, we present only situations where we are interested in the comparison of
three population trimmed means or three population means (k = 3), while having samples of
equal sizes. We consider scenarios involving skewed distributions, with and without variance
heterogeneity. For the EL ANOVA for trimmed means, we consider only symmetric trimming, where
all samples are trimmed symmetrically. We note that, although we are primarily interested in the
performance of the tests for the comparison of trimmed means, EL ANOVA for trimmed means (panel
ELT) and Yuen’s test (panel Yuen); for completeness purposes, we are also including the results for
the tests for the comparison of means, specifically the classical ANOVA F test (panel F test), Welch’s
heteroscedastic F test for means (panel Welch), and the EL ANOVA for means (panel EL). For Welch’s
test and Yuen’s test, we have used the R function t1way (see Wilcox [11]). The R functions that provide
the implementation of the EL ANOVA methods for trimmed means and means are available from the
corresponding author upon request.

For the simulation study, we investigate the potential effect of the shape of the distributions on
the estimated probability of type I errors. We consider several skewed distributions with and without
variance heterogeneity. We use a simulation design similar to that from [5], where (trimmed) means
of only two independent skewed populations are compared. For the scenario with homogeneous
variances (scenario 1), we simulate data from three independent skewed distributions. We consider
the χ2

3 distribution, the lognormal distribution with normal mean µ = 0 and normal scale σ = 1, the
gamma distribution with shape parameter α = 2 and scale parameter σ = 1, and the skew-normal
distribution with location parameter ξ = 0, scale parameter ω = 1, and slant parameter α = 1 (see [12]).
For the scenario with heterogeneous variances (scenario 2), we further transform the data simulated
from the three independent skewed distributions as to have the ratios between variances to be either
1:4:9 or 1:1:36. To ensure that the relevant HT

0 of equal trimmed means or H0 of equal means are
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true, before altering the variances, we center the data using the theoretically determined trimmed
means (when using tests for the comparison of trimmed means) or means (when using tests for the
comparison of means). We use 10,000 Monte Carlo simulations to calculate the empirical probability of
type I errors for the tests performed at the nominal 0.05 significance level.

Table 1 presents the empirical probability of type I errors for the different tests for the situation
involving skewed distributions with homogeneous variances (scenario 1). Regarding the comparison
of trimmed means, the results for Yuen’s test are closer to the nominal significance level than those
for the EL ANOVA test for trimmed means. By contrast, among the tests that compare means, the
results of the EL ANOVA test for means are closest to the nominal significance level. Tables 2 and 3
present the corresponding results for the same tests for situations involving skewed distributions with
heterogeneous variances (scenario 2). We note that it is more difficult to control the probability of
a type I error when the ratios between variances are 1:1:36 than when they are 1:4:9. Similar to the
homogeneous variances scenario, the results for the heterogeneous variances scenario suggest that
Yuen’s test performs best among the tests for the comparison of trimmed means, while the EL ANOVA
test performs best among the tests for the comparison of means.

Table 1. Empirical probability of type I error for various tests for the equality of means and trimmed
means of three independent skewed distributions with homogeneous variances. For methods involving
trimmed means, symmetric trimming at level αi = βi = c, i = 1, 2, 3 is used.

χ2
3

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.047 0.076 0.052 0.050 0.079 0.050 0.080 0.049 0.090
30 0.048 0.070 0.054 0.054 0.055 0.053 0.075 0.054 0.079
40 0.044 0.062 0.052 0.049 0.063 0.048 0.063 0.050 0.069
50 0.048 0.058 0.049 0.046 0.047 0.047 0.060 0.049 0.067
100 0.049 0.055 0.051 0.050 0.056 0.050 0.056 0.049 0.056
200 0.051 0.055 0.053 0.050 0.053 0.051 0.053 0.051 0.056
500 0.051 0.049 0.049 0.048 0.050 0.050 0.051 0.051 0.052

