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Abstract: The use of solid biomass fuels in cookstoves has been associated with chronic health impacts
that disproportionately affect women worldwide. Solid fuel stoves that use wood, plant matter, and
cow dung are commonly used for household cooking in rural Bangladesh. This study investigates the
immediate effects of acute elevated cookstove emission exposures on pulmonary function. Pulmonary
function was measured with spirometry before and during cooking to assess changes in respiratory
function during exposure to cookstove emissions for 15 females ages 18–65. Cookstove emissions were
characterized using continuous measurements of particulate matter (PM2.5—aerodynamic diameter
<2.5 µm) concentrations at a 1 s time resolution for each household. Several case studies were observed
where women ≥40 years who had been cooking for ≥25 years suffered from severe pulmonary
impairment. Forced expiratory volume in one second over forced vital capacity (FEV1/FVC) was
found to moderately decline (p = 0.06) during cooking versus non-cooking in the study cohort.
The study found a significant (α < 0.05) negative association between 3- and 10-min maximum
PM2.5 emissions during cooking and lung function measurements of forced vital capacity (FVC),
forced expiratory volume in one second (FEV1), and FEV1/FVC obtained during cooking intervals.
This study found that exposure to biomass burning emissions from solid fuel stoves- associated with
acute elevated PM2.5 concentrations- leads to a decrease in pulmonary function, although further
research is needed to ascertain the prolonged (e.g., daily, for multiple years) impacts of acute PM2.5

exposure on immediate and sustained respiratory impairment.

Keywords: biofuel emissions; cookstove; particulate matter; lung function; chronic obstructive
pulmonary disease; spirometry; South Asia
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1. Introduction

The burning of biomass fuels including wood, charcoal, and animal dung in open fire stoves
results in incomplete combustion, leading to emissions of particulate matter (PM), carbon monoxide,
hydrocarbons, oxygenated organics, free radicals, and chlorinated organics [1]. Organic carbon makes
up approximately 50% of all fine particulate mass emitted from biomass burning in cookstoves [2].
Worldwide, it is estimated that 50% of households and 90% of rural households use biomass fuel and
coal as a major source of energy [3]. Open fire cookstoves using biofuels have shown to emit as much
as 73% more PM2.5 (particulate matter with aerodynamic diameter <2.5 µm) than improved stoves
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incorporating a ventilation system [4]. Thus, the burning of biomass fuels significantly contributes to
elevated indoor air pollution (IAP) concentrations.

IAP associated with cookstoves has been linked to several health complications including low
birth weight, cardiovascular disease, tuberculosis, cataracts, and other respiratory complications [5].
According to the World Health Organization, stroke, ischemic heart disease, and chronic obstructive
pulmonary disorder (COPD) account for more than 80% of the 4.3 million IAP related deaths per
year [6]. Of the 2.7 million deaths per year attributable to COPD, 700,000 deaths (over one third) are
related to IAP exposure [6]. A survey of households utilizing open fire cookstoves and burning solid
fuels in India found about one third of all adults and half of all children experienced symptoms of
respiratory illness in the past 30 days [7].

IAP disproportionately affects women and children, as they typically spend more time in the
home and cooking meals [8]. Women in rural environments tend to spend several hours preparing
and cooking meals for their families. For example, in rural Mexico, women spend 2 to 4 h a day in
close proximity to the stove preparing tortillas [9]. Thus, women and the children they care for have
an increased risk for respiratory illnesses. For example, acute respiratory infection (ARI) prevalence
due to wood and charcoal stoves has been found to be as high as 32% for women and 64% for children
in Sierra Leone [10].

Pulmonary function tests, such as spirometry, are commonly used to assess functional aspects
of pulmonary health. A study in India found a significant decline in air flow limitation based on
forced expiratory volume in one second (FEV1) in women cooking with biomass fuels compared to
women utilizing cleaner fuels for cooking [11]. Evaluation of respiratory function between subgroups
of women exposed to biomass fuels revealed that animal dung is associated with reductions in FEV1
over forced vital capacity (FEV1/FVC), an indicator of airflow limitation used in the diagnosis of
COPD [12,13]. Compared to women using gas stoves, those who use biomass fuels self-reported more
phlegm production and were found to have reduced FEV1/FVC, 89.9% vs. 79.9% respectively [14].
Clark et al. [4] found that women self-reported fewer respiratory symptoms such as coughing, phlegm,
and wheezing when switching to improved stoves.

