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Abstract: This research analyzed the relationship between extreme heat and Emergency Medical
Service (EMS) calls in King County, WA, USA between 2007 and 2012, including the effect of
community-level characteristics. Extreme heat thresholds for the Basic Life Support (BLS) data and
the Advanced Life Support (ALS) data were found using a piecewise generalized linear model with
Akaike Information Criterion (AIC). The association between heat exposure and EMS call rates was
investigated using a generalized estimating equations with Poisson mean model, while adjusting for
community-level indicators of poverty, impervious surface, and elderly population (65+). In addition,
we examined the effect modifications of these community-level factors. Extreme-heat thresholds of
31.1 ◦C and 33.5 ◦C humidex were determined for the BLS and ALS data, respectively. After adjusting
for other variables in the model, increased BLS call volume was significantly associated with occurring
on a heat day (relative rate (RR) = 1.080, p < 0.001), as well as in locations with higher percent poverty
(RR = 1.066, p < 0.001). No significant effect modification was identified for the BLS data on a heat
day. Controlling for other variables, higher ALS call volume was found to be significantly associated
with a heat day (RR = 1.067, p < 0.001), as well as in locations with higher percent impervious surface
(RR = 1.015, p = 0.039), higher percent of the population 65 years or older (RR = 1.057, p = 0.005),
and higher percent poverty (RR = 1.041, p = 0.016). Furthermore, percent poverty and impervious
surface were found to significantly modify the relative rate of ALS call volumes between a heat day
and non-heat day. We conclude that EMS call volume increases significantly on a heat day compared
to non-heat day for both call types. While this study shows that there is some effect modification
between the community-level variables and call volume on a heat day, further research is necessary.
Our findings also suggest that with adequate power, spatially refined analyses may not be necessary
to accurately estimate the extreme-heat effect on health.

Keywords: extreme heat; climate change; emergency medical service calls; ambulance calls;
community-level characteristics

1. Introduction

According to the United States Climate and Health Assessment [1], the US annual average
temperatures are predicted to rise at least 1.7 ◦C by the end of the century with chances of a
5.6 ◦C increase depending on many factors such as future emissions of greenhouse gases. With this
temperature increase, will come more frequent and intense heat waves along with harmful effects
to human health. Scientists predict for every doubling of carbon dioxide, it is likely that there will
be a 1.9 to 4.5 ◦C increase in temperature [2,3]. Sherwood and Huber [4], argued a global mean
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increase of 7 ◦C would limit the habitability of certain regions in the world because areas exposed
to 35 ◦C for extended periods of time will induce hyperthermia due the inability for dissipation
of metabolic heat to occur. Extreme heat makes it difficult for the body to regulate its internal
temperature increasing the potential for illnesses such as heatstroke and heat exhaustion along with
negative consequences on chronic cardiovascular disease, respiratory disease and diabetes-related
conditions [1]. As climate change increases global temperatures, an increase in heat-related morbidity
and mortality is reasonably expected.

There are many studies that have analyzed the relationship between extreme heat and morbidity
and mortality; nearly all have concluded that extreme heat is associated with increased risk of death,
hospitalizations, and other illnesses, especially illnesses related to the cardiovascular and respiratory
systems [5–7]. Furthermore, researchers have observed increased emergency medical service call
volumes during heat events [8–13]. Bassil et al. [11] concluded, on average, there was a 16% increase in
heat related illness calls for every one point increase in humidex. Dolney and Sheridan [12] calculated
a 10% increase in ambulance calls on heat days compared to non-heat days. Additionally, Dolney
and Sheridan [12] observed spatial variations in call volumes; the urban core experienced the greatest
increase in call counts, while industrial and recreational areas had the greatest percent call volume
increases on hot days.

Many environmental factors can influence heat burden in the general population. Environmental
factors which influence local temperatures include buildings, open space, population density, normalized
vegetation index (NDVI), vegetation, impervious surface, bare soil, and water proximity [14–21].
Vegetation and NDVI are strongly correlated with ground and air temperature [14,22–26]. As a result,
increased vegetation is also associated with decreased heat stress and heat-related deaths [24,27,28].
More specifically, Elaisson and Svensson [29] used both environmental factors and weather patterns
to find that on cloudy days, altitude and percent impervious surfaces/build-up were the two most
important environmental factors explaining temperature variations, while on clear, calm days, distance
from water explained most of the temperature variation, with sky-view factor, percent impervious
surfaces, and percent vegetation as additional important factors.