Lognormal (µ = 0, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.044 0.073 0.047 0.040 0.069 0.040 0.070 0.040 0.081
30 0.045 0.069 0.050 0.048 0.049 0.046 0.068 0.046 0.072
40 0.044 0.063 0.049 0.046 0.062 0.046 0.062 0.045 0.066
50 0.045 0.065 0.054 0.049 0.048 0.047 0.059 0.046 0.062
100 0.049 0.059 0.055 0.049 0.055 0.049 0.057 0.049 0.057
200 0.050 0.053 0.050 0.045 0.048 0.046 0.049 0.048 0.052
500 0.051 0.053 0.052 0.051 0.052 0.050 0.050 0.052 0.054

Gamma (α = 2, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.052 0.078 0.050 0.050 0.077 0.052 0.079 0.052 0.096
30 0.049 0.069 0.053 0.052 0.053 0.050 0.070 0.052 0.080
40 0.050 0.062 0.052 0.052 0.064 0.052 0.067 0.053 0.074
50 0.050 0.060 0.051 0.048 0.048 0.050 0.062 0.052 0.069
100 0.052 0.057 0.052 0.051 0.057 0.050 0.056 0.048 0.056
200 0.052 0.056 0.053 0.052 0.055 0.053 0.055 0.052 0.055
500 0.049 0.052 0.051 0.050 0.051 0.049 0.051 0.051 0.052
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Table 1. Cont.

Skew-normal (ξ = 0, ω = 1, α = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.055 0.077 0.049 0.049 0.077 0.051 0.083 0.054 0.099
30 0.048 0.065 0.050 0.051 0.051 0.050 0.068 0.051 0.078
40 0.049 0.061 0.049 0.049 0.062 0.051 0.065 0.051 0.073
50 0.051 0.058 0.049 0.049 0.050 0.050 0.061 0.052 0.071
100 0.055 0.055 0.052 0.051 0.056 0.050 0.056 0.052 0.060
200 0.052 0.051 0.049 0.050 0.052 0.051 0.054 0.052 0.056
500 0.046 0.048 0.047 0.047 0.048 0.048 0.049 0.048 0.049

Table 2. Empirical probability of type I error for various tests for the equality of means and trimmed
means of three independent skewed distributions with the ratios between variances being 1:4:9.
For methods involving trimmed means, symmetric trimming at level αi = βi = c, i = 1, 2, 3 is used.

χ2
3

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.086 0.101 0.071 0.064 0.096 0.061 0.094 0.062 0.109
30 0.083 0.088 0.071 0.060 0.062 0.064 0.084 0.064 0.091
40 0.080 0.075 0.062 0.060 0.072 0.055 0.072 0.054 0.078
50 0.079 0.067 0.057 0.050 0.051 0.051 0.066 0.052 0.071
100 0.079 0.063 0.058 0.055 0.060 0.055 0.060 0.054 0.062
200 0.085 0.060 0.057 0.057 0.059 0.054 0.058 0.054 0.058
500 0.073 0.052 0.051 0.053 0.054 0.052 0.054 0.051 0.053

Lognormal (µ = 0, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.110 0.146 0.113 0.078 0.106 0.070 0.106 0.066 0.114
30 0.109 0.131 0.111 0.063 0.064 0.065 0.088 0.063 0.090
40 0.100 0.115 0.100 0.066 0.081 0.062 0.083 0.059 0.084
50 0.098 0.110 0.099 0.060 0.060 0.060 0.074 0.059 0.077
100 0.097 0.090 0.083 0.058 0.063 0.055 0.062 0.055 0.063
200 0.082 0.071 0.069 0.051 0.055 0.052 0.055 0.054 0.058
500 0.077 0.061 0.060 0.051 0.053 0.052 0.053 0.051 0.054