The residents of the Naria subdistrict in rural Bangladesh primarily use animal dung, plant matter,
and wood for cookstove fuel. Similar biomass fuels were collected from the Dhaka marketplace and
used for characterization of organic aerosols in a previous study [2]. Since animal dung and plant
matter are prominent sources of low quality fuel (i.e., high polluting) [15], it is crucial to examine health
impacts of the use of these rudimentary fuels in order to promote healthier alternatives. Previous
studies have established that respiratory illnesses are associated with household air pollution, but this
proposed study extends knowledge of this association by (1) assessing the possibility of real- time,
‘rapid-onset’ pulmonary deficits during exposure to biomass smoke; (2) evaluating pulmonary deficits
in relation to exposure metrics of particulate matter concentrations via real-time aerosol monitoring;
and (3) quantifying the increased magnitude of PM2.5 concentrations during cooking after adjusting
for baseline ambient concentrations.

2. Materials and Methods

Recruitment was conducted through word of mouth and inviting random households throughout
the adjacent villages to participate in the study. Women ages 18–65 who stated they were primarily
responsible for cooking for the household (inclusion criteria) were invited to participate in the study.
Our team intended to recruit women from the general population living in the Naria community, with
the awareness that enrolled participants may have pre-existing respiratory illnesses, but due to the lack
of access to medical care, many of these cases would be undiagnosed. With the exception of participant
8 (who had sought medical care in Dhaka and was diagnosed with asthma) no other participant had
been formally diagnosed with respiratory illnesses, although many complained of chronic respiratory
symptoms. Participants received information about the study and provided written consent. As part
of the consent process, participants were told why the study was being conducted, what they would be
asked to do if they chose to participate, and that they could terminate their participation at any time.



Int. J. Environ. Res. Public Health 2017, 14, 641 3 of 15

For each household, a survey was conducted by the fieldwork team with the assistance of a
Bengali translator. The Bengali translators studied English at a college level and were trained by
Duwell International [16]. Surveys were administered in both English and Bengali even though most
residents were illiterate in Bengali. Therefore, surveys were read to participants and their responses
were recorded in Bengali by the translator and simultaneously in English by a field team member.
The survey included information such as family demographics, education, cooking habits, pulmonary
health, overall health, and smoking habits to account for confounding factors. Participants were asked
to numerically rank the frequency of pulmonary symptoms such as dyspnea, coughing, sputum, and
wheezing, from ‘never’ to ‘very often’. Cooking habits were evaluated to determine fuel type, oil type,
frequency of cooking meat, and whether participants attempted to avoid smoke. Other questions
evaluated the amount of time spent outdoors and whether participants believed there to be substances
in the environment that were harmful.

The study was conducted in accordance with the requirements of the Code of Federal Regulations
and the Protection of Human Subjects (45 CFR 46 and 21 CFR 50 ad 56). The protocol was
reviewed and approved by the University of Nevada Reno Institutional Review Board (IRB
#653688) and the Bangladesh Medical Research Council National Research Ethic Committee (Ref:
BMRC/NREC/2015-2018/186).

2.1. Spirometry

Lung function was measured using the Pony FX Spirometer (Cosmed USA, Chicago, IL, USA).
Specifically, lung function measurements of FEV1, FVC, FEV1 over FVC ratio (“Tiffeneau-Pinelli
Index”), and peak expiratory flow (PEF) were recorded. In consideration of the cultural norms
of the community, participant spirometry measurements were obtained by a single trained female
field member, with the assistance of a translator. The field member sat facing the participant and
coached participants on the use of the spirometer by demonstrating proper pulmonary function testing
technique using a spare disposable expiratory tube. Following a training bout to ensure reproducibility
of measurements, participants were first tested while not cooking (>2 h post cooking), and then
tested a second time while cooking (30–60 min of smoke exposure). For each spirometry period
(non-cooking and cooking), the three most reproducible spirometry bouts were recorded and used for
analysis (i.e., the average of the three reproducible bouts for each participant was used for analysis).
Reproducible and acceptable tests were determined by measurements of FEV1 and FVC within 5% (or
150 mL) of the two largest maneuvers [17,18]. Participants were (1) tested approximately 2–3 h after
cessation of cooking to obtain baseline measurements and (2) tested a second time about 30–60 min into
smoke exposure while cooking. By first testing participants before cooking, we were able to account
for bias, since spirometry performance is more likely to improve with practice [19]. Improvement in
lung function while exposed to smoke may be attributed to improvement with spirometry training.