Studies have also demonstrated that socioeconomic factors contribute to heat burden inequity.
The highest extreme heat-related morbidity and mortality occur in cities and upon marginalized
groups such as the poor, minority and elderly populations [30–33]. Socioeconomic factors associated
with heat mortality include ethnic minorities, poverty, poor education, elderly (≥65 years), crime, and
living alone [22,27,33–36]. Low income and minority groups are more likely to live in neighborhoods
with high population densities, sparse vegetation, and little open space which significantly increases
their exposure to heat [27]. To further exacerbate socioeconomic heat burden disparities, low income
and minority communities generally do not have the same access to protective resources such as
air conditioning, which has been found to be the most effective heat stress prevention factor [37–39].
Income level can affect the patient’s health status and ability to treat or manage pre-existing health
conditions leaving them more susceptible to heat illness. For example, diabetes has a strong correlation
with low income or poverty households [40] in addition to a strong correlation with extreme heat
vulnerability [1,13]. Drug or alcohol use and the ability to seek help is another confounding factor
correlated with both low socioeconomic status [22] and increased risk of an Emergency Medical Service
(EMS) call in an extreme heat event [13]. It is important to consider these socioeconomic factors when
comparing spatial distributions of extreme heat risk.

The Pacific Northwest is susceptible to the health effects of extreme heat. Research by
Curriero et al. [41] determined that while cold temperatures have a greater effect on mortality in
certain southern cities, heat exacerbated mortality in northern cities. Since southern cities generally
experience more extreme heat than the colder climates of the north, neither region adapts well to
opposite extreme temperatures. Reid et al. [42] specifically pointed out the Pacific Coast as one of the
most vulnerable regions to extreme heat due to four factors: social and environmental vulnerability
from education, race, and green space; social isolation; air conditioning prevalence; and the proportion
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of elderly and diabetes in the population. As the most populous northern county in the Pacific
Northwest and 13th in the United States, research indicates that King County in Washington State
is vulnerable to the health impacts of increasing extreme heat events. Specifically, Calkins et al. [13]
found that in King County, WA, basic life support (BLS) calls increased by 8% on days exceeding a
county-wide averaged maximum humidex above the 99th percentile (36.7 ◦C) and by 14% for advanced
life support (ALS) calls on days exceeding a county-wide averaged maximum humidex above the
95th percentile (29.7 ◦C). Additionally, research from Busch Isaksen et al. [5,6] demonstrated increased
risk for mortality and hospitalizations across age groups and cause of deaths and admissions. All of
these previous studies, however, have used a county-wide averaged maximum daily humidex as their
measurement of exposure.

This paper assesses the relative risk of higher rates of EMS calls on extreme heat days compared
to non-heat days, accounting for social and environmental predictors for heat vulnerability including
percent living in poverty, percent of the population over age 65, and percent impervious surface.
This paper adds to the research of Calkins et al. [13] by redefining the spatial unit of exposure analysis
from county-wide humidex averages to a 4 km by 7.5 km meteorological grid block scale to assess
a local relative rate of EMS calls on extreme-heat days compared to non-heat days. Using local
humidex measurements instead of county-wide averages further refined our extreme-heat threshold,
thus reducing type II error from EMS call misclassification.

2. Materials and Methods

2.1. Exposure Data and Assessment

The University of Washington’s Climate Impacts Group provided meteorological data modeled
on a 4 km by 7.5 km (1/16th degree resolution) block grid. These data were derived using the
Parameter-elevation Relationships of Independent Slopes Model (PRISM) [43] and observations from
the National Oceanic and Atmospheric Administration’s Global Historic Climate Network-Daily
(GHCN) (Busch Isaksen et al. [5,6] explains the meteorological model further). Each grid block
center point included daily minimum, maximum, and average temperature; relative humidity; and
precipitation. From this, a minimum, maximum, and average humidex value for each day was
calculated using the following equation:

f (T, H) = T +
5
9
× (v− 10); v =

(
6.112 + 10[

7.5T
237.7+T]

)
× H

100
(1)

where T is the temperature in Celsius, H is the humidity percentage, and v stands for the vapor
pressure. Humidex is an apparent temperature index that describes the human perception of heat by
taking the effects of humidity into account as well as air temperature. It represents a more accurate
measure of heat burden than temperature alone [44].