Gamma (α = 2, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.086 0.099 0.070 0.061 0.093 0.062 0.097 0.065 0.111
30 0.083 0.080 0.063 0.058 0.062 0.056 0.079 0.060 0.090
40 0.079 0.074 0.061 0.058 0.073 0.056 0.073 0.059 0.083
50 0.079 0.068 0.057 0.049 0.050 0.053 0.066 0.058 0.075
100 0.078 0.059 0.055 0.053 0.060 0.053 0.060 0.053 0.061
200 0.078 0.057 0.054 0.053 0.055 0.053 0.057 0.053 0.057
500 0.079 0.052 0.050 0.049 0.051 0.050 0.050 0.052 0.053
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Table 2. Cont.

Skew-normal (ξ = 0, ω = 1, α = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.080 0.079 0.048 0.048 0.081 0.052 0.085 0.054 0.106
30 0.075 0.069 0.050 0.051 0.054 0.053 0.073 0.057 0.085
40 0.080 0.060 0.049 0.050 0.064 0.050 0.069 0.053 0.075
50 0.076 0.060 0.050 0.050 0.051 0.051 0.064 0.053 0.073
100 0.079 0.053 0.049 0.048 0.054 0.048 0.055 0.051 0.059
200 0.078 0.054 0.051 0.051 0.054 0.051 0.054 0.052 0.056
500 0.075 0.049 0.047 0.048 0.049 0.048 0.049 0.048 0.049

Table 3. Empirical probability of type I error for various tests for the equality of means and trimmed
means of three independent skewed distributions with the ratios between variances being 1:1:36.
For methods involving trimmed means, symmetric trimming at level αi = βi = c, i = 1, 2, 3 is used.

χ2
3

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.124 0.090 0.067 0.059 0.087 0.056 0.088 0.056 0.102
30 0.119 0.080 0.064 0.056 0.058 0.058 0.078 0.058 0.086
40 0.116 0.070 0.058 0.055 0.067 0.053 0.067 0.052 0.072
50 0.112 0.063 0.052 0.048 0.049 0.051 0.063 0.052 0.069
100 0.111 0.061 0.055 0.053 0.059 0.051 0.058 0.050 0.058
200 0.113 0.059 0.056 0.054 0.057 0.053 0.056 0.052 0.056
500 0.102 0.053 0.053 0.053 0.054 0.050 0.052 0.050 0.052

Lognormal (µ = 0, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.168 0.126 0.101 0.071 0.095 0.062 0.095 0.058 0.103
30 0.166 0.118 0.098 0.055 0.056 0.060 0.081 0.057 0.084
40 0.153 0.104 0.089 0.060 0.076 0.061 0.077 0.057 0.080
50 0.148 0.095 0.086 0.052 0.053 0.056 0.068 0.055 0.072
100 0.136 0.080 0.075 0.054 0.061 0.053 0.062 0.054 0.061
200 0.119 0.064 0.062 0.050 0.054 0.049 0.052 0.051 0.055
500 0.112 0.056 0.055 0.052 0.053 0.050 0.051 0.052 0.054

Gamma (α = 2, σ = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.123 0.089 0.064 0.058 0.089 0.059 0.093 0.060 0.107
30 0.122 0.079 0.061 0.057 0.059 0.055 0.077 0.058 0.086
40 0.116 0.071 0.057 0.056 0.069 0.054 0.070 0.055 0.077
50 0.113 0.066 0.055 0.051 0.052 0.051 0.064 0.053 0.070
100 0.110 0.059 0.053 0.053 0.058 0.052 0.057 0.051 0.060
200 0.109 0.054 0.051 0.051 0.054 0.050 0.054 0.051 0.055
500 0.108 0.052 0.051 0.049 0.050 0.050 0.051 0.050 0.051

Skew-normal (ξ = 0, ω = 1, α = 1)

