## A qPCR-based tool to diagnose the presence of harmful cyanobacteria and cyanotoxins in drinking

## water sources

Yi-Ting Chiu<sup>1</sup>, Yi-Hsuan Chen<sup>1</sup>, Ting-Shaun Wang<sup>1</sup>, Hung-Kai Yen<sup>2</sup> and Tsair-Fuh Lin<sup>1,\*</sup>

## Captions

- Figure S1 Locations of the studied reservoirs: (a) 10 studied reservoirs in Taiwan, (b) 9 studied reservoirs in Matsu, and (c) 10 studied reservoirs in Kinmen. The Hsin-Shan Reservoir (HSR), Shih-Men Reservoir (SMR), Bao-Shan Reservoir (BSR), Bao-Shan Second Reservoir (BSSR), Liyutan Reservoir (LYTR), Lan-Tan Reservoir (LTR), Nan-Hua Reservoir (NHR), Agongdian Reservoir (AGDR), and Fong-Shan Reservoir (FSR) in Taiwan; the Hou-Wo Reservoir (HWR), Chu-Shui-Wo Lower Dam (CSWLD), Chu-Shui-Wo Upper Dam (CSWUD), Jin-Sha Reservoir (JSR-M), First Jin-Sha Reservoir (FJSR), Sheng-Li Reservoir (SLR), Tsair-Pu-Wo Reservoir (TPWR), Le-Dao-Wo Reservoir (LDWR), and Jhu-Luo Reservoir (JLR) in Matsu; the Rong-Hu Reservoir (RHR), Jin-Sha Reservoir (JSR-K), Tian-Pu Reservoir (TPR), Lan-Hu Reservoir (LingHR), Ling-Hu Reservoir (LingHR), Yang-Ming-Hu Reservoir (YMHR), Xi-Hu Reservoir (XHR), Jin-Hu Reservoir (JHR), and Tai-Hu Reservoir (THR) in Kinmen.
- Figure S2 Tests of inhibition on gene detection caused by different amounts of standard DNA using gel electrophoresis, where M represents the DNA marker, N represents the negative control, P5R5, P3R5 and P6R3 represent the concentration of *pks* gene and *rpo*C1 gene with 2 replicates, respectively (P5R5 =  $10^5$  and  $10^5$ ; P3R5 =  $10^3$  and  $10^5$ ; P6R3 =  $10^6$  and  $10^3$ ). (a) is for the duplex qPCR system with primer and probe sets of *pks* gene and *rpo*C1 gene; (b) is for the duplex qPCR system with primer sets of *pks* gene and *rpo*C1 gene (without probes).
- Figure S3 The relationship between cell enumeration measured with microscopy and gene copy number with qPCR, where (a) is for 16S rRNA gene, (b) is for *mcyB* gene, and (c) is for *rpo*C1 gene. Error bars represent standard deviation of 2 replicates.

Table S1 – Detailed information of oligonucleotides.

Table S2 - Monitoring results of Microcystis and microcystins for the samples collected from Tai-Hu

Reservoir (THR).

- Table S3 Monitoring results of *Cylindrospermopsis* and cylindrospermopsin for the samples collected from Tai-Hu Reservoir (THR).
- Table S4 The influence of primer concentration on the inhibition of gene detection.
- Table S5 Correlation between MCs/CYN concentrations and cell equivalents.

| Table S1 – | Detailed | informatio | on of ol | ligonucle | otides |
|------------|----------|------------|----------|-----------|--------|
|            |          |            |          | 0         |        |