2.2. EMS Data

The personnel of Seattle and King County Emergency Medical Services Division of the Department
of Public Health prepared, de-identified, and supplied the University of Washington researchers with
Emergency Medical Service call data. These data included information on EMS calls, both Basic Life
Support (BLS) and Advanced Life Support (ALS) calls, from 2007 to 2012. During this time frame, thirty
BLS agencies responded to an average of 165,000 BLS calls per year and six ALS agencies responded
to an average of 45,000 ALS calls per year [45]. However, our analysis includes only the summer
months, defined as May 1st to September 30th, of 2007–2012 which included 121,794 ALS calls and
441,119 BLS calls in King County, WA. The call classification was determined by the dispatcher based
on the level of care they believed the patient needed from the information provided over the phone.
However, it is important to note that despite whether an ALS unit responded, all calls in King County
received a BLS response. BLS units send out emergency medical technician-trained firefighters who
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aid in non-invasive care, while ALS units are equipped with paramedics authorized for advanced
patient care such as intubation, manual defibrillation, and intravenous medications to care for patients
in critical condition who may need treatment before or during their transport to a medical facility.
IRB approval for these data was granted from the University of Washington Human Subjects Division.

Each EMS call was assigned to a 4 by 7.5 km grid cell based on its call location. The few grid
cells with missing center points were matched to the meteorological data from the nearest bordering
center point. Data preparation excluded calls with a missing location variable, calls located on the
outer border of the grid cell map, and cells with five or less total calls for the entire study period.

2.3. Demographic and Environmental Data

Population data by age [46] and poverty status [47] were downloaded from the US Census Bureau
American Fact Finder database. These data were downloaded on the census tract level in Washington
State for 2010, the midpoint of the study period. In order to extrapolate estimates to the grid cell
scale, the intersect tool in ArcGIS found the percent of each census tract inside a given grid cell.
These percentages were used as weights to find approximated population (total and by age groups)
and percent poverty population for each grid cell.

Data for impervious surface were downloaded from the Washington State Department of
Ecology [48] as raster data from remote sensing imagery techniques. These data were an estimate for
land cover in 2006 and included a percentage value for each pixel in the county. From this, the average
percent impervious surface was computed for each grid cell.

2.4. Statistical Methods

2.4.1. Temporal Analysis on Extreme Heat Thresholds

We modified the approach in Busch Isaksen et al. [5] and Calkins et al. [13] to define the thresholds
for our analysis. Calkins et al. [13] considered thresholds from among the 90th, 95th, and 99th
percentiles of full year county-wide average humidex on the same meteorological dataset. Using a
Poisson generalized linear model, Calkins et al. [13] picked a threshold that gave the best fit model in
terms of Akaike Information Criterion (AIC) [49]. Due to various climates and landscapes throughout
King County, heat index also varies, meaning that thresholds derived from county-wide average
humidex could be misleading.

Instead, this study sought to analyze the relationship between heat exposure and EMS call volume
on a finer spatial scale. We first used a Poisson generalized additive model (GAM) [50] to preliminarily
evaluate the overall time trend as well as the relationship between log expected call volumes and
humidex. Specifically, we modeled the effects of humidex and temporal trend of expected daily call
count per each grid cell over the study period by penalized regression splines. We also accounted for
population of each grid cell and adjusted for difference across days of the week.

To increase interpretability and ability to compare goodness of fit, we then simplified the
non-parametric spline model with a crude piece-wise generalized linear model [51] with two knots.
Based on overall trends observed from the GAM results, the first knot was set at the 25th percentile of
all humidex values throughout the study period for the BLS dataset. For the ALS dataset, the first knot
was set at the 50th percentile. The second knot, i.e., our extreme heat threshold of interest, was then
identified by exploring 0.1 ◦C incremental changes starting at 25 ◦C and continuing through 40 ◦C.
The chosen threshold h∗ is one that minimized the AIC of the following model:

log µij = log pi + γ0 + γ1
(
hij − hq

)
+
+ γ2

(
hij − h∗

)
+
+ ns

(
tij
)
+

7

∑
k=1

γk I{dayij=k} (2)

where µij is the expected daily call volume of grid cell i on day j, log pi is the offset for population of
cell i, hq is the 25th percentile of humidex for BLS data or 50th percentile of humidex for ALS data,
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h∗ is the optimal threshold to be chosen, and γk’s adjust for difference across days of the week. ns
(
tij
)

is a natural cubic spline modeling the temporal trend of expected daily call count during the entire
study period. Finally, (. . .)+ denotes the positive part of the expression evaluated in the parentheses.
The GAM results were used to tune the degrees of freedom for the temporal spline terms.