Trimming level

c = 5% c = 10% c = 20%

n F test Welch EL Yuen ELT Yuen ELT Yuen ELT

20 0.113 0.077 0.050 0.047 0.080 0.049 0.083 0.054 0.103
30 0.107 0.067 0.051 0.050 0.052 0.052 0.074 0.054 0.083
40 0.112 0.060 0.049 0.049 0.063 0.051 0.067 0.054 0.074
50 0.107 0.058 0.048 0.049 0.050 0.051 0.064 0.055 0.074
100 0.107 0.054 0.048 0.048 0.054 0.049 0.056 0.052 0.060
200 0.106 0.053 0.051 0.052 0.054 0.051 0.054 0.053 0.057
500 0.106 0.048 0.048 0.050 0.051 0.050 0.051 0.049 0.051
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3. Real Data Example

To illustrate the use of the EL ANOVA for trimmed means and means, we use the Oslo
Transect data set [13]. This real data set includes 360 observations corresponding to different plants
collected along a 120 km transect running through the city of Oslo, Norway. The concentrations of
25 chemical elements found in these plants were recorded together with factors that may influence
the mineral concentration. Except for not including two chemical elements, Au and Na, this data is
available within R package rrcov [14] as OsloTransect dataset. We analyze this dataset, and, thus, only
23 chemical elements are included in Table 4. To preserve the skewness of the data, we have also used
the raw data, as opposed to the log transformed data (as done in [13]). After removing the observations
with missing values, we are left with 332 observations. We consider the 23 concentrations of chemical
elements as the response variables, and the lithology as a group variable with four levels.

As for the simulation study, even though our main interest is in tests that compare population
trimmed means, for completeness purposes, we also provide the results from the tests that compare
population means. We consider three symmetric trimming strategies similar to those used in the
simulation study. The entries from Table 4 provide the p-values from the tests for the comparison
of population means and population trimmed means. We note that, for each trimming strategy,
the p-values from the EL ANOVA for trimmed means (panel ELT) and Yuen’s test (panel Yuen)
are very similar. In addition, the p-values from the EL ANOVA for means (panel EL) and Welch’s
heteroscedastic F test (panel Welch) are also very similar.

Table 4. p-values from tests of equality of means and trimmed means of 23 chemical element
concentrations in plants collected along the Oslo Transect ([13]). Symmetric trimming, αi = βi = c,
i = 1, . . . , 4.

Trimming Level

c = 5% c = 10% c = 20%

Element F Test Welch EL Yuen ELT Yuen ELT Yuen ELT

Ag 0.26 0.10 0.09 0.22 0.23 0.42 0.41 0.74 0.73
B 0.08 0.09 0.07 0.10 0.09 0.12 0.11 0.18 0.16
Ba 0.01 0.01 0.01 0.03 0.03 0.02 0.02 <0.01 <0.01
Ca 0.15 0.19 0.18 0.22 0.22 0.31 0.31 0.42 0.41
Cd 0.08 0.05 0.04 0.09 0.09 0.05 0.05 0.03 0.02
Co <0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cr 0.17 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cu 0.44 0.26 0.24 0.66 0.67 0.77 0.76 0.76 0.75
Fe 0.03 0.02 0.01 0.04 0.04 0.02 0.02 0.04 0.03
Hg 0.31 0.29 0.27 0.35 0.37 0.19 0.18 0.40 0.38
K 0.47 0.28 0.26 0.50 0.52 0.53 0.52 0.58 0.57
La 0.28 <0.01 <0.01 0.01 0.01 0.13 0.10 0.01 0.01
Mg 0.24 0.23 0.21 0.28 0.28 0.38 0.37 0.57 0.56
Mn <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Mo 0.02 <0.01 <0.01 0.02 0.02 0.04 0.03 0.17 0.15
Ni <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01
P 0.28 0.25 0.24 0.39 0.40 0.43 0.43 0.58 0.57
Pb 0.52 <0.01 <0.01 0.01 0.01 0.01 0.01 <0.01 <0.01
S 0.58 0.55 0.54 0.70 0.72 0.78 0.78 0.81 0.81
Sb 0.16 0.01 <0.01 0.21 0.22 0.19 0.19 0.25 0.20
Sr 0.14 0.07 0.06 0.18 0.19 0.22 0.22 0.10 0.09
Ti 0.01 0.01 <0.01 0.06 0.06 0.09 0.08 0.08 0.07
Zn 0.88 0.80 0.79 0.97 0.97 0.97 0.97 0.97 0.96