| Primer/Probe name                                                       | Sequence (5'-3')                      | product size<br>(bp) | Detection limit<br>(This study) | References                |
|-------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------------------|---------------------------|
| Potentially-toxigenic <i>Microcystis</i> cell equivalents (mcyB region) |                                       |                      |                                 |                           |
| mcyB#04F                                                                | TGTGGAGTCTATTTATCCTCTTTCC             | 95                   | $4.8 \times 10^{1}$             | Yen et al. 2012           |
| mcyB#04R                                                                | GAGTTTGACTACAATAAATCCCTGAAT           |                      | cell equivalents/mL             | Yen et al. 2012           |
| mcyB#04                                                                 | FAM/CAGGAAGGGATGCTCTTTCA/BHQ_1        |                      |                                 | Yen et al. 2012           |
| Total Microcyctis cell                                                  | equivalents (16S rRNA region)         |                      |                                 |                           |
| Micr184F                                                                | GCCGCRAGGTGAAAMCTAA                   | 247                  | $2.6 \times 10^{2}$             | Rinta-Kanto et al. 2005   |
| Micr431R                                                                | AATCCAAARACCTTCCTCCC                  |                      | cell equivalents/mL             | Rinta-Kanto et al. 2005   |
| Micr228                                                                 | Cy3/AAGAGCTTGCGTCTGATTAGCTAGT/BHQ_2   |                      |                                 | Rinta-Kanto et al. 2005   |
| Total Cylindrospermo                                                    | psis cell equivalents (rpoC1 region)  |                      |                                 |                           |
| cyl2                                                                    | GGCATTCCTAGTTATATTGCCATACTA           | 308                  | $1.0 \times 10^{2}$             | Wilson et al., 2000       |
| cyl4                                                                    | GCCCGTTTTTGTCCCTTTGCTGC               |                      | cell equivalents/mL             | Wilson et al., 2000       |
| rpoC1                                                                   | Cy5/TCCTGGTAATGCTGACACACTCG/BHQ_2     |                      |                                 | Rasmussen et al., 2008    |
| Cylindrospermopsin-                                                     | producing gene (pks region)           |                      |                                 |                           |
| m4                                                                      | GAAGCTCTGGAATCCGGTAA                  | 422                  | $5.0 \times 10^{2}$             | Schembri et al., 2001     |
| k18                                                                     | CCTCGCACATAGCCATTTGC                  |                      | copies/mL                       | Fergusson and Saint, 2003 |
| pks                                                                     | TexasRed/CGGCAGCAACACTCACATCAGT/BHQ_2 |                      |                                 | Rasmussen et al., 2008    |



Figure S1 – Locations of the studied reservoirs: (a) 10 studied reservoirs in Taiwan, (b) 9 studied reservoirs in Matsu, and (c) 10 studied reservoirs in Kinmen. The Hsin-Shan Reservoir (HSR), Shih-Men Reservoir (SMR), Bao-Shan Reservoir (BSR), Bao-Shan Second Reservoir (BSSR), Liyutan Reservoir (LYTR), Lan-Tan Reservoir (LTR), Nan-Hua Reservoir (NHR), Agongdian Reservoir (AGDR), and Fong-Shan Reservoir (FSR) in Taiwan; the Hou-Wo Reservoir (HWR), Chu-Shui-Wo Lower Dam (CSWLD), Chu-Shui-Wo Upper Dam (CSWUD), Jin-Sha Reservoir (JSR-M), First Jin-Sha Reservoir (FJSR), Sheng-Li Reservoir (SLR), Tsair-Pu-Wo Reservoir (TPWR), Le-Dao-Wo Reservoir (LDWR), and Jhu-Luo Reservoir (JLR) in Matsu; the Rong-Hu Reservoir (RHR), Jin-Sha Reservoir (JSR-K), Tian-Pu Reservoir (TPR), Lan-Hu Reservoir (LHR), Lian-Hu Reservoir (LingHR), Yang-Ming-Hu Reservoir (YMHR), Xi-Hu Reservoir (XHR), Jin-Hu Reservoir (JHR), and Tai-Hu Reservoir (THR) in Kinmen.

| Samples | Da   | ate  | Unij<br>(Ct v              | plex<br>alue) | Duj<br>(Ct v  | plex<br>value) | MCs<br>concentration<br>(µg/L) |
|---------|------|------|----------------------------|---------------|---------------|----------------|--------------------------------|
|         |      |      | тсуВ                       | 16S rRNA      | mcyB          | 16S rRNA       | ~ <b>-</b> /                   |
|         | 2013 | Feb. | 36.99 (±0.12) <sup>a</sup> | 37.52 (±0.17) | 36.41 (±0.17) | 37.10 (±0.27)  |                                |
|         |      | May  | 34.93 (±0.07)              | 34.02 (±0.02) | 35.06 (±0.17) | 34.64 (±0.06)  | 0.37                           |
|         |      | Aug. | <sup>b</sup>               | 36.07 (±0.05) |               | 34.67 (±0.06)  |                                |
|         |      | Nov. | 32.78 (±0.03)              | 29.99 (±0.05) | 32.93 (±0.20) | 28.90 (±0.09)  | 0.63                           |
|         | 2014 | Mar. |                            |               |               |                |                                |
|         |      | May  | 35.37 (±0.25)              | 34.49 (±0.25) | 35.50 (±0.15) | 33.50 (±0.19)  | 0.15                           |
| THR     |      | July | 33.57 (±0.02)              | 30.29 (±0.17) | 33.50 (±0.18) | 29.23 (±0.06)  | 0.52                           |
|         |      | Dec. | 36.48 (±0.44)              | 35.12 (±0.01) | 36.76 (±0.17) | 33.78 (±0.02)  |                                |
|         | 2015 | Mar. |                            | 37.33 (±0.10) |               | 36.11 (±0.16)  |                                |
|         |      | Jun. | 35.68 (±0.19)              | 35.93 (±0.15) | 35.82 (±0.29) | 34.54 (±0.08)  | 1.15                           |
|         |      | Aug. |                            | 36.43 (±0.12) |               | 35.18 (±0.05)  | 0.21                           |
|         | 2016 | May  | 29.97 (±0.19)              | 27.20 (±0.16) | 29.99 (±0.23) | 26.30 (±0.33)  |                                |
|         |      | Aug. | 34.92 (±0.05)              | 35.03 (±0.12) | 34.98 (±0.06) | 33.75 (±0.06)  | 0.37                           |