An a priori power analysis (G*Power v3.1) was conducted which indicated a projected nominal
sample size of 54 subjects to discern a statistically significant effect of biomass exposure on
FEV1/FVC [4,11,12]. Due to time constraints, cultural, and language barriers, the efficiency and
confidence of the pilot study was decreased, restricting the sample size to 15 participants, with only
12 participants having reasonably acceptable spirometry readings and sufficient smoke exposure.
Therefore, significant (α ≤ 0.05) cooking pulmonary function changes at the study cohort level were
not observed, although a moderately significant decline in FEV1/FVC during cooking was determined
(p = 0.06). Analysis of decrements of FEV1/FVC, FEV1, and FVC during cooking versus non-cooking
were performed using a paired one-sided t-test. The average of the three repeated measurements
for each participant before cooking and during cooking were calculated and then all qualifying
paired measurements (n = 12) were included in the analysis. Proportion of predicted FVC and FEV1
measurements used for indoor air pollution (IAP) regression analysis were calculated using the average
of the three repeated pulmonary measurements obtained during cooking. Proportion of predicted
FVC and FEV1 adjusted for age, height, gender, and ethnicity [20], allowing for inter-participant
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pulmonary function comparisons with respect to PM2.5 exposure. Ethnicity was selected as ‘other’
since the formulas calculated excluded the Indian subcontinent due to variation between data sets
collected and analyzed by Quanjer et al. [20].

2.2. Air Quality Measurements

For each participant household, a DustTrak 8520 aerosol monitor (TSI Inc., Shoreview, MN,
USA) was placed near the cookstove while not in use and again during the burning of biomass fuels
(during the afternoon cooking period) to obtain baseline and cooking IAP measurements. All but
one participant (who stated she cooked three times a day) reported cooking exclusively during the
morning and afternoon, with the afternoon cooking session being the longest. Participants reported the
daily time spent cooking each day ranged from 1.5 to 4.5 h, with the average being 2.5 h, and the mode
(7 participants) reporting cooking 3 h per day. Therefore, cooking habits across the community appear
to be similar, allowing for emission exposure comparisons between participants. Aerosol monitors
were placed on a stool to maintain consistent height between households and while effort was made to
also keep the proximity to the stove consistent, this was not always possible. Therefore, the distance of
the monitors from the stove was measured to account for variability in the data from different homes.
The DustTrak monitors were programmed to sample PM2.5 mass concentrations at a one second time
resolution. Additionally, fuel type, shelter ventilation, and movement near the stove were noted by the
fieldwork team during the sampling.

Filter based PM2.5 mass concentration measurements were not available to calibrate the DustTrak
data for aerosol from biomass combustion. Since the DustTrak monitors are an aerosol optical counter
and the mass concentrations from the instrument are calibrated for Arizona Dust [21] the mass
concentrations measured in this study cannot be used in a quantitative manner. Therefore, air
quality measurements presented in this work are normalized to determine the IAP during cooking
time periods.

Indoor air pollution metrics (IAPcooking, in the equation below) were calculated as a function of
baseline and ambient concentrations to minimize bias associated with using two aerosol monitors
(allowing IAP in two homes to be monitored simultaneously) and allow for comparison between
all homes in the study. Post processing steps were performed to average the 1-s data and estimate
exposure metrics for cooking. Specifically, 3- and 10-min maximum values were obtained by calculating
a running mean of the 1-s data collected during cooking using 3- and 10-min sliding window averages.
The maximum average for the respective running means were selected and used as the maximum
value, or exposure metric for IAP associated with cooking. The 10-min baseline average was acquired
using a 10-min sliding average for the 1-s data collected during non-cooking, then a total average was
calculated from the sliding averages. To normalize the air quality data from each home, individual
exposure metrics were calculated as the 3-min maximum and 10-min maximum PM2.5 (µg/m3) minus
10-min average baseline. An additional normalization step was used to present the exposure metrics as
a function of ambient concentrations. To do this, the exposure metrics are expressed as a multiplicative
increase of the average baseline concentrations (10-min non-cooking averages) from all 15 homes
(i.e., ambient concentration):