4. Conclusions

In this paper, we introduce a new nonparametric ANOVA type test for the comparison of
population trimmed means. Although the new method is derived from the general principles of
the empirical likelihood approach, versus the somewhat ad hoc nature of the derivation of Yuen’s
test from Welch’s heteroscedastic F test, the results of our simulation study in situations involving
skewed distributions indicate that, unless the sample sizes per group are very large, the new EL
ANOVA method for trimmed means performs worse than Yuen’s test with respect to control over the
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probability of a type I error. This is in contrast with our simulation results for the comparison of means,
where the EL ANOVA for means performs better than Welch’s heteroscedastic F test. The analysis of
the real data example provides similar p-values for the new EL ANOVA method for trimmed means
and the Yuen’s test for different trimming levels, and also similar p-values for the EL ANOVA and
Welch’s heteroscedastic F test.

Based on these results, we recommend the use of Yuen’s test for situations, where the research
question involves the comparison of population trimmed means between groups of interest. The choice
of the specific trimming strategy is an important and complex issue, since different trimming strategies
imply different null hypotheses being tested. As such, the selection of the trimming strategy should be
based on subject matter reasons that take into account what is known by the experts about the data
under investigation. Alternatively, in the absence of expert knowledge information, different trimming
strategies could be used to evaluate the sensitivity of the results to the choice of the trimming strategy.
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Appendix A. Statistical Tests Not Based on EL

Let Yi = (Yi1, Yi2, . . . , Yini ), i = 1, 2, . . . , k, be independent random samples from k different
distributions with population means µi. We are interested in testing the null hypothesis of equal
population means

H0 : µ1 = . . . = µk = µ. (A1)

Under the assumption of equal variances (homoscedasticity) and normally distributed data in
each group, i.e., Yij ∼ N(µi, σ), one can use the classical ANOVA F test

F =
∑k

i=1 ni(Ȳi· − Ȳ··)2/(k− 1)

∑k
i=1(ni − 1)s2

i /(N − k)
,

where

Ȳi· =
1
ni

ni

∑
j=1

Yij and s2
i =

1
ni − 1

ni

∑
j=1

(Yij − Ȳi·)
2

are the sample mean and sample variance of the i-th group, respectively, and

Ȳ·· =
k

∑
i=1

ni

∑
j=1

Yij/N

is the pooled sample mean. The null hypothesis in (A1) is rejected at level c, if F > Fc,k−1,N−k, where
Fc,k−1,N−k is the critical value based on the F distribution with k− 1 and N − k degrees of freedom.

Let us suppose now that Yij ∼ N(µi, σi) for i = 1, . . . , k. Welch’s heteroscedastic F test [3] is
designed to be robust to the violation of the assumption of equal group variances. The main difference
with the classical ANOVA F test is that the following weights are used:

wi =
ni

s2
i

.
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The Welch’s heteroscedastic F test statistics is defined by

FW = A ∑k
i=1 wi(Ȳi· − Ȳ′)2

k− 1
,

where

Ȳ′ = ∑k
i=1 wiȲi·

∑k
i=1 wi

,

A =

(
1 +

2(k− 2)
(k2 − 1)

k

∑
i=1

(
1

ni − 1

)(
1− wi

∑k
i=1 wi

)2
)−1

.

The null hypothesis (A1) is rejected at level c if FW ≥ Fc,k−1,νW , where

νW =

[
3

k2 − 1

k

∑
i=1

(
1

ni − 1

)(
1− wi

∑k
i=1 wi

)2]−1

.