2.4.2. Association between Heat Exposure and EMS Call Rates

A day was then classified as a “heat day” if its local maximum humidex value exceeded the
threshold derived from the temporal analysis. We investigated the association between heat exposure
and daily EMS call volume by fitting a Poisson mean model:

log µij = log pi + β0 + β1HDij + β2 Impi + β3PopG65i + β4Povi + ns
(
tij
)
+

7

∑
k=1

βk I{dayij=k} (3)

where HDij is the indicator of a heat day, Impi is the percentage of impervious surfaces of grid cell
i, PopG65i is the percentage of population at 65 years old or older, and Povi is the percentage of
poverty. To account for temporal correlation across daily measurements on each grid cell, we employed
the generalized estimating equations framework [52] where the model assumes an autoregressive
working correlation structure among measurements within each grid cell. We adjusted for percentage
of impervious surfaces, percentage of poverty, and percentage of population at 65 years old and older,
because a priori we believed that these environmental and demographic factors could have possible
implications on the expected daily call volumes. The exponentiated coefficient on the heat indicator
represents the relative rate of daily call volumes between a heat day and a non-heat day.

We then constructed a time-average map for the expected RRs (relative rate) of daily BLS and
ALS call volumes, separately, between a heat and non-heat day. To crudely detect any spatial
correlation that the models were not designed to capture, we performed the Moran’s I Test [53]
on the residuals calculated by subtracting the time-average observed RRs from the expected RRs
estimated by the models.

2.4.3. Effect Modification by Environmental and Demographic Characteristics

We proceeded to evaluate the possibility of effect modifications by these environmental and
demographic variables. Effect modification was examined by adding interaction terms into the main
model separately. An example of exploring effect modification is illustrated by the following model:

log µij = log pi + α0 + α1HDij + α2 Impi + α3PopG65i + α4Povi + α5HDij × Povi + ns
(
tij
)
+

7
∑

k=1
αk I{dayij=k} (4)

where the parameter of interest is α5, the coefficient on the interaction between heat exposure and the
percentage of poverty. In this example, by testing the significance of this interaction term, we could
identify whether the association between heat exposure and expected daily call volumes differ across
areas with various level of poverty.

Statistical significance was set at level 0.05. Results for Sections 2.4.2 and 2.4.3 were reported in
terms of relative rates, i.e., exponentiated coefficients from Equations (3) and (4), to be scientifically
meaningful. All statistical analyses were conducted using the R statistical analysis package version
3.4.0 [54].

3. Results

3.1. Statistical Results

Table 1 provides descriptive EMS data after removing grid cells with total count of five or less
calls throughout the entire study period. After excluding cells with fewer than 5 calls total over the
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study period, we ended up with 124 grid cells to be included in the analysis for BLS data, and 116 grid
cells to be included in the analysis for ALS data.

Table 1. Descriptive statistics for EMS (Emergency Medical Service) call volumes.

Variable BLS Call ALS Call

Total number of calls—raw data 441,119 121,794
Total number of calls included in statistical analysis 434,853 120,638
Number of grid cells included in statistical analysis 124 116

Average number of local heat days per grid cell 1 109.08 60.44
Average number of local non-heat days per grid cell 1 808.90 857.60

Average (observed) number of calls per heat day per grid cell (SD) 4.16 (7.51) 1.24 (2.16)
Average (observed) number of calls per non-heat day per grid cell (SD) 3.78 (6.77) 1.13 (1.99)

Note: 1 A day was classified as a heat day if the local maximal humidex value exceeded a pre-specified threshold.
The extreme heat threshold was chosen to be 31.1 ◦C for BLS (Basic Life Support) calls and 33.5 ◦C for ALS
(Advanced Life Support) calls.

3.1.1. Temporal Analysis of Extreme Heat Thresholds

The temporal analysis for BLS data, modeled by a penalized cubic regression spline, is reported in
Figure 1. The relationship suggested a subtle increase in expected BLS call rate for humidex between
25 ◦C and 35 ◦C. When fitting a piecewise generalized linear approximation using two knots, the first
knot was set at the 25th percentile of humidex, and a natural cubic spline with four degrees of freedom
was used to model the time trend. The second knot was identified by exploring 0.1 ◦C incremental
changes starting at 25 ◦C and continuing through 40 ◦C, and choosing one that minimized the AIC of
the likelihood model. The chosen optimal threshold for BLS data was determined to be 31.1 ◦C.
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Figure 1. Temporal analysis on extreme heat threshold for BLS data: (a) Generalized additive model
(GAM) with penalized regression spline of log expected daily BLS call rate and humidex; (b) Plot of
AIC (Akaike Information Criterion) for the likelihood model when choosing optimal threshold between
25 ◦C and 40 ◦C.