IAPcooking =
3 (or 10) min max PM2.5 during cooking (individ.home)−10 min avgbaseline PM2.5, no cooking (individ.home)

average of all households 10 min avg baseline PM2.5 (ambient) (1)

3. Results

As shown in Table 1, the study acquired complete spirometry, air quality and survey data for
15 participants. Of those 15 participants, one participant was under the age of 20, six were between the
ages of 21–39, and eight were over the age of 40. Three participants had been cooking for less than a
year, six participants had been cooking for 10–25 years, and six participants had been cooking for more
than 25 years. 60% of participants utilized a combination of all three biomass fuel types (cow dung,
plant matter, and wood), 80% of all participants utilized cow dung, and 20% utilized wood only. Plant
matter was defined as any combination of rice straw, dry leaves, crop residue, and twigs.
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Table 1. Demographics and characteristics of participating homes.

Demographics Measured
Non-Cooking *** IAP

Variability

Measured Cooking
IAP Level

Lung Function Decrements

While Cooking

Subj/Home Age Years
Cooking

Fuels
Utilized

Ventilation
Class

**** % FEV1/FVC † FEV1 FEV1% Change

Baseline Differences
between Homes 3′ Max 10′ Max

Non-Cooking Cooking Non-CookingCooking
(

Avgcook−Avgnoncook

Avgnoncook

)
* 100

Average (Standard Deviation), n = 3

1 18 2–3 days W high −0.02 2.6 1.9 NA NA NA NA NA
2 60 30 CD, PM, W low 0.09 27.9 19.7 91.50 (0.42) 67.7 (5.37) 1.39 (0.03) 0.12 (0.11) −91.11
4 21 4–5 months CD, PM, W low 0.09 NA NA 85.33 (4.16) 83.97 (2.33) 2.02 (0.21) 2.24 (0.10) 11.06
5 25 14 CD, PM, W medium 0.08 15.4 6.1 88.03 (0.96) 85.43 (1.82) 2.12 (0.11) 2.01 (0.05) −5.04
6 30 15 CD, W medium −0.05 9 3.8 84.87 (3.07) 84.10 (0.30) 2.44 (0.06) 2.30 (0.06) −6.00
8 40 30 W ** high 0.01 2.9 1.3 70.00 (1.20) 70.23 (1.43) 0.95 (0.02) 0.95 (0.04) 0.35

9A 25 2–3 months CD, PM, W high 0.01 15 12.2 86.00 (10.06) 73.87 (3.65) 2.20 (0.32) 1.95 (0.15) −11.36
9B 50 30 CD, PM, W high 0.01 15 12.2 NA NA NA NA NA
10 30 16 CD, PM, W low −0.25 16.4 9.3 88.83 (1.40) 88.77 (0.75) 1.98 (0.03) 1.85 (0.24) −6.41
11 50 38 CD, PM, W medium −0.11 9.1 3.6 88.70 (1.47) 87.57 (1.54) 1.57 (0.07) 1.70 (0.08) 8.07
12 45 25 CD, PM, W high −0.04 1.4 1.1 91.07 (2.44) 92.83 (3.20) 2.11 (0.02) 2.17 (0.03) 3.16
14 50 34 CD, W * low 0.04 26.4 11.7 71.13 (1.33) 72.80 (0.44) 0.76 (0.03) 0.74 (0.01) −2.20
15 55 43 CD, PM, W medium 0.08 17.3 7.6 NA NA NA NA NA
16 35 12 CD, PM medium 0.06 4.6 2.6 99.23 (0.49) 96.40 (1.48) 2.21 (0.03) 2.23 (0.04) 0.75
17 50 25 W medium 0.00 4.8 3.1 89.43 (0.46) 88.53 (1.19) 2.22 (0.04) 2.27 (0.02) 2.25