Table S2 – Monitoring results of *Microcystis* and microcystins for the samples collected from Tai-Hu Reservoir (THR).

<sup>a</sup>() represents standard deviation of 2 replicates.

 $^{b}$  represents the result < detection limit (Table S1 (SI)).

|         |      |      | Uni           | plex          | Duj           | olex          | CYN           |
|---------|------|------|---------------|---------------|---------------|---------------|---------------|
| Samples | Da   | ate  | (Ct value)    |               | (Ct value)    |               | concentration |
|         |      |      | pks           | rpoC1         | pks           | rpoC1         | $(\mu g/L)$   |
|         | 2013 | Feb. | 38.64 (±0.14) | 27.41 (±0.10) |               | 28.48 (±0.06) | 0.65          |
|         |      | May  | 36.18 (±0.21) | 31.51 (±0.18) | 35.64 (±0.38) | 32.64 (±0.05) | 1.49          |
|         |      | Aug. | 35.78 (±0.11) | 32.58 (±0.52) | 35.16 (±0.17) | 33.74 (±0.20) | 1.72          |
|         |      | Nov. | 37.13 (±0.17) | 28.27 (±0.17) |               | 29.26 (±0.05) | 1.89          |
|         | 2014 | Mar. | 35.68 (±0.15) | 25.91 (±0.05) |               | 27.10 (±0.04) | 2.18          |
|         |      | May  | 33.39 (±0.11) | 28.87 (±0.42) | 32.73 (±0.07) | 30.08 (±0.18) | 3.01          |
| THR     |      | July |               |               |               |               |               |
|         |      | Dec. |               | 31.10 (±0.24) |               | 32.20 (±0.07) | 0.16          |
|         | 2015 | Mar. |               | 35.05 (±0.04) |               | 35.84 (±0.16) | 0.51          |
|         |      | Jun. |               | 30.38 (±0.09) |               | 31.36 (±0.04) | 0.52          |
|         |      | Aug. |               | 32.07 (±0.06) |               | 33.07 (±0.13) |               |
|         | 2016 | May  |               |               |               |               |               |
|         |      | Aug. | 34.34 (±0.15) | 32.07 (±0.19) | 33.68 (±0.11) | 33.27 (±0.14) | 0.79          |

Table S3 – Monitoring results of *Cylindrospermopsis* and cylindrospermopsin for the samples collected from Tai-Hu Reservoir (THR).

<sup>a</sup>() represents standard deviation of 2 replicates.

<sup>b</sup>- represents the result < detection limit (Table S1 (SI)).



Figure S2 – Tests of inhibition on gene detection caused by different amounts of standard DNA using gel electrophoresis, where M represents the DNA marker, N represents the negative control, P5R5, P3R5 and P6R3 represent the concentration of *pks* gene and *rpo*C1 gene with 2 replicates, respectively (P5R5 =  $10^5$  and  $10^5$ ; P3R5 =  $10^3$  and  $10^5$ ; P6R3 =  $10^6$  and  $10^3$ ). (a) is for the duplex qPCR system with primer and probe sets of *pks* gene and *rpo*C1 gene; (b) is for the duplex qPCR system with primer sets of *pks* gene and *rpo*C1 gene (without probes).