The temporal analysis for ALS data is reported in Figure 2. Based on the preliminary results,
a natural cubic spline with five degrees of freedom was used in the piecewise linear approximation.
The optimal threshold for ALS data was chosen to be 33.5 ◦C.
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Figure 2. Temporal analysis on extreme heat threshold for ALS data: (a) Generalized additive model
with penalized regression spline of log expected daily ALS call rate and humidex; (b) Plot of AIC for
the likelihood model when choosing optimal threshold between 25 ◦C and 40 ◦C.

3.1.2. Association between Heat Exposure and EMS Call Counts

Table 2 presents the statistical results for the analysis on the association between heat exposure
and BLS call counts. Adjusting for cell population, various temporal effects, as well as percentages
of impervious surfaces, population ≥ 65 years old, and percent living in poverty, the expected daily
BLS call volume on a heat day, i.e., a day when local maximal humidex greater than 31.1 ◦C, was
statistically significantly elevated, estimated to be 1.080 (95% CI: (1.060, 1.099)) times higher than the
expected call volume on a non-heat day. The main effects of impervious surfaces and population ≥ 65
years old on the expected BLS call volume were not statistically significant at the 0.05 level. However,
we estimated that a one percent increase in percent living in poverty was significantly associated with
1.066 (95% CI: (1.029, 1.105)) times the expected daily BLS call volume, controlling for other factors
and time variables.

Table 2. Relative rate results: association between heat exposure (heat day versus non-heat day) and
daily BLS call volume, adjusting for community-level factors 1.

Variable Estimated RR 95% Confidence Interval p Value

Heat day 1.080 (1.060, 1.099) <0.001
% Impervious surfaces 1.011 (0.998, 1.025) 0.102

% Population ≥ 65 years old 1.033 (0.984, 1.085) 0.185
% Poverty 1.066 (1.029, 1.105) <0.001

Note: 1 The model adjusted for temporal trend in expected BLS call counts by including indicators for days of the
week and a natural cubic spline for time with four degrees of freedom. RR: relative rate.

Using the fitted results from the model described in Table 2, we calculated and mapped
the expected RRs of BLS call volumes between a heat day and a non-heat day across grid cells.
The histogram and map of estimated RRs are displayed in Figure 3. The mean expected RR across 124
grid cells was 1.083, with a standard deviation of 0.002. Moran’s I test on the residuals did not find
statistically significant evidence for spatial autocorrelation among neighboring grid cells.
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Washington’s Grid map of expected RRs for BLS data, where black indicates grid cells without call data
or too few call data to be included in the analysis. Each grid cell has size of 4 km by 7.5 km.

Table 3 presents the statistical results for the analysis on the association between heat exposure
and ALS call counts. Adjusting for cell population, various temporal effects as well as percentages of
impervious surfaces, population ≥ 65 years old, and poverty, the expected daily ALS call volume on a
heat day, i.e., a day when local maximal humidex greater than 33.5 ◦C, was estimated to be 1.067 (95%
CI of (1.035, 1.100)) times higher than the expected ALS call volume on a non-heat day. This result
was statistically significant with a p-value of less than 0.001. Controlling for other factors and time
variables, we estimated that a one percent increase in impervious surfaces was associated with 1.015
(95% CI of (1.001, 1.029)) times the expected daily ALS call volume. Similarly, a one percent increase in
population ≥ 65 years old was associated with 1.057 (95% CI of (1.017, 1.098)) times increase in the
expected daily ALS call volume, and a one percent increase in poverty translated to 1.041 (95% CI of
(1.008, 1.076)) times increase in the expected daily ALS call volume.

Table 3. Relative rate results: association between heat exposure (heat day versus non-heat day) and
daily ALS call volume, adjusting for community-level factors 1.

Variable Estimated RR 95% Confidence Interval p Value

Heat day 1.067 (1.035, 1.100) <0.001
% Impervious surfaces 1.015 (1.001, 1.029) 0.039

% Population ≥ 65 years old 1.057 (1.017, 1.098) 0.005
% Poverty 1.041 (1.008, 1.076) 0.016

Note: 1 The model adjusted for temporal trend in expected ALS call counts by including indicators for days of the
week and a natural cubic spline for time with five degrees of freedom.