† Moderate significant decline during cooking via paired one-sided t-test (p = 0.06). CD: Cow Dung; PM: Plant Matter; W: Wood; * Fire started with oil; ** Wood chips/shavings; *** Indoor
Air Pollution (IAP) Variability calculated as subject baseline 10 min average—Average all baseline 10 min averages.**** Forced expiratory volume in one second over forced vital capacity
(FEV1/FVC) expressed as a percent.
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Additionally, waste such as paper and plastic wrappers were observed to be mixed into the
plant matter and used as cookstove fuel. Cow dung was molded onto wooden sticks and set outside
to dry; cow dung sticks and other materials such as plant matter were then placed in ground level
traditional stoves as shown in Figure 1. Typically, depending on the season and availability of fuel
sources, households would use the fuels they could forage. The cooking areas were separate from
the main house and primarily constructed from bamboo, straw, burlap cloth, and tin. Ventilation
varied from large cooking areas with open ventilation (e.g., minimal wind cover, straw construction)
to small areas with limited ventilation (e.g., fully enclosed room with roof, tin construction), and one
participant’s home had a chimney on their cookstove. Survey data was completed for 17 participants,
but spirometry and air quality data were not obtained for two participants due to cultural barriers and
illness. Of the women surveyed, 8 of 17 (47%) attempted to avoid the smoke during cooking, mainly
by covering their face with a sari (one participant had a chimney). As shown in Table 2, the most
common symptoms encountered during cooking were difficulty breathing (29.4%) and coughing
(17.6%). No participants reported smoking tobacco products, but 47% of women (mostly 40 years and
older) reported chewing betel leaves.
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Figure 1. Typical cookstove fuels in rural Bangladesh: (left) Cow dung sticks, (middle) Stove burning
cow dung, and (right) Stove burning plant matter.

Table 2. Survey-reported health issues.

General Symptoms Encountered While Cooking Cardiorespiratory Symptoms

Symptom Prevalence (%) Symptom Prevalence (%)
difficulty breathing 29 ever chest pain 53

coughing 18 chest pain walking uphill 53
wheezing 12 chest pain walking level 29
headache 12 severe chest pain >30′ 29
phlegm 6 shortness of breath 41

watery eyes 6
N = 17

3.1. Air Quality Measurements

Although quantitative measurements cannot be reported for the PM2.5 mass concentrations from
this study, qualitative comparisons in PM2.5 concentrations between cooking and non-cooking time
periods and different households can be investigated using the normalized PM2.5 metrics. Ventilation
appeared to be a primary factor contributing to near-stove PM2.5 loads. As shown in Figure 2 ventilation
was qualitatively grouped as low, medium, or high based on number of sides covered, presence or
absence of roof, and materials used for shelter. The air exchange rate in each kitchen area was not
measured and these types of measurements should be considered in future work. Low ventilation
was categorized as a small area where airflow was constricted by certain materials such as tin, versus
straw or wood, used for shelter walls, see Figure 3a. Medium ventilation was defined as having three
sides and a roof, which was observed to be the typical cooking shelter (46%); see Figure 3b. High
ventilation was defined when cooking areas contained less sides and used materials that allowed for
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greater air flow such as straw walls, see Figure 3c. Home 9 was defined as having high ventilation
because the stove contained a chimney, see Figure 3d. However, as shown in Figure 2, Home 9 had
the highest concentrations of PM2.5 compared to other homes with high ventilation. This finding is
important because it suggests that when chimneys are not constructed properly they may not increase
ventilation, but rather restrict airflow or negatively impact the air/fuel ratio for efficient combustion
leading to increased PM2.5 concentrations.
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As shown in Figure 4a–c time series PM2.5 concentration patterns varied depending on the type
of biomass fuel used. Acute, elevated spikes in PM2.5 were observed when plant matter was burned.
Stoves that utilized cow dung were observed to have elevated PM2.5, but average instantaneous peak
height was lower than plant matter peaks and longer in duration, indicative of the slower-burning
nature of this fuel source. The different behavior of the time series PM2.5 concentrations for the
different biomass fuels is expected because the fuels have different energy densities. The energy
density difference leads to different burning characteristics for the fuels, and therefore different
emissions factors [22]. Not only are the total emissions for the different fuels expected to be different,
the behavior of the emissions factor for each fuel type is also a function of time [23]. Both are indicative
of variation in fuel type energy content, consistent with different ‘energy ladder’ rankings—where less
energy-dense fuels do not burn as cleanly, and have increased emissions rates. Quantification of IAP
emission profile as a function of time is critical in the effort to determine the health impacts associated
with cookstove emissions because acute, elevated peaks may be related to harmful exposures that are
generally unrepresented in long-term averaged IAP data (e.g., 1-h averages and greater).
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3.2. Pulmonary Health