Yuen’s test, i.e., the robust modification of Welch’s heteroscedastic F test, is designed to be
robust to departures from normality. The test is obtained by using the sample trimmed means and
Winsorized variances instead of the sample means and variances. Let Yi(1), Yi(2), . . . , Yi(ni)

denote
the order statistics for the ith sample. Let qi = [niαi] + 1 and ri = ni − [niβi], where 0 < αi < 1/2
and 0 < βi < 1/2 represent the proportion of observations trimmed from the left and from the
right tail of the distribution, respectively, and [x] denotes the largest integer less than or equal to x.
Then, mi = ni − [niαi] − [niβi] represents the effective sample size after trimming and the sample
trimmed mean of the ith group is defined as

Ȳαβi =
1

mi

ri

∑
j=qi

Yi(j) .

Let Wij represent the new observations after replacing the trimmed observations in the lower and
upper tails with the lowest and highest untrimmed values of the sample, i.e.,

Wij =


Yi(qi)

, Yij ≤ Yi(qi)
,

Yij, Yi(qi)
< Yij < Yi(ri)

,

Yi(ri)
, Yij ≥ Yi(ri)

.

The sample Winsorized variance for the i-th group is computed as

s2
wi =

∑ni
j=1(Wij − Ȳwi)

2

ni − 1
,

where

Ȳwi =
1
n

ni

∑
j=1

Wij.

Yuen’s test statistics is given by

FYT = AT
∑k

i=1 wiT(Ȳαβi − Ỹ)2

k− 1
,

where

wiT =
mi(mi − 1)
(ni − 1)s2

wi
,
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Ỹ =
∑k

i=1 wiTȲαβi

∑k
i=1 wiT

,

and

AT =

(
1 +

2(k− 2)
(k2 − 1)

k

∑
i=1

(
1

mi − 1

)(
1− wiT

∑k
i=1 wiT

)2
)−1

.

The null hypothesis of equal (trimmed) means is rejected at level c if FYT ≥ Fc,k−1,νYT , where

νYT =

[
3

k2 − 1

k

∑
i=1

(
1

mi − 1

)(
1− wiT

∑k
i=1 wiT

)2]−1

.

Note that this test reduces to Welch’s heteroscedastic F test when there is no trimming.

Appendix B. EL-Based ANOVA for Means

Let Fi denote a candidate for the true unknown distribution Fi0 and vij = Fi{Yij} denote the
jump of Fi at {Yij}. The EL for the i-th sample is L(Fi) = ∏ni

j=1 vij and corresponds to a multinomial
distribution defined on the i-th sample by attaching a weight vij to each Yij. The weights vij = vij(µi)

satisfy the conditions

1. vij ≥ 0;

2. ∑ni
j=1 vij = 1;

3. ∑ni
j=1 vijYij = µi.

The function L(Fi) attains its maximum value when vij = n−1
i . Similar to the classical approach

based on the parametric likelihood, the profile EL ratio function is defined as

R(µi) = sup
vij

{
ni

∏
j=1

nivij,
ni

∑
j=1

vij = 1,
ni

∑
j=1

vij(Yij − µi) = 0

}
.

For an ANOVA model, Owen ([15]) defined the k-sample EL as the product of k group specific
empirical likelihoods. Therefore, given the k samples, the profile EL ratio function can be defined
as follows:

R(µ) =
k

∏
i=1

Ri(µ) = sup
vij

{ k

∏
i=1

ni

∏
j=1

nivij :
ni

∑
j=1

vij = 1,
ni

∑
j=1

vij(Yij − µ) = 0
}

, (B1)

where vij = vij(µ). Under the null hypothesis (A1), the k − 1 contrasts between means are
constrained to be zero, and if µ = µ0 + O(n−1/2