Similarly, we used the fitted results from the model described in Table 3 to calculate and map
the expected RRs of ALS call volumes between a heat day and a non-heat day across grid cells.
The histogram and map of estimated RRs are displayed in Figure 4. The mean expected RR across 124
grid cells was 1.074, with a standard deviation of 0.004. Again Moran’s I test on the residuals did not
find statistically significant evidence for spatial autocorrelation among neighboring grid cells.
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Figure 4. Relative rate (RR) analysis on ALS data: (a) Histogram of expected RRs of ALS call
volumes between heat and non-heat day, defined by humidex threshold of 33.5 ◦C; (b) King County,
Washington’s Grid map of expected RRs for ALS data, where black indicates grid cells without call
data or too few call data to be included in the analysis. Each grid cell has size of 4 km by 7.5 km.

3.1.3. Effect Modifications by Environmental and Demographic Characteristics

We found no evidence that the relative rate of BLS call volumes between a heat day and non-heat
day differed by percent impervious surfaces, percent population ≥ 65 years old, or percent poverty.
The results are reported in Table A1 of the Appendix A. The statistical results for three separate models
investigating the effect modifications by the community-level characteristics for the ALS data are
presented in Table 4. We found no evidence that the relationship between heat exposure and ALS call
volume was modified by the percentage of population ≥ 65 years old.

Table 4. Relative rate results: effect modifications of the environmental and demographic factors on
the association between heat exposure and daily ALS call counts 1.

Variable Estimated RR 95% Confidence Interval p Value

Heat day 1.190 (1.093, 1.295) <0.001
% Impervious surfaces 1.015 (1.001, 1.029) 0.037

% Population ≥ 65 years old 1.057 (1.017, 1.098) 0.005
% Poverty 1.041 (1.008, 1.076) 0.016

Interaction between heat and
% impervious surfaces 0.997 (0.994, 0.999) 0.007

Heat day 1.006 (0.855, 1.184) 0.941
% Impervious surfaces 1.015 (1.001, 1.029) 0.039

% Population ≥ 65 years old 1.056 (1.016, 1.098) 0.005
% Poverty 1.041 (1.008, 1.076) 0.016

Interaction between heat and
% population ≥ 65 years old 1.005 (0.992, 1.019) 0.446

Heat day 1.225 (1.130, 1.327) <0.001
% Impervious surfaces 1.015 (1.001, 1.029) 0.038

% Population ≥ 65 years old 1.057 (1.017, 1.098) 0.005
% Poverty 1.042 (1.008, 1.077) 0.014

Interaction between heat and
% poverty 0.988 (0.981, 0.994) <0.001

Note: 1 The model adjusted for temporal trend in expected ALS call counts by including indicators for days of the
week and a natural cubic spline for time with five degrees of freedom.
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The exact interpretation of the interaction term is tricky given the continuous nature of the
environmental and socioeconomic variables, and thus we attempted to give numerical examples as
followed. In the model that tested the effect modification of percent poverty, for example, among
grid cells with 5% living in poverty (41st percentile of percent poverty for all available grid cells),
the relative rate of ALS calls between a heat day and non-heat day was estimated to be 1.150, i.e., daily
ALS volume on a heat day is 1.150 times higher than the volume on a non-heat day. This value was
derived from Equation (4) by exponentiating (α1 + 5α5). However, among grid cells with 10% living
in poverty (around 84th percentile), this relative rate was estimated to be only 1.080 using the same
calculation method. Similarly, in the model that tested the effect modification of percent impervious
surfaces, among grid cells with 15% percent impervious surfaces, the relative rate of ALS calls between
a heat day and non-heat day was estimated to be 1.133. Meanwhile, among grid cells with 20% percent
impervious surface, the relative rate was estimated to be only 1.115. The results essentially suggested
that the relative rate of daily ALS call volumes between a heat day and a non-heat day differ across
various level of impervious surfaces or percent poverty.

4. Discussion

Using a finer spatial scale to assess heat exposure, this analysis identified an extreme heat-day
threshold of 31.1 ◦C for BLS and 33.5 ◦C for ALS calls. Compared to the county-wide derived
thresholds from Calkins et al. [13], this study’s extreme-heat day threshold increased for BLS calls from
29.7 ◦C to 31.1 ◦C humidex, but decreased for ALS calls from 36.7 ◦C to 33.5 ◦C humidex. Despite the
adjustments, the threshold of ALS calls remains higher than that of BLS calls, continuing to support
the hypothesis that higher temperatures are associated with more severe patient conditions requiring
more involved interventions.