Three participants were excluded from the pulmonary health analysis due to insufficient smoke
exposure (1 and 9B) and unsatisfactory technique during the first spirometry bout (15). Twelve
qualifying participants were included in the pulmonary health analysis. Significant non-cooking
and cooking pulmonary function changes were not observed, although a moderately significant
decline in FEV1/FVC at the study cohort level during cooking, compared to the paired non-cooking
spirometry bout was observed (p = 0.06). Decline in FEV1/FVC during cooking coincides with
previous findings of FEV1/FVC decline in women using dung for biomass fuel [12], and is indicative
of airflow limitation, used in the diagnosis of COPD [13]. Decline in FEV1 and FVC during cooking
were non-significant (p = 0.15 and p = 0.26, respectively). Factors that attributed to non-significance
include but are not limited to: small sample size, time constraints, cultural and language barriers,
participants’ unfamiliarity with spirometry, inaccuracy in using spirometry, and improvement during
the second bout of spirometry testing while cooking. However, as shown in Table 1, over a third
(42%) of qualifying participants displayed decrements in FEV1 greater than 5% following acute smoke
exposure, with participant 2 have the most severe decrement (91%). The Pony FX Spirometer diagnosed
two participants (8 and 14) as having ‘severe impairment’ (FEV1 < 50% predicted) both while not
cooking and during cooking. One participant (2) displayed a major decrement in lung function while
cooking and was therefore diagnosed as having very severe impairment (FEV1 < 30% predicted)
during her second test. All three women who suffered from ‘severe to very severe impairment’ were
40 years and older and had been cooking for more than 25 years.

As indicated in Figure 5, air quality measurements were compared to average lung function values
measured for each qualifying participant (n = 11) using linear regression to quantify the relationship
between increased IAPcooking and decreased lung function [24]. Participant 4 was excluded from the
linear regression due to discrepancies between recorded PM2.5 data and cooking observations noted by
the field research team. For this home, PM2.5 concentrations were about 74 and 29 times the ambient
for the 3-min and 10-min maximum, respectively, which is not realistic based on visual observations,
therefore it is likely that the instrument was tampered with during sampling. PM2.5 concentrations
during cooking in all homes included in the regression ranged from 2 to 29 times ambient levels
and 2 to 21 times ambient levels for 3- and 10-min maxima, respectively. IAPcooking values that were
further adjusted for background PM2.5 levels and used in the regression ranged from 1.4 to 27.9
for 3-min maximum and 1.1 to 19.7 for 10-min maximum. For comparison, measured IAPcooking
loads were also regressed against observed lung function measurements expressed as a percent of
predicted pulmonary function parameters, adjusted for age, height, gender, and ethnicity [20]. 3- and
10-min maximum IAPcooking measurements were significantly associated (α < 0.05) with instantaneous
decrements in average and percent of predicted values of FEV1 and FVC (Table 3). Effect estimates for
the ‘measured model’ regressions forecast decrements of 60 to 130 mL FVC, 50 to 100 mL FEV1, and 0.6
to 1.15% FEV1/FVC for each unitary increase in IAPcooking. Effect estimates for the ‘predicted model’
regressions forecast decrements of 1.8 to 2.6% FVC, 2.0 to 3.1% FEV1, and 0.6–1.0% FEV1/FVC for each
unitary increase in IAPcooking. These findings demonstrate that changes in pulmonary function are
likely occurring due to acute high PM2.5 exposure to biomass fuel emissions.
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Figure 5. (a–h). Linear fits and regressions of PM2.5 levels against measured and % predicted
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Table 3. ANOVA analyses of linear fit regressions †.

Model Measurement Pearson’s R Adj. R Square F Value Prob>F EE *

Measured (a) 10 min max PM2.5 v FVC −0.866 0.729 36.00 0.00006 −0.13
% Predicted (a) 10 min max PM2.5 v FVC −0.605 0.313 6.92 0.01 −2.64
Measured (b) 3 min max PM2.5 v FVC −0.886 0.767 43.90 0.00002 −0.06

% Predicted (b) 3 min max PM2.5 v FVC −0.620 0.333 7.49 0.02 −1.75
Measured (c) 10 min max PM2.5 v FEV1 −0.813 0.632 23.34 0.0004 −0.11

% Predicted (c) 10 min max PM2.5 v FEV1 −0.663 0.393 9.17 0.01 −3.06
Measured (d) 3 min max PM2.5 v FEV1 −0.936 0.865 84.48 <0.00001 −0.05