0 ), where µ0 is the true unknown common mean and
n0 = min1≤i≤k ni, then

− 2 log max
µ

R(µ) =
k

∑
i=1

wi(Ȳi· − Ȳ)2 + Op(n−1/2
0 )

d−→ χ2
(k−1) (B2)

as n0 → ∞, where Ȳi· is the sample mean for the i-th sample, Ȳ is the common mean estimator

Ȳ =
∑k

i=1 Ȳi·wi

∑k
i=1 wi

,

and the weights wi are inverse proportional with the sample variances S2
i , i.e.,

wi =
ni

S2
i

.
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It is important to note that EL-based ANOVA is robust to heteroscedasticity (see [16]).

Appendix C. EL for the Trimmed Mean

In a one sample situation, let Y1, Y2, . . . , Yn be independent identically distributed with Y1 ∼ F0

and let Y(1), Y(2), . . . , Y(n) be the respective order statistics. Let q = [nα] + 1 and r = n− [nβ], where
0 < α < 1/2 and 0 < β < 1/2, represent the proportion of observations trimmed from the left and right
tails, respectively, and [x] denotes the largest integer less than or equal to x. Then, m = n− [nα]− [nβ]

is the effective sample size after trimming. Let weights pj = 0 for j < q and j > r, pj ≥ 0 for q ≤ j ≤ r,
and ∑r

j=q pj = 1. Then, the profile EL ratio function for the trimmed sample is defined as

R(µαβ) = sup
pj

{ r

∏
j=q

mpj : pj ≥ 0,
r

∑
j=q

pj = 1,
r

∑
j=q

pjY(j) = µαβ

}
.

Theorem C1. (Qin and Tsao, [8]) Let µ0
αβ be the true value of µαβ. Assume F0 is continuous, F′0(ξα) > 0 and

F′0(ξβ) > 0. Then,

−2a log R(µαβ)
d−→ χ2

1,

where
a = σ2

αβ/((1− α− β)τ2
αβ),

σ2
αβ =

1
(1− α− β)

∫ ξ1−β

ξα

y2dF0(y)− µ2
αβ,

τ2
αβ =

1
(1− α− β)2 ((1− α− β)σ2

αβ + β(1− β)(ξ1−β − µαβ)
2

−2αβ(ξα − µαβ)(ξ1−β − µαβ) + α(1− α)(ξα − µαβ)
2).

The unknown scaling constant a can be estimated consistently via â = σ̂2
αβ/((1− α− β)τ̂2

αβ), where

σ̂2
αβ =

1
(1− α− β)

∫ ξ̂1−β

ξ̂α

y2dFn(y)− Ȳ2
αβ,

τ̂2
αβ =

1
(1− α− β)2 ((1− α− β)σ̂2

αβ + β(1− β)(ξ̂1−β − Ȳαβ)
2

−2αβ(ξ̂α − Ȳαβ)(ξ̂1−β − Ȳαβ) + α(1− α)(ξ̂α − Ȳαβ)
2),

where ξ̂p = inf{y : Fn(y) ≥ p} for any 0 < p < 1, and Fn(y) is the empirical distribution function.

Appendix D. EL-Based ANOVA for Trimmed Means

The ELRT (B2) is still sensitive to outliers. Following the approach from [8], one could develop
a version of (B2) with trimmed means. The main result stated in [8] is given in Appendix C.

Let Yi(1), Yi(2), . . . , Yi(ni)
denote the ordered i-th sample, set qi = [niαi] + 1 and ri = ni − [niβi],

where 0 < αi < 1/2 and 0 < βi < 1/2 represent the proportion of observations trimmed from
the left and the right tails, respectively, and [x] denotes the largest integer less than or equal to x.
Then, mi = ni − [niαi]− [niβi] is the effective sample size after trimming in each group. The group
specific trimmed means and variances are
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Ȳαβi =
1

mi

ri

∑
j=qi

Yi(j),

S2
αβi = m−1

i

ri

∑
j=qi

(Yi(j) − Ȳαβi)
2.