In the Calkins et al. [13] study using the county-wide average humidex to assess exposure, a
RR of 1.08 (95% CI 1.06, 1.09) was observed for BLS calls and 1.14 (95% CI 1.09, 1.2) for ALS calls,
on a heat day compared to a non-heat day. After refining our exposure assessment, and adjusting
for community-level characteristics, our analysis observed the same 1.08 (95% CI: 1.060, 1.0) RR for
BLS calls, but a much lower 1.067 RR for ALS calls on heat days compared to non-heat days. The
difference between study results for ALS call risk could be attributed to effects from community-level
characteristics and improved study power. However, it is more likely that the higher extreme
heat threshold in Calkins et al. [13], 36.7 ◦C humidex resulted in categorizing and analyzing fewer
extreme-heat days compared to this study’s extreme heat threshold of 33.5 ◦C humidex. There were 23
heat days in Calkins et al. [13], and 28 99th percentile heat days in this analysis. The lower number
of extreme heat days may have reduced study power and resulted in a higher overall risk for ALS
calls in Calkins et al. [13]. On the other hand, study power and the overall results for the BLS dataset
remain strong in the county-wide analysis which included 112 heat days [13] and this spatially refined
analysis which included 149 95th percentile heat days. This suggests that when there is enough study
power, the refined analysis may not be necessary to accurately estimate the risk of EMS calls in the
region. The geographical distribution of expected RRs for BLS calls on an extreme heat day compared
to a non-heat day can be found in Figure A1 of the Appendix A and the distribution of expected RRs
for ALS calls in Figure A2 of the Appendix A.

Furthermore, this study found a significant positive association between BLS call volumes and
only one of the community-level characteristics: percent poverty. This suggests that, in general,
more BLS calls are expected in areas with higher percent poverty. However, the interaction term
between heat day and poverty was not statistically significant, meaning there was no statistical
evidence that BLS call volumes increased with percent poverty on extreme heat days compared to
non-heat days. This finding is contrary to previous studies which indicate individuals living in poverty
have fewer opportunities to access air conditioning, clean drinking water, and health care, which
may increase their vulnerability to heat [37–39]. With less access to healthcare, those in poverty are
more susceptible to underlying health conditions which can make them more vulnerable to health



Int. J. Environ. Res. Public Health 2017, 14, 937 11 of 16

complications during extreme heat events. For example, diabetes, has been shown to strongly correlate
with households below the poverty-line [40] in addition to extreme heat vulnerability [1,13]. Further
research should continue to examine the potential relationships between poverty, heat and BLS calls,
including whether there may be coping mechanisms specific to poor populations in this region that
might account for the lack of statistically significant interaction.

This study also found a significant positive association between expected ALS call volumes and
all of the community-level characteristics analyzed: percent impervious surface, percentage living
in poverty, and percent of the population age 65 or older. Daily ALS call volumes increased in areas
with increased poverty, higher populations of elderly residents, and higher percentages of impervious
surfaces. Moreover, poverty and impervious surface have a significant negative interaction term with
heat day. This indicates that as percent poverty or percent impervious surface increases, ALS call
volume decreases on an extreme heat day compared to a non-heat day. These negative relationships
are also contradictory of previous literature. Just as BLS call volumes are expected to increase, research
also indicates that ALS call volume would increase as poverty increases on an extreme heat day
compared to a non-heat day. In addition, past research also suggests that ALS call volume should
increase as impervious surface increases. Akbari [55] found an increase in percent impervious surface
and percent development in urban cores can lead to an increase by an additional 5.5 ◦C (22 ◦F) in cities
compared to rural areas nearby, which would increase one’s susceptibility to heat illness. Conversely,
an increase in tree canopy was shown to cool surrounding air temperatures during an extreme heat
event [14,22–26] which would decrease one’s susceptibility to heat illness. The model results do
suggest some effect modification exists, but the effect modification is non-intuitive, and it is possible
that an additive model is not enough to fully understand the effect modification. Further research
is needed to explore relationships with the community-level variables, as well as the preventative
influence that active public health outreach and preparedness programs are having on our vulnerable
communities’ health outcomes.

There are several limitations to this research. Grid cell population data were available from
only one of the six years in the study time frame, so we could not account for natural demographic,
environmental, or socioeconomic changes over time. The extrapolation of population and poverty from
the census tract level to the grid cell level, assumed population and poverty were evenly distributed
throughout census tracts. This extrapolation from the census tracts to the grid cells contributes greater
uncertainty in the more rural eastern side of the county where census tracts are large and encompassed
multiple grid cells with sparse populations.