% Predicted (d) 3 min max PM2.5 v FEV1 −0.663 0.393 9.41 0.01 −1.99
Measured (e) 10 min max PM2.5 v FEV1/FVC −0.667 0.399 9.63 0.009 −1.15

% Predicted (g) 10 min max PM2.5 v FEV1/FVC −0.510 0.198 4.22 0.06 −0.98
Measured (f) 3 min max PM2.5 v FEV1/FVC −0.749 0.525 15.36 0.002 −0.60

% Predicted (h) 3 min max PM2.5 v FEV1/FVC −0.487 0.173 3.72 0.08 −0.60

* EE = Effect Estimate derived from slope factor (percent or mL pulmonary function change per unit increase in
IAPcooking). † n = 11 for all ANOVA analyses.

4. Discussion

Our study found a moderately significant FEV1/FVC decline during cooking (p = 0.06) when
compared to paired non-cooking spirometry bouts in the study cohort, despite an insufficient sample
size. This is consistent with previous studies that have found an association between the use of biomass
fuels used for cooking and a decline in FEV1/FVC function [12,14], although this is the first study to
our knowledge that has evaluated instantaneous declines in FEV1/FVC during biomass fuel cookstove
exposure in a rural region located in a developing country.

Over one third of our study cohort complained of respiratory symptoms (e.g., cough, phlegm,
difficulty breathing) during cooking, consistent with another study conducted in India [7]. The daily
amount of time spent cooking, or exposure time period of solid fuel stove emissions, in our study was
similar to daily cooking durations reported in other studies. For example, a cohort of women in rural
Mexico reported cooking 2–4 h a day [9], which is reflective of our study cohort’s reported average
cooking time of 2.5 h. Although our study did not find a significant decline in FEV1 while cooking
when compared to non-cooking (p = 0.15), a significant negative association between IAPcooking and
FEV1 during cooking is reflective of Bihari et al.’s findings of diminished FEV1 function associated
with biomass burning emissions [11].

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) standard of FEV1/FVC < 0.70
for obstructive disorders has been implemented as an epidemiological principle by the Burden of
Obstructive Lung Disease (BOLD) initiative and the Latin-American Project for the Investigation
of Pulmonary Obstruction (PLATINO) [25]. Participants 2 and 8 had an FEV1/FVC ratio at or less
than 0.70 (0.68 and 0.70, respectively) and participant 14 had an FEV1/FVC of 0.73. In addition, all
three participants had a predicted FEV1 of less than 0.50, demonstrating GOLD III severe COPD [13].
The combination of higher FEV1/FVC ratios with very low FEV1 predicted values may be explained
by consideration of the following two phenomena: FEV1/FVC ratios can be overestimated due to
failure of a subset of participants to completely express FVC [25], and very low FEV1 predicted values
may be partially explained by the idea that Asian Indian, Polynesian and Mongoloid people have
comparatively smaller lung compacities compared to other ethnic groups [26]. Since there has yet to
be an accurate prediction model for the Indian subcontinent, our prediction values were adjusted for
‘other’ ethnicity [20]. Therefore, prediction models may overestimate FVC and underestimate FEV1,
thereby decreasing the ‘percent of predicted’ performance of study participants; this observation may
partially explain the discrepancy in significance between measured and predicted regressions of 3- and
10-min-maximum PM2.5 vs. FEV1/FVC (Table 3). These issues warrant further attention due to the
intensity of IAP exposure on the Indian subcontinent and the importance of the FEV1/FVC ratio as a
classifier of COPD status.

Chronic obstructive pulmonary disorder (COPD) is a persistent disorder in which an individual
has dyspnea, chronic cough or sputum production, and a history of exposure to risk factors, such as
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smoke from home cooking and heating fuels [13]. Although we were not able to diagnose participants
as having chronic obstructive disorder, there is evidence that a few participants suffered from chronic
pulmonary illness. Three women (2, 8, and 14) in particular had notably depleted lung function. Of the
three women, two (8 and 14) displayed ‘severe impairment’ (FEV1 < 50%) both while not cooking and
cooking. This is indicative of a chronic problem. We observed another case in which one participant (2)
displayed normal spirometry while not cooking, but ‘very severe impairment’ (FEV1 < 30%) while
cooking. This particular case was also found to have an extraordinarily enclosed area (i.e., small ceiling
height ~1.5 m, fully enclosed, with a roof and a door for entry) with noticeably more smoke where the
3-min maximum PM2.5 concentrations during cooking were 27.9 times the ambient concentrations.
Based on survey results, all three women complained of persistent pulmonary health complications
including difficulty breathing, coughing, and phlegm production.