Table S4 – The influence of primer concentration on the inhibition of gene detection.

| Drimer concentration      | Duplex                 |                |  |
|---------------------------|------------------------|----------------|--|
|                           | pks gene               | rpoC1 gene     |  |
| 0.1 μM P6+R3 <sup>3</sup> | $21.71 \ (\pm 0.02)^1$ | - <sup>2</sup> |  |
| 0.1 µM P3+R5              | -                      | 26.45 (±0.11)  |  |
| 0.2 μM P6+R3              | 21.55 (±0.11)          | -              |  |
| 0.2 μM P3+R5              | -                      | 26.51 (±0.13)  |  |
| 0.3 µM P6+R3              | 21.79 (±0.42)          | -              |  |
| 0.3 μM P3+R5              | -                      | 26.65 (±0.18)  |  |
| 0.4 µM P6+R3              | 22.07 (±0.01)          | -              |  |
| 0.4 µM P3+R5              | -                      | 26.92 (±0.10)  |  |

<sup>1</sup> () represents standard deviation of 2 replicates;  $^2$  – represents the result < detection limit (Table S1 (SM)).

<sup>3</sup> P6R3 represent the concentration of *pks* gene and *rpo*C1 gene, respectively (P6R3 =  $10^6$  and  $10^3$ ).



Figure S3 – The relationship between cell enumeration measured with microscopy and gene copy number with qPCR, where (a) is for 16S rRNA gene, (b) is for mcyB gene, and (c) is for rpoC1 gene. Error bars represent standard deviation of 2 replicates.

| Sample location                 | Data size | Correlation                 | e                    | $\mathbb{R}^2$ | Pearson     |
|---------------------------------|-----------|-----------------------------|----------------------|----------------|-------------|
|                                 | Dutu 5120 | Conclution                  |                      | R              | Correlation |
|                                 | 44        | cell abundance vs 16S rDNA: | y = 0.750 + 0.741 x  | 0.749          | 0.786**     |
| Toiwon main island <sup>a</sup> | 22        | MCs vs <i>mcy</i> B:        | y = -0.661 + 0.381 x | 0.690          | 0.831**     |
| Talwali ilialii Islaliu         | 7         | cell abundance vs rpoC1:    | y = 0.667 + 0.861 x  | 0.777          | 0.881**     |
|                                 | 6         | CYN vs <i>pks</i> :         | y = -0.285 + 0.183 x | 0.618          | 0.786*      |
|                                 | 86        | cell abundance vs 16S rDNA: | y = 1.070 + 0.710 x  | 0.769          | 0.877**     |
| Kinmon islands <sup>b</sup>     | 38        | MCs vs <i>mcy</i> B:        | y = -0.650 + 0.354 x | 0.731          | 0.855**     |
| KIIIIICII ISIailus              | 91        | cell abundance vs rpoC1:    | y = 1.753 + 0.638 x  | 0.528          | 0.727**     |
|                                 | 43        | CYN vs <i>pks</i> :         | y = -0.059 + 0.109 x | 0.224          | 0.474**     |
|                                 | 43        | cell abundance vs 16S rDNA: | y = 1.515 + 0.605 x  | 0.566          | 0.753**     |
| Matau ialanda <sup>c</sup>      | 27        | MCs vs <i>mcy</i> B:        | y = -0.842 + 0.444 x | 0.620          | 0.788**     |
| Matsu Islands                   | 11        | cell abundance vs rpoC1:    | y = 0.513 + 0.814 x  | 0.792          | 0.890**     |
|                                 | 4         | CYN vs <i>pks</i> :         | y = -0.232 + 0.172 x | 0.880          | 0.938*      |
| All data <sup>d</sup>           | 173       | cell abundance vs 16S rDNA: | y = 1.002 + 0.713 x  | 0.740          | 0.860**     |
|                                 | 87        | MCs vs <i>mcy</i> B:        | y = -0.671 + 0.374 x | 0.683          | 0.827**     |
|                                 | 109       | cell abundance vs rpoC1:    | y = 1.169 + 0.753 x  | 0.659          | 0.812**     |
|                                 | 53        | CYN vs pks:                 | y = -0.157 + 0.142 x | 0.392          | 0.626**     |

| $1000 \text{ s}^{-1}$ | Table S5 – Correlation between MCs/CYN concentrations and | d cell | equivalen |
|-----------------------|-----------------------------------------------------------|--------|-----------|
|-----------------------|-----------------------------------------------------------|--------|-----------|

a the data sizes were collected from 10 drinking water reservoirs (DWRs) in Taiwan main island.

b the data sizes were collected from 10 DWRs in Kinmen islands.

c the data sizes were collected from 9 DWRs in Matsu islands.

d the data sizes were collected from 29 studied DWRs in three areas.

e y is log(cell abundance/toxin concentration+1) and x is log(cell equivalents/gene copy+1).

\* the pearson correlation is significant at the 0.1 level (2-tailed).

\*\* the pearson correlation is significant at the 0.01 level (2-tailed).