Similar to (B1), define the profile EL ratio function over the trimmed samples, that is, as if the mi
observations in each sample are independent, i.e.,

R(µαβ) =
k

∏
i=1

Ri(µαβi) = sup
vij

{
k

∏
i=1

ri

∏
j=qi

mivij,
ri

∑
j=qi

vij = 1,
r1

∑
j=q1

vij(Yi(j) − µαβ) = 0

}
. (D1)

It is important to note that the weights are no longer a function of the common population mean
but of the common population trimmed mean, that is vij = vij(µαβ). As a consequence, we will obtain
an ELRT for a different null hypothesis claiming the equality of population trimmed means (see [8,10]),
that is

HT
0 : µαβ1 = µαβ2 = . . . = µαβk = µαβ . (D2)

When the underlying distribution of the data in each group is symmetric, the two hypotheses (A1)
and (D2) are equivalent if symmetric trimming is performed. This equivalence does not hold for
skewed distributions, for which it may be preferable to compare trimmed means rather than means [5].
The following result holds.

Theorem D1. Let µαβ0 be the common population trimmed mean. Assume that Fi0 is continuous,
F′i0(ξα) > 0 and F′i0(ξβ) > 0 for each i = 1, . . . , k. If µαβi = µαβ0 + Op(m−1/2

0 ), i = 1, 2 . . . , k,
where m0 = min1≤i≤k mi, then

− 2
k

∑
i=1

ai max
µ

log Ri(µαβ) =
k

∑
i=1

aiwαβi(Ȳαβi − Ȳαβ)
2 + Op(m−1/2

0 )
d−→ χ2

(k−1), (D3)

where

Ȳαβ =
∑k

i=1 Ȳαβiwαβi

∑k
i=1 wαβi

+ op(m−1/2
0 ),

wαβi =
mi

S2
αβi

,

and the scaling factors are given by

ai = σ2
αβi/((1− αi − βi)τ

2
αβi) . (D4)

The quantities σ2
αβi and τ2

αβi for the ith trimmed sample are defined in Appendix C.

Proof. By a Lagrange multiplier argument, it can be shown (see, for example, [9]), that the
vij, i = 1, 2, . . . , k that maximize R(µαβ) are given by

vij =
1

mi(1 + λi(Yi(j) − µαβ))
, j = qi, . . . , ri, (D5)

where the Lagrange multiplier λi is the solution to

ri

∑
j=qi

Yi(j) − µαβ

1 + λi(Yi(j) − µαβ)
= 0,
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and

λi =
Ȳαβi − µαβ

1
mi

∑ri
j=qi

(Yi(j) − µαβ)2
+ op(m−1/2

i ).

Then, by substituting vij from (D5) in the expression (D1), we obtain

−2 log R(µαβ) = 2
k

∑
i=1

ri

∑
j=qi

log(1 + λi(Yi(j) − µαβ)).

The maximum empirical likelihood estimator Ȳαβ is the solution to ∂R(µαβ)/∂µαβ = 0:

∂R(µαβ)

∂µαβ
= −

k

∑
i=1

ri

∑
j=qi

(
∂λi

∂µαβ
(Yi(j) − µαβ)− λi

)(
1 + λi(Yi(j) − µαβ)

)−1
=

k

∑
i=1

miλi.

It follows that Ȳαβ satisfies

k

∑
i=1

mi(Ȳαβi − µαβ)

m−1
i ∑ri

j=qi
(Yij − µαβ)2

= op(
√

m0),

and expression (D3) follows. Since, according to Theorem C1, for each of the trimmed samples
i = 1, . . . , k and true value µ0

αβ,

−2ai log Ri(µ
0
αβ)

d−→ χ2
1,

then, summing over the groups, we prove the result stated in (D3), by using the same arguments
leading to the result stated in (B2).
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