Since this was a pilot study, there were several factors that decreased the study’s confidence and
efficiency. Cultural and language factors became barriers that contributed to a decreased sample size.
Researchers quickly found that women who participated in the study did not like to be interrupted
while they were tediously preparing meals for their families. Spirometry also posed a challenge for
the women, as most had never experienced such a device. Ensuring the women were comfortable
and encouraging them to exhale with force was critical in receiving satisfactory results. Performing
spirometry in a clinical setting with a female doctor present could increase the comfort level of
participants. Unfortunately, the study did not have the means to calibrate the aerosol data due
to difficulties with filters and humidity affecting the aerosol monitors. Obstacles identified while
conducting the field work can contribute to the modification and improvement of future studies.
Future collection of filter-based PM2.5 mass measurements to calibrate aerosol data will allow for
PM2.5 concentrations to be compared quantitatively and related to the World Health Organization
standards [27].

5. Conclusions

This pilot study found that exposure to biomass burning emissions from solid fuel stoves,
associated with acute elevated PM2.5 concentrations, leads to a decrease in pulmonary function,
although further research is needed to decipher prolonged (daily for multiple years) acute PM2.5

exposure impacts on immediate and sustained respiratory impairment. Our study was unable to
determine whether pulmonary deficits associated with acute elevated PM2.5 are instantaneous, chronic,
or a combination of both, which we now believe the prior to be true based on our findings. Older
women who had been cooking for more than 25 years displayed signs and complained of symptoms
associated with chronic respiratory illness. A few younger participants experienced decrements
in pulmonary function only while cooking, illustrating signs of acute pulmonary suppression that
could later develop into chronic pulmonary deficits. It would be helpful for future work to decipher
physiological impacts of acute elevated PM exposure on those who do and do not display symptoms
of chronic respiratory illness.

Significant regression trends between suppressed pulmonary function and increased IAP, and
further significant association between increased IAP and ventilation demonstrates the importance
of adequate ventilation in areas with cookstoves. Future studies should consider effective and
culturally-accepted techniques to increase ventilation and decrease exposure in order to improve
quality of life and working conditions for rural Bengali women.

The nonexistent regulation of healthcare providers in Bangladesh will continue to impact the
quality of care Bengalis receive. ‘Village doctors’ may practice allopathic and alternative care including
faith-healing which can be ineffective and possibly harmful to patients [28]. One woman in this study
told of her struggle to seek treatment for her pulmonary illness. She had visited a doctor and was
diagnosed with asthma and given a bronchodilator to help relieve the symptoms. Her pulmonary
health complications were severe enough that she traveled to Dhaka to seek quality health care, but
found no relief for her symptoms. She continues to suffer and does not find the bronchodilator inhaler
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to be sufficient. Our suspicion is that she was misdiagnosed, and is likely suffering from COPD. It is
unfortunate to know the residents of Bangladesh do not have access to the proper healthcare they
desperately need. Not to mention, healthcare is tremendously difficult to obtain due to poverty.

The University of Nevada, Reno School of Medicine continues to collaborate with Duwell
International to provide the residents of Naria with quality care. Future work such as holding
education sessions discussing the health impacts of burning biomass fuels could increase awareness
and improve respiratory health outcomes. Although it may not be feasible for the residents to switch to
cleaner fuels due to finances, suggesting ways to avoid smoke exposure and increase ventilation would
be a step forward. Additionally, it is critical to educate women on the hazards of exposing children
to cookstove smoke. We observed several cases in which the women carry babies while cooking in
front of the stove. During the field study we also observed that many children 12 months and younger
were given cough suppressants to relieve respiratory symptoms. Although mothers complained of
their children suffering from colds and even cases of pneumonia, they did not appear to associate
their children’s pulmonary illness with cookstove smoke. Future opportunities for medical residents
to gain experience abroad can provide women and children suffering from pulmonary illness the
proper care that otherwise may not be accessible. Community involvement on a multitude of levels
can be mutually beneficial by improving (1) local knowledge of health related issues and (2) the public
perception of the research community [29].
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