Although we adjusted for temporal trends by including temporal splines and indicators for day
of the week, there may be others factors that were not accounted for due to a lack of data. For example,
information pertaining to time spent within grids and moving between grids (residential versus
employment movement patterns) could be potential time trend variables affecting call counts over the
six-year period. Additionally, there could be monthly trends which were not included, or undetectable
spatial correlations that were not picked up on by a crude Moran’s I test.

This study included no information regarding individual patient’s underlying health history,
activities before/during the EMS call, environment the patient was located in, or the patient’s specific
socioeconomic status. These regional data on poverty, elderly population and impervious surface were
not case specific, but rather were the averages of the population over the grid cell for the call location.
Therefore, it is possible the patient did not live in the same grid cell they called for an ambulance,
in which case, these grid cell data of their location may not adequately reflect the average of their
community. Future research should collect patient-specific information.

Despite these limitations, our analysis has several potential practical implications for managing
EMS calls during extreme temperature days in King County. Already, we have communicated
preliminary results to those who have provided us with the EMS data, in order to explore strategies to
build awareness of the potential for increased call volume, and prioritization services to areas with
communities that are most vulnerable to heat effects. Particularly for more severe ALS calls, reducing
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response times may have a dramatic impact on the outcomes of these calls. Longer term strategies,
such as building awareness and adaptive capacity to protect against extreme heat in poor, older, and
urban populations will be an important aspect of developing climate action plans for this region.
We would expect with climate change that the prevalence of extreme heat days may increase in this
region, making such emergency service planning more urgent. Furthermore, a comparison of the
county wide analysis by Calkins et al. [13] and this analysis suggests that in future research with
adequate study power, a refined spatial analysis within counties may not be necessary to accurately
portray the effects of extreme heat on EMS call volumes.

5. Conclusions

Building off previous research, this paper has a more accurate exposure assessment that potentially
addresses exposure misclassification that existed in the previous paper. In addition, we re-analyzed
the association between extreme heat and EMS calls adjusting for percent poverty, percent impervious
surface, and percent of the population 65 years or older. On an extreme heat day, we continued to
find increased BLS and ALS call volumes compared to non-heat days. While the BLS risk was the
same between this spatially refined analysis and a county wide analysis, the ALS risk was much lower
in the refined analysis. Future research should explore a larger EMS dataset as well as more patient
specific variables.
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Appendix A

Table A1. Relative rate results: effect modifications of the environmental and demographic factors on
the association between heat exposure and daily BLS call counts 1.

Variable Estimated RR 95% Confidence Interval p Value

Heat day 1.102 (1.054, 1.151) <0.001
% Impervious surfaces 1.011 (0.998, 1.025) 0.101

% Population ≥ 65 years old 1.033 (0.984, 1.085) 0.184
% Poverty 1.066 (1.029, 1.105) <0.001

Interaction between heat and % impervious surfaces 0.999 (0.998, 1.001) 0.353

Heat day 1.097 (0.992, 1.215) 0.072
% Impervious surfaces 1.011 (0.998, 1.025) 0.102

% Population ≥ 65 years old 1.034 (0.984, 1.085) 0.187
% Poverty 1.064 (1.029, 1.105) <0.001

Interaction between heat and % population ≥ 65 years old 0.999 (0.989, 1.008) 0.752

Heat day 1.123 (1.066, 1.182) <0.001
% Impervious surfaces 1.011 (0.998, 1.025) 0.102

% Population ≥ 65 years old 1.033 (0.985, 1.085) 0.184
% Poverty 1.067 (1.029, 1.106) <0.001

Interaction between heat and % poverty 0.997 (0.992, 1.001) 0.144

Note: 1 The model adjusted for temporal trend in expected BLS call counts by including indicators for days of the
week and a natural cubic spline for time with four degrees of freedom.
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Figure A1. King County, Washington’s Grid map of expected RRs for BLS data with local city labels,
where red checkers indicate grid cells without call data or too few call data to be included in the
analysis. Each grid cell has size of 4 km by 7.5 km.
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Figure A2. King County, Washington’s Grid map of expected RRs for ALS data with local city labels,
where red checkers indicate grid cells without call data or too few call data to be included in the
analysis. Each grid cell has size of 4 km by 7.5 km